2014 год — год палеогенетики и эпигенетики

Оглядываясь назад на события и открытия, коими в уходящем 2014 году ознаменовалась область исследований генетики человека, можно смело сказать что уходящий год был годом прорыва в двух принципиально различных направлениях — в палеогенетике, изучающей геномы популяций древних людей прошлого, и  в эпигенетике,  с помощью которой можно прогнозировать будущее (здоровье и качество жизни) отдельных людей.


Палеогенетика

В самом начале 2014 года, на руках немногочисленных исследователей  палеогеномов было менее десятка древних геномов человека, опубликованных в предыдущие года. К концу 2014 года опубликован ряд работ, посвященных попыткам генотипирования останков древних людей — от живших несколько тысячелетий назад до «усть-ишимца» с предположительным возрастом около 45 тысяч лет, неандертальцев и «денисовки». Количество таких расшифровок растет все быстрее, что не может не вызывать оптимизма.  Вторая половина 2014 года особенно примечательна как количеством подобных публикаций, так и числом полных геномных NGS-сиквенсов древних людей, размещенных в публичных репозиториях (банках геномных данных). Так, в сентябре в Nature была опубликована окончательная версия работы Lazaridis et al. 2014  «Ancient human genomes suggest three ancestral populations for present-day Europeans». Работа получила широкое освещение в СМИ, поскольку аналитическая выборка сэмплов в этом исследовании включала значительное количествао заново генотипированных (на чипе Affymetrix HumanOrigin) образцов ДНК из древних палеолитических стоянок Сибири (Афонтова Гора, Малта), представителя древней индейской культуры Кловис и палеоэскимоса Cаккак. В работе был представлен  целый  ряд образцов древней ДНК представителей европейских мезолитических и неолитических культур, опубликованных в более ранних работах 2012-2014 годов: Skoglund et a. 2014 «Genomic Diversity and Admixture Differs for Stone-Age Scandinavian Foragers and Farmers»(шведские земледельцы и охотники собиратели эпохи неолита); Olalde et al. 2014 «Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European» (дДНК мезолитического населения Иберийского полуострова) и т.д.

Опубликованные геномы так и остались бы достоянием небольшой группы ученых, и по-прежнему бы использовались бы только для сравнения с абстрактными и анонимизрованных данными референсных популяций человека, если бы усилиями пары любителей (прежде всего усилиям Чандракумара) палеогеномы не были преобразованы в привычные и удобные для популяционного анализа форматы  BAM, VCF и Plink binary, а также в стандартный формат геномных данных от FTDNA. По своей сути, преобразование состояло в сложной процедуре сборки генома из библиотек коротких геномных ридов (в формате sra., в котором эти риды хранятся в репозиториях крупных баз геномных данных). Полученные сборки геномов в формате sam/bam cравниваются с референсным геномом человека, и отличающиеся одиночные нуклеотидные полиморфизмы сохраняются в VCF файл. Здесь нужно помнить о том, что в этой процедуре не учитывался параметр качества сиквенса PHRED score. Традиционно рекомендуется использовать только те базовые пары, PHRED score которых превышает 30, т.е чья точность определения составляет 99.9% (или 1 ошибка на 1000 базовых пар). Кроме того, в этой процедуре разработчик не учел влияние постмортальных изменений ДНК. Cледует помнить, что ДНК, как и любая биомолекула, способна вступать в химические реакции с окружающим миром, тут-то и появляются различные модификации нуклеотидов (особенно по краям фрагментов древней ДНК). Наиболее частая постмортальная мутация — дезаминирование цитозинов (C), приводящая к возникновению урацилов (U) в последовательности древней ДНК, которые при проведении ПЦР многократно копируются «бездушным» ферментом ДНК-полимеразой как тимин (Т). Именно по этой причине, при оценке достоверности снипов в полученных из палеогеномов вариантах особое внимание требуется уделять транзициям C->T и  G->A.  Если при подсчете вариантов окажется, что такие транзиции встречаются чаще ожидаемого, то можно сделать вывод о существенном повреждении палео-ДНК.  И хотя по причине игнорирования этих ограничений, автором было получено большое количество снипов, в некоторых случаях, например при объединении полученных данных NGS c данными генотипирования с помощью классических технологий миркочипов, использование таких данных может существенно уменьшить качество интерпретации.

Тем не менее, благодаря этим усилиям, и не в меньшей степени, благодаря соотрудничеству с порталом Gedmatch и компанией  FTDNA, большинство клиентов ведущих компаний на рынке персональной геномики и генетической генеалогии (таких как 23andme, и FTDNA) могут сравнить свои данные с данными древних геномов либо путем сравнения частото аллелей, либо посегментно сравнивая свои хромосомы с гомологичными хромосомами древних геномов.  Более того, Феликс Чандракумар пошел дальше и разместил 10 наиболее качественных палеогеномов (т.е палеогеномов с наибольшим числом перекрывающихся разными микроматрицами снипов) на FTDNA. Таким образом, с помощью сервиса MyOrigins FTDNA, исследователи могут установить распределение «этно-популяционных составляющих» или «предковых этнопопуляционных компонентов» в этих древних геномов. Нужно помнить, конечно же, что в случае с наиболее древними геномами (геномами неандертальца, усть-ишимца и т.д.) полученное распределение более молодых компонентов (полученных из современных популяций) нельзя интерпретировать буквально.


