Этногеномика беларусов — часть III

Анализ этно-популяционного адмикса

 

В ходе следующеего этапа, окончательный набор данных по референсным популяциям (которые я храню в linkage-формате PLINK) был обработан в программеAdmixture. Во время выбора подходящей модели проведения теста на этно-популяционный адмикс, мы столкнулись с крайне трудной задачей: как было показано в профильных научных исследованиях (Pattersonetal.2006) количество маркеров, необходимых для надежной стратификации популяций в анализе обратно пропорциональна генетическому расстоянию (фСТ) между популяциями. Согласно рекомендациям пользователей программы Admixture, считается что примерно 10 000 генетических SNP-маркеров достаточно для выполнения интер-континентальной GWAS-коррекции обособленных популяций (например, уровень дивергенции между африканскими, азиатскими и европейскими популяциями FST> 0.05), в то время как для аналогичной коррекции между внутриконтинентальными популяциями требуется более чем 100000 маркеров (в Европе, например, ФСТ < 0.01). Для повышения точности результатов Admixtureмы решили использовать метод, предложенный Dienekes. Этот метод позволяетпреобразовать частот аллелей в “синтетические” индивиды (см. такжепример Зака Аджмалаиз проекта HarappaDNA). Идея метода довольно проста: сначала необходимо запустить unsupervisedанализ Admixtureс целью вычисления частот аллелей в так называемых предковых компонентов, а затем на основании аллельных частот сгенерировать “фиктивные популяции”. Именно эти фиктивные популяции и индивиды будут использоваться в ходе чистых референсов в ходе последующего анализа этно-популяционного анализа. Впрочем, как и любые другие исследователи, работающий над четким решением проблемы этно-популяционного адмикса, мы были вынуждены считаться с ограничениями этого подхода. Хотя мы отдаем себе отчет в существовании явных методологических подвохов в использовании смоделированных искусственных индивидов для определения адмикса в реальной популяции, мы полагаем что полученные в ходе аллельно-частотного моделирования “фиктивных индивидов” представляют самую лучшую аппроксимацию древних генетических компонентов предпологаемых древних компонентов. В ходе применения простого моделирующего метода, нами были получены значимые результаты в ходе создания нового калькулятора. Сначала мы произвели unsupervisedAdmixture(при значении К = 22, т.е 22 кластера частот аллель или предковых компонентов). По выполнению анализа нами были получены оценки коэффициентов адмикса в каждой из этих 22 аллельных кластеров, а также частоты аллелей для всех SNP-ов в каждой из 22 родовых популяций.

Затем мы использовали мнемонические обозначения для каждого компонента (имена для каждого из компонентов выведены в порядке их появления). Нужно помнить, что обозначения этих компонентов носят скорее мнемонический условный характер:

Pygmy

West-Asian
North-European-Mesolithic
Tibetan
Mesomerican
Arctic-Amerind
South-America_Amerind
Indian
North-Siberean
Atlantic_Mediterranean_Neolithic
Samoedic
Proto-Indo-Iranian
East-Siberean
North-East-European
South-African
North-Amerind
Sub-Saharian
East-South-Asian
Near_East
Melanesian
Paleo-Siberean
Austronesian

Вышеупомянутые частоты аллель, вычисленные в ходе unsupervised(безнадзорного) анализа (AdmixtureK= 22) объединенного набора данных, были затем использованы для симуляции синтетических индивидов, по 10 индивидов на каждую из 22 предковых компонент. Это симуляционное моделирование проводилось с помощью PLINKкоманды -simulateРасстояние между между симулированными «искусствеными» индивидами было визуаилизировано с использованием многомерного масштабирования.

simul

На следущем этапе, я включил группу смоделированных индивидов (220 индивидов) в новую эталонную популяцию. После чего я запустил новый анализ А, на этот раз в полном “поднадзорном” режиме для K= 22, причем полученные в ходе симуляционного моделирования фиктивные популяции фиктивных индивидов использовались в качестве новых референсных эталонных групп. На конвергенцию 22 априорно заданых предковых компонентов было затрачено 31 итераций (3 7773,1 сек) с окончательным loglikelihood: -188032005,430318 (ниже, на следущей странице, приведена таблица значений Fst между расчетными ‘предковыми’ популяциями):

fst dist

Рисунок 1. FST-дистанции между компонентами

 

Приведенная выше матрица Fstдистанций была использована для определения наиболее вероятной топологии NJ-дерева всех 22 предковых компонентов ( примечание: в качестве outgroup-таксона использовался South-Africancomponent).

Advertisements

Добавить комментарий

Please log in using one of these methods to post your comment:

Логотип WordPress.com

Для комментария используется ваша учётная запись WordPress.com. Выход / Изменить )

Фотография Twitter

Для комментария используется ваша учётная запись Twitter. Выход / Изменить )

Фотография Facebook

Для комментария используется ваша учётная запись Facebook. Выход / Изменить )

Google+ photo

Для комментария используется ваша учётная запись Google+. Выход / Изменить )

Connecting to %s