Эту замечательную функцию дополняют калькуляторы Eurogenes, благодаря которым любой интересующийся человек может посмотреть, какой процент его/ее генома приходится на тот или иной древний геном. Для людей, озабоченных вопросами анонимности, Феликс разработал отдельное десктопное приложение  — калькулятор древней ДНК. Этот калькулятор  показывает, какой процент ДНК (составных сегментов) аутосомной ДНК клиента попадает в каждый из 30 образцов древней ДНК . Другими словами, он показывает  процент общих предков в сравнении современного ДНК и палеоДНК.

Подводя итоги года, можно сказать, что в области изучения древней ДНК все ожидания были оправданы.


Эпигенетика

Под эпигенетикой обычно понимают область знаний о совокупности свойств организма, которые не закодированы непосредственно в геноме, но могут и должны передаваться по наследству.Эпигенетика может быть определена как изучение механизмов контроля активности генов во времени и пространстве в процессе развития сложных организмов. К настоящему времени обнаружены и описаны различные механизмы контроля активности генов, однако в уходящем 2014 году особое внимание ученые уделяли  изучению одного из таких механизмов  — ферментативному (энзиматическому) метилированию самой генетической матрицы, то есть ДНК.

Метилирование — это изменение молекулы ДНК путем присоединения метильной группы (-СH3) к нуклеотиду C, причем необходимо, чтобы за С следовал нуклеотид G. Последовательность нуклеотидов -CG- называется СpG динуклеотидом, или CpG сайтом. Метилирование происходит не во всех клетках одновременно, поэтому говорят о проценте метилирования определенного CpG сайта.метилирование ДНК ощутимо сказывается на её взаимодействии (связывании) с различными белками. Во многих случаях метилирование по цитозиновым остаткам препятствует связыванию специфично реагирующих с ДНК ядерных белков (факторов), которые, собственно, и осуществляют разные генетические процессы, в том числе транскрипцию, репликацию и репарацию.Как известно, метилирование играет важнейшую роль в механизме экспрессии (т.е качественном и количественном проявлени) генотипа в фенотип. оказано, что с изменением профиля метилирования связаны такие заболевания, как различные виды рака, диабет первого и второго рода, шизофрения и т.д. Поэтому важно уметь анализировать профиль метилирования генома, и здесь перед энзимологией расскрываются огромные перспективы. Например, в 2014 году компания «СибЭнзайм» открыла новый фермент, на базе которого разработали новый метод детекции. Он позволяет определять, включен или выключен интересующий вас ген — э то управляющий механизм в организме, именно отключение отдельных генов ученые связывают с развитием рака:

С технической точки зрения, изучение метиляции ДНК происходит с использованием модифицированного варианта ChiPSeq (это комбинированный вариант иммунопреципитации хроматина (ChIP) и высокоэффективного секвенирования ДНК для определения участков связывания ДНК и белков). Не вдаваясь в биолого-химические подробности этого модифицированного метода, его можно кратко описать следующим образом. Каждый CpG сайт измеряется с помощью двух флуоресцентных проб. Флуоресцентный сигнал проб пропорционален соответственно количеству метилированных и неметилированных CpG сайтов в тестируемом образце.  Полученные данные образуют собой профиль метилирования, который удобно сравнивать с различными референсными образцами. Как уже говорилось выше, этот профиль можно использовать не только для медицинских целей (например, для изучения эпигенетических факторов развития различных заболеваний), но и для более общих целей. В недавном исследовании, проведённом специалистами из Калифорнийского университета (UCLA), выявило биологические часы, встроенные в геном человека и оно впервые определило, что внутренние часы в состоянии точно оценить возраст различных человеческих органов, тканей и клеток. Исследователи обратили свое внимание на метилировании – естественном процессе, изменяющем химический состав ДНК. Он изучил 121 набор данных, собранных ранее исследователями, изучавшими метилирование здоровых и раковых тканей человека. Проанализировав информацию по 8000 образцов из 51 типа тканей и клеток со всего тела, исследователи смогли определить, как возраст влияет на уровни метилирования с рождения до 101 года. Он определил, что метилирование работает на 353 участках ДНК, которые изменяются с возрастом. Таким образом, профиль метилирования ДНК представляет собой наиболее надежную метрику для расчетов биологического возраста как отдельных органов, так и всего организма.

Принимая это во внимание, можно сказать что и в последующие года эпигенетику ожидают радужные перспективы.

Тезисные выводы статьи о эволюции «динарской подгруппы» гаплогруппы I2a

На протяжении последних двух месяцев я уделил много cвободного времени организации собранного мной на протяжении последних 6 лет материала и экспериментальных данных, касающихся демографической истории популяции носителей «мужской» (Y-хромосомной) гаплогруппы I2a, причем в фокусе исследования находился тот вариант, который наиболее распространен в Восточной Европе — т.н «динарская ветвь» или «динарская субклада». К началу декабря окончательный вариант статьи (объемом в 50 страниц) был подготовлен к реценизированию, которое должно занять несколько месяцев.

Пару дней назад один из рецензентов, историк Вячеслав Носевич из Беларуси, опубликовал публичный вариант рецензии статьи (этот вариант рецензии я размещу чуть ниже).

Пока ожидается рецензия второго рецензента, я хочу познакомить читателя с главными выводами исследования


Выводы исследования

 

Перед тем как приступить к  обсуждению результатов исследования, необходимо вкратце сформулировать в виде тезисов основные результаты анализов, проведенных в рамках системного метода:

  1. Гаплогруппа I2a1b2a1 определяется снипами CTS176/S2621, CTS1293/S2632, CTS1802/S2638, CTS5375/S2679, CTS5985/S2687, CTS7218/S2702, CTS8239/S2715, CTS8486/S2722, CTS11030/S2768, L178/S328 (и пр.). Согласно данным экспериментальной филогении (эспериментальному дереву гаплогрупп) Yfull (2014) и ISOGG, эта клада разбивается на субклады новыми снипами I-S17250 (к этой субкладе принадлежат все из протестированных представителей т.н «южного динарского Y-STR кластера» и часть представителей т.н. «северного динарского кластера», в то время как у остальной части обнаружено «предковое значение» аллели снипа I-S17250 –), I2a1b2a1b — Y4460 (Y3106, в эту кладу входят выходцы из Беларуси, Латвии, Росии, Польши), и Z17855 (в эту «безымянную» субкладу, еще не принятую в номенклатуре ISOGG, входит часть болгар, македонцев и украинцев).
  2. Самый большую подгруппу образуют дочерние кластеры самой большой субклады I-S17250 (обозначенной в дереве ISOGG как I2a1b2a1a): I2a1b2a1a1-Z16971(Y5596,Y5595, обнаружена у представителей небольшого кавказско-украинского кластера, чей возраст по расчетам дисперсии Y-STR составляет 1000 лет), I2a1b2a1a2-Y4882 (Y4883, представлена в выборке беларусов, украинцев и поляков), I2a1b2a1a3-A356/Z16983 (Y4790, Y4789, данные снипы найдены у части представителей описанного выше «южного-динарского» кластера). Данное распределение субклад гаплогруппы I2a1b2a1 показывает, что разнообразие субклад (ветвей) этой гаплогруппы гораздо выше в восточной Европе, где ареалы распространения дочерних субклад динарского субклала в значительной степени накладываются друг на друга. На Балканах и в южной Европе разнообразие дочерних субклад I2a1b2a1 ниже.
  3. Исходя из имеющихся ныне фактов, можно сделать вывод о том, что так называемый северно-динарский Y-STR кластер I2a1b2a1 («Dinaric-N») соответствует той части родительской ветви I2a1b2a1CTS5966, которая не входит в субкладу I2a1b2a1a3- Z16982/ Z16983/A356 (последняя включает значительную часть южно-динарского Y-STR кластера)[1]. У большинства представителей всей динарской гаплогруппы I2a1b2a1 обнаружены мутировавшие аллели в Y-снипах Y3548, S17250, и YP205. Cледовательно, варианты Y-хромосомы гаплогруппы I2a1b2a1, не имеющие эти три снип-мутации, представляют собой самое ранее кладистическое разделение гаплогруппы I2a1b2a1-CTS5966, видимо незадолго до последующей популяционной экспансией. Прямая патрилинейная родословная носителей этих «предковых вариантов» прослеживается в регионы юго-восточной Польши и смежных регионов западной Украине. Кроме того, в ходе коммерческих исследований проекта FTDNA I2a, у одного из представителей субклада «Disles» (I2a1b2a-CTS10936) — ближайшего (и возможно «родительского») по отношению к корневому уровню «динарской субклады» были определены 2 предковых (-) значения снипов, играющих важное значение в кладистическом разделении «динарского субклада» — CTS10936 + CTS10228- CTS5966-. Примечательно, что этот мужчина по прямой линии тоже происходит из южной Польши. Подводя итог сказанному, можно заметить, что распространение гаплогруппы I2a1b2a1CTS5966 началось в регионе западной Украины или юго-восточной Польше, где до сих пор сохранились «реликтовые» клады (ветви) I2a1b2a1CTS5966 с  «предковыми значениям» трех снипов.[2]
  4. Таким образом, более раннее разделение субклады I2a1b2a1 по 2 DYS-локусам на два кластера – южной и северный — не отражает истинной филогении: по состоянию на конец 2014 года субклад разделяется на 2-3 группы с дальнейшим разбиением на подгруппы; однако в настоящий момент из-за недостатка статистических данных трудно сказать, какие из данных мутаций являются приватными (генеалогическими), а какие актуальны для этнопопуляционных построений.

[1]  Кроме этих снипов, формирующих четко выраженные клады в структуре дерева I2a1b2a1, в одном из  тестов Geno 2.0  у представителя этой гаплогруппы были обнаружен снип CTS8429, чье положение в структуре дерева I2a1b2a1 неизвестно. Стоит также упоминуть снип YP206 (находящийся под снипом  S17250);  зафиксированный в полных геномных данных двух сардинцев из работ Francalacci et al. (2013); а также одноуровневые снипу YP206 ( M1345/CTS934).

[2] В частной переписке К.Нордтведт высказал мнение о том, что первичный ареал распространения этой  гаплогруппы находился в Польше, к югу от Вистулы.

  1. Генография субклад I2a носит нон-инклюзивный характер по отношению других субклад I2a, иными словами ареалы распространения отдельных субклад I2a практически не пересекаются. Распространение I2a1b-M423 в восточной Европе (где представлена главным образом ее «динарская субклада» I2a1b2a1) характеризуется резким градиентом частот: частоты Y хромосом этой субклады резко уменьшаются по мере удаления к западу от Балкан – так, например, этот субклад практически отсутствует у итальянцев, немцев, французов, и швейцарцев. При движении на северо-восток уменьшение частот гораздо более плавное, I2a1b-M423 сохраняет заметные частоты среди населения, говорящего на славянских языках. Распространение частот гаплогруппы I2a1b-M423 в восточной Европе носит бимодальный характер – с максимальным пиком (30-50 %) на Балканах, и с менее выраженным пиком (20-30%) в карпатско-полесском регионе. Наибольшие частоты распространения I2a1b встречаются у жителей Боснии-Герцеговины и хорватов Далмации от 40 до 60%, у сербов и македонцев 20-30%, примерно столько же в Молдавии у гагаузов.
  2. Благодаря находкам древнй ДНК удалось уточнить место первоначального распространения гаплогруппы I2a1b M423 (северо-западная часть Европы), по-крайней мере одной из ее древнейших исчезнувших ветвей, выделившейся из родительской гаплогруппы примерно 8700-9000 лет назад. Образец Лошбур (Loshbour) принадлежит к ветви, параллельной современным дочерним субкладам, которая отделилась от основной ветви не позднее чем 10 000 лет тому назад: к этой исчезнувшей ветви принадлежат и несколько образцов ДНК жителей шведской мезолитической стоянки Motala (Motala 3, Motala 12), которая существовала синхронно Лошбуру. Видимо, в этом же регионе и произошло выделение предковой ветви I2a1b2a12/CTS5966, так как ближайшая к динарской субкладе сестринская субклада I2a1b2a* (так называемый кластер Disles) встречается как в Польше, так и на британских островах, а следующая по удаленности клада (островная субкладаIsles I2a1b1 (L161.1/S185)) встречается практически исключительно на британских островах (подобный изолированный характер может быть связан с обособлением этой ветви в мезолите как следствие гипотетического затоплением Доггерланда около 8500 лет тому назад (Weninger 2008)). Кроме того, оба найденных (в захоронениях древних жителей Паноннской равнины) образцов ДНК гаплогруппы I, (образец NE7 — I2a2a-L1228 и образец KO1 – I2a-L68) принадлежат к параллельным ветвям, ни одна из которых не является предковой ветвью динарской субклады I2a1b2a1.  Исходя из этого можно сделать осторожное предположение о том, что представители динарской субклады I2a1b2a1L147.2/CTS5966 появились на Балканах гораздо позднее неолитического периода.
  3. Визуальное изучение структур минимального остовного и штейрновского деревьев филогенетической сети гаплотипов I2a1b2a1 показало, что большое скопление гаплотипов вокруг большых узлов обеих деревьев  имеет типичную форму филогенетического старкластера  Подобная форма филогенетических кластеров в основном наблюдается в тех случаях, когда происходит быстрый демографический рост одного конкретной филогенетической линии, и этот рост приводит к появлению серии одновременных мутационных событий. Большинство из гаплотипов, входящий в большой узел графа, принадлежат к этнопулам жителей южной Европы (главным образом, Балкан) Исходя из этого можно предположить что экспансия носителей I2a1b2a1-L2/CTS5966 на территории Балкан сопровождалась быстрым демографическим ростом попуялции.
  4. На реконструированной карте место «выделения» I2a1b родительской популяции современных представителей субклады I2a1b2a1 -разместилось чуть южнее швейцарских Альп (обозначено большой красной точкой) (Рисунок 10), примерно в 420 километрах к юго-востоку от места обнаружения древнейшего (8000 лет до настоящего времени) образца ДНК мужчины, принадлежавшего к гаплогруппе I2a1b (Loschbour-Heffingen, Luxembourg) и примерно в 650 километрах к югу от Лихтенштейнской пещеры, в которые были обнаружены 4 скелета мужчин с древнейшими (3000 лет до настоящего времени, культура полей погребения) из найденных образцов гаплогруппы I2a2b, а также в 920 к юго-западу от местонахождения неолитического поселения Apc-Berekalja (Венгрия), где был обнаружен древнейший из найденных образцов I2a2a (возрастом в 6700 лет ). Заметная близость реконструированного места выделения предковой линии I2a1b2a1 к местам нахождения древнейших образцов гаплогруппы I2a в Европе подтверждает правдоподобность подобной реконструкции.
  5. При сопоставлении интервалов возрастов гаплогруппы (т.е расчетных времен жизни ближайшего общего предка гаплогруппы) I2a1b2a1, мы получили среднее медианное значение интервала полученных возрастов. Оно составляет 2757 лет, стандартное отклонение 404 лет (2757 ± 404), верхний предел интервала TMRCA перекрывается с интервалом TMRCA, вычисленного с помощью ρ-статистики 3400 ± 200 лет: Примечательно также, что время расхождения Y-STR кластеров внутри филогенетического дерева лежит в интервале 1700-1300 год до настоящего времени. Это означает, что в этот период времени (т.е между 4 и 7 веками нашей эры) гаплогруппа I2a1b2a1 находилась в активной стадии экспансии.
  6. Безусловный пик-максимум распространения I2a1b2a1 приходится на Балканы (особенно на регион Боснии-Герцеговины), а один из пиков значений дисперсии (разнообразия) гаплотипов — на полесско-карпатский регион Восточной Европы. Исходя из общего правила о приоритете разнообразия (дисперсии) над частотой распространений генетических линий при определении «начальной точки экспансии», предпочтение было отдано дисперсии как  более устойчивому индикатору, в то время, как частоты гаплогрупп больше подвергнуты флуктуациям.
  7. Полученные этнопулы или этнические кластеры имеют специфический: например в выборке выделяется характерный еврейский кластер (украинские и белорусские евреи-представители этого кластера имеют редкие характерные значения Y-STR локусов: DYS537 = 11, DYS464a = 13, DYS456 = 14, DYS458 = 18, DYS576 = 19,DYS570 = 16) с самой высокой интерпопуляционной дистанцией от остальных кластеров и самым низким разнообразием азывает на недавнее происхождение кластера как следствие чистого эфекта основателя, имевшего место примерно 500 лет назад. Боснийско-герцеговинский кластер (второй после еврейского кластера по величине интерпопуляционной дистанции), но с более высоким уровнем разнообразия указывает на более удаленный по времени популяционный эфект основателя. В то время, как географически близкий к боснийско-гецеговинскому кластеру хорватский кластер  I2a1b2a1 характеризуется относительно низким уровнем молекулярного разнообразия (многие хорватские гаплотипы I2a1b2a1 имеют характерный гаплотипный мотив DYS19=14), и незначительной дистанцией с другими популяциями, что отражается в более низком значении индекса стандартного разнообразия (что подразумевает изменение размера эффективной популяции). Данный эффект можно объяснить кумулятивным действием двух параллельных популяционных эффектов -эффекта основателя и эффекта «бутылочного горлышка»
  8. Полученные в ходе анализа молекулярного разнообразия I2a1b2a1 данные свидетельствуют в пользу нашего предположения о том гаплогруппа I2a1b2a1 не является автохтонной гаплогруппой Балкан и Динарских Альп, в противном случае наблюдалась более существенная корреляция между популяцией носителей этой гаплогруппы и антротипом. Поскольку популяции I2a1b2a1 лучше коррелируют с языком, а не с антротипом, то можно сделать два вывода: 1) экспансия носителей субклада I2a1b2a1 произошла недавно, т.к. не утерялась связь представителей генетической линии с языком; 2) поскольку славянские языки были явно привнесены на Балканы, то нужно признать, что I2a1b2a1 были в числе генетических линий, представители которых привнесли славянские языки на Балканы.
  9. По мнению авторов статьи (Boattini et al. 2011) генофонд (включая генофонд Y хромосом) изолированной популяции арберешей не только должен отражать структуру генетического пула алабанцев 500 летней давности, но и служить своего рода «эталоном» генофонда древних балканских популяций. Принимая во внимание низкую частоту встречаемости динарского субклада I2a1b2a1 у современных арбарешей, можно предположить, что субклада I2a1b2a1 встречалась в генофонде популяцих южной части Балканского полуострова 500 лет назад гораздо реже, чем сейчас. Очевидно, что в ходе дальнейших демографических процессов %-ная доля I2a1b2a1 в генофонде южнобалканских популяций значительно увеличилась.
  10. Гипотетическое направление миграций можно восстановить с помощью проекции градиентов значений индекса молекулярного разнообразия на векторную карту со стрелеками, отображающими направление уменьшения значений индекса молекулярного разнообразия. Примечательно, что стрелки направления уменьшения разнообразия гаплотипов в значительной мере перекрываются с маршрутами славянской экспансии.
  11. Результаты теста Мантеля говорят о том, что в выборке I2a1b2a1 не наблюдается статистически значимой корреляции между географической и генетической дистанцией.

Обсуждение выводов исследования

 

Как представляется автору этой статьи, вопрос происхождения и миграции носителей «динарской субклады» I2a1b2a1 невозможно изучить вне интердисциплинарной подхода, т.е подхода в котором тезисы результатов популяционно-генетического исследования будут рассмотрены в более широком ключе, c привлечением данных из исторических наук. В этой связи необходимо посмотреть на эту проблему глазами историка, тем более что время экспансии «динарцев» отлично накладывается на временной интервал экспансии славян на Балканы в «историческое время».

В силу фрагментарности обзора мы не будем касаться не менее важных вопросов о том, как и когда гаплогруппа I появилась в Европе, а также вопросов о времени и месте разделения базальной ветви I на гаплогруппы I1 и I2. В настоящее время мы не располагаем достаточным количеством фактов в пользу одной из многочисленных и равновероятных версий сценария, и поэтому просто обойдем эти вопросы стороны в надежде на предстоящее изучение древней ДНК жителей Европы среднего палеолита и мезолита. По имеющимся в настоящее время данным палеогенетики, гаплгогруппа I (и одна из ее двух основных ветвей — I2a) была широко распространена в западной и северной Европе уже вскоре после окончания последнего ледникового максимума (последняя ледниковая эпоха закончилась между 15 000 и 10 000 годами до н. э., а древнейшие образцы палео-ДНК с гаплогруппой I2a1b датируются 6 тыс. до н.э). Около 14 000 лет до настоящего времени из гаплогруппы I2a выделились I2a1a-M26/PF4056 (эта группа мигрировала к югу от швейцарских Альп в сторону Пиренейского полуострова, и I2a1b-M423, которая мигироровала на север вслед за отступающим ледником и тундровой фауной. Примерно 10 000 лет назад, где-то на территории современной Германии из I2a1b выделились линия  I2a1b1 (кластер «Isles», мигрировавший на Британские острова) и линия I2a1b2 (динарский кластер и кластер Disles). Можно предполагать, что в последующее время I2a1b2 была связана со свидерской культурой — археологической культуры финального палеолита (9 – 8 тыс. до н.э.) на территории Центральной и Восточной Европы, которая была представлена стоянками тундровых охотников на северного оленя, которые использовали стрелы с кремневыми наконечниками. Гипотетическое развитие дальнейшей истории общности носителей I2a1b2 — непосредственных предков I2a1b2a1 – можно выстроить в виде цепочки приемственности культур вплоть до культур участвовавших в этногенезе славян, однако из-за недостаточных сведений о мужском палеогенофонде представителей этих культур данная реконструкция не может быть использована как основание для дальнейших заключений.

К сожалению, cпециальных популяционно-генетических исследований гаплогруппе I крайне мало. Достаточно сказать, что последние специальные исследования по этой гаплогруппе были опубликованы почти 10 лет назад в 2004,2006, 2007 годах – (Rootsi et al. 2004; Roewer et al. 2005; Underhill et al. 2007). Остальные работы, особенно касающиеся Y-хромосомного разнообразия популяций на территории Балкан и бывшей Югославии, преимущественно повторяют выводы озвученные в вышеупомянутых трех работах, ничего не добавляя от себя (Marjanović et al.2005; Peričić et al. 2005; Rebała et al. 2007). Более новые работы со специфическим фокусом на гаплогруппе I1 (Shtrunov 2010) и (De Beule 2010) были незаслуженно обойдены вниманием научного сообщества, так как были написаны «любителями» и опубликованы в неакадемических изданиях.  Поэтому именно работы эстонской исследовательницы-популяционного генетика Роотси задали целый ряд основных положений-гипотез по вопросу происхождения гаплогруппы I, закрепившихся позднее в научных и научно-популярных (Википедия) источниках. Со временем данное положение стало общим местом статей популяционных генетиков при описании особенностей генофонда различных популяций. Если на заре популяционной генетики, выводы делались лишь на основании распределения частот гаплогрупп (большой группы схожих гаплотипов) Y хромосом, то с накоплением фактического материала и совершенствованием методов исследования  появилась возможность кроме частоты учитывать  молекулярное разнообразие и генетические дистанции. Уже без этих исследований выводы на основании только частот являются неполными, а часто и совершенно неверными.

В настоящее время, исходя из описаного выше опыта полисистемного анализа и синтеза молекулярно-генетических (филогенетических и статистических), исторических, археологических данных, а также данных археогенетики (древняя ДНК), можно предположить динарская субклада I2a1b2a1 в массовом количестве появились на Балканах не ранее 2-3 в.н.э и не позднее 6-7 в.н.э., что точно соответствует времени великого переселения народов. В числе значительных миграций населения на Балканы в этом период времени можно назвать миграцию готов, гепидов с севера, а также более позднюю по времени экспансии славян (вернее, генофонда общности, которая говорила на славянском или протославянском языках), которые и принесли с собой этот субклад на Балканы.  Кроме этих двух вариантов, можно рассмотреть и третий вариант, согласно которому субклад I2a1b2a1 уже присутствовал на генофонде балканских популяций на момент начала переселения народов (эта гипотеза предполагает что первоначально популяционная общность носителей  I2a1b2a1 была так или иначе  с дако-фракийским кругом археологических культур). В статье 2010 года (Носевич 2010), Вячеслав Носевич напрямую связывает носителей I2a1b2a1 с фракийским субстратом в формировании славян, отмечая что более высокая концентрация I2а1b2a1 на Полесье по сравнению с Западной Украиной и Словакией говорит в пользу это предположения. Традиционно считается, что вся гаплогруппа I2a cвязана с кругом культур балканского неолита и в том числе, c культурами близкими к трипольцам. Такой вариант возможен, однако окончательный вариант должны дать палеогенетического исследования останков представителей этих культур. Но, если гаплогруппа I2а и присутствовали у трипольцев, их вряд ли можно считать коренным элементом (ядро которого составляли выходцы с Ближнего Востока), скорее всего они представляли остатки местного мезолитического элемента, инкорпорированного в состав этой культуры.

При взвешенном сопоставлении эмпирических статистических данных о характере распространения и разнообразия I2a1b2a1 с различными моделеми миграциий тезис о связи доисторических носителей I2a1b2a1 с фрако-дакийцами представляется несколько натянутым. Этот тезис завязан целико на интерполяции современных частот гаплогрупп на гаплогруппные частоты в прошлом — однако манипуляции с современными частотами в целях реконструкции гипотетических частот распространения в генофонде древних народов всегда вызывают закономерные вопросы. По-крайней мере, подобные эксперименты возможны только исходя из генетических данных полученных в результате анализа останков из захоронений соотвествующих культур или народностей. В противном случае – расчеты могут оказаться совершено произвольны, и им нельзя будет доверять. Однако даже если мы будем из реконструкции предковых частот, то увидем, что I2a1b2a1 вряд ли могла присутствовать в столь значительных количествах у фракийцев, так как и у современных «потомков фракийцев и даков» (болгаров и румын) как частоты распространения, так и уровень дисперсии гаплотипов I2a1b значительно ниже чем у тех же словаков и западных украинцев.  Далее, «балкано-иллирийско-фракийская гипотеза» совершенно не объясняет высокие частоты т.н. «динарской субклады» I2a1b2a1 в Полесье. Не объясняет эта теории и того, что филогенетически I2a1b2a1  не образует удалённых кластеров, что невозможно объяснить допуская автохтонность носителей этой гаплогруппы на Балканах. Ведь за тысячи лет эта линия должна была разветвиться. Но сегодняшние её носители исключительно близки друг к другу и подавляющее их число — славяне.

Тезис о связи носителей I2a1b2a1 c германских субстратом в этногенезе славян также вызывает определенные вопросы. Можно предположить, что присутствие носителей I2a1b2a1 вполне может быть связано как с особенностью ранних (прото-)славянских популяций, так и с непосредственной инвазией северных германцев (например, готов). По крайней мере сейчас уже доказно, что более 8 тысяч лет назад параллельная ветвь носителей I2a1b-M423 проживали в том числе на юге Скандинавии, а зафиксированные в историческое время (эру великого переселения народов) места проживания готов в Восточной Европы (королевство остготов на Балканах и «черняховская» культура в западной Украине) По крайней мере, среди современных этнических скандинавских германцев гаплогруппа I2a1b2a1 не встречается, также как и в Испании, Италии (где  находились королевства готов в раннем средневековье), зато с заметной частотой встречается по всему славянскому ареалу :очень высокие концентрации действительно отмечаются на Балканах, но и у западных славян присутствие его значительно, 8-10% у чехов и поляков, до 20% у словаков).

Довольно высокие частоты распространения и высокий уровень внутригаплогруппного разнообразия, специфическая топология филогенетических деревьев гаплогруппы I2a1b2a1, а также факт нахождения «реликтовых вариантов» гаплогруппы I2a1b2a1 в Польше и Западной Украины  свидетельствует о формировании предкового пула этой субклады в северо-восточной Европе в 1 тыс. до нашей эры и экспансии в 1 тыс. нашей эры. В свете представленных в виде тезисов основных выводо исследованиях, наиболее предпочтителен вариант распространения гаплогруппы I2a1b2a1 на Балканах и всей восточной Европе во время славянской экспансии. Новизна предложенного нами варианта заключается в том, что  коренным образом противоречит принятому в оффициальной популяционной генетике представлению о Балканах, как «прародине» популяции I2a2b (см. раздел (Гаплогруппа I2a общие сведения и обзор публикаций)). Обычно в качестве одного из главных аргументов против версии распространения гаплогруппы I2a1b2a1 вместе с миграциями славянской выдвигается тезис о  однородности состава гаплогрупп у  ранних славян (предполагается, что они принадлежали к различными субкладам R1a1-Z283, (Rebala et al. 2007) особенно R1a1-M458 (Underhill et al. 2009), современный эпицентр распространения которой приходится на ареал пшеворской культуры). Данный аргумент не может быть воспринят так как последние исследования генофонда неолитических культур Европы показали, что уже генофонд этих ранних культур был далеко неоднородны, а в бронзовом веке и позднее степень смешения должна была только увеличится хотя бы в сиду большей мобильности населения. Более вероятным представляется сценарий, в котором уже ранняя славянская общность (которая определяется лингвистическими и археологическими, а не генетическом признаками) была достаточно гетерогенна и включала в себя, наряду с типичными «славянскими» сублкадами R1a1-Z283 (прежде всего дочерних субклад R1a1-M458 и R1a1-Z280), и субклады других гаплогрупп, в частности и I2a1b2a1. В этом случае  ранние славяне образовались в результате «наслоения» R1a-Z280 и/или R1a-M458 на I2a1b2a1. Эта (одна из возможных) модель этногенеза соответствует одной из существующих моделей происхождения славянских языков: неиндоевропейский субстрат оторвал балтов от славян и дал отчёт их самостоятельному существованию в истории как языковой группе, так и целому археологических ряду культур связанных с ними.

 


Первая рецензия В.Л.Носевича

К вопросу о предыстории славян

 

 

 

 

О клесовщине как индикаторе системного кризиса в российской науке

В середине ноября в РАН состоялась конференция по вопросам этногенеза и истории карачаево-балкарцев. Само по себе это  событие (ориентированное, кроме самих карачаево-балкарцев, на небольшой круг специалистов)  вряд ли бы привлекло внимание широкой общественности,  если бы не скандальный доклад Клесова, и последовавшее за этим фронтальное столкновение адептов Клесова и представителей академической науки. Именно благодаря этому инциденту имя Клесова стало фигурировать в главных ресурсах русскоязычной интернет-медиа.

В душе я надеялся что доклад Клесова окажется «академическим» Ватерлоо, так как на конференции выступали с докладами самые именитые российские генетики — Балановские, Боринская и Животовский. Уж, казалось бы, они должны были поставить шарлатана на место.
Но все пошло не так, и вместо Ватерлоо «окадемиг» отпраздновал очередной триумф Аустерлица.

Как бы то не было, Клесов представляет собой феномен. И как любой феномен он смог появиться только благодаря стечению ряда обстоятельств, или как любят говорить немецкие философы, благодаря велению «духа времени».

Еще в далеком 2009 году я призывал профильных специалистов-популяционных генетиков выступить с подробной разборкой злостных спекуляций Клесова в области генетики, в стиле знаменитого круглого стола «Анти-Фоменко» в конце прошлого века. Тогда, конечно же можно было купировать клесовщину в самом ее зародыше, так как имя Клесова было еще малоизвестно широкой общественности. В настоящее время нужно признать, что момент был упущен. За последние 2 года, судя по количеству интервью в прессе и видео выложенных в Ютуб, популярность «окадемига» пошла в гору. Особенно после того, как его показали в одном из эпизодов фильма Задорнова о Рюрике, и ряде других фильмов, показанных по российским каналам в прайм-тайм. Академическое осуждение Клесова ex cathedra на уровне комиссии по борьбе с лженаукой РФ придало бы сейчас ему статус мученика, что еще хуже. В итоге, академический истеблишмент РФ потерпел первое поражение. Признаюсь, что и я был неправ, когда говорил, что Клесов фигура уровня Фоменко и прочих «фриков от науки». На самом деле, теперь можно сказать, что Клесов уже принес больше академической науке, чем все остальные фрики вместе взятые. И это еще только цветочки. Очевидно, что Клесов фигура более симптоматичная и знаковая. Недаром в приведенной ниже цитате один из старожителей российской науки сравнивает его с Лысенко (с которым Клесов, кстати, был лично знаком). К сожалению, в современной российской генетике нет фигур уровня Вавилова, которые бы в борьбе с новым «Лысенко» были готовы претерпеть начальственный гнев и пойти на костер. Удобства академических тенюр дают о себе знать. Людям преклонного возраста недолго осталось до пенсии, а молодежь не хочет рисковать карьерным ростом.

Итак, о чем свидетельствует феномен Клесова? В первую очередь, о системной слабости российской науки в целом и генетики, в частности. Эта слабость объясняется целым рядом факторов совершенно разного характера (политические, экономические, идеологические и т.п.). Думаю, они хорошо известны. Я лишь вкратце пройдусь по самым важным. Долгое время академическая среда (как в гуманитарных, так и в естественных науках; в прикладных науках в меньшей степени) представляла собой некое подобие социального института, полностью изолированного от общества. Продукты этого института — научные работы, исследования, открытия, все то что называется «новым знанием» — предназначались для относительно узкого круга пользователей, представители которого посредством разных инструментов (peer-review, рецензирование, экспертные оценки, этические комитеты и т.д.) решали вопрос о том, что есть научное знание, а что — нет.
Естественно, как и везде, даже в этом узком кругу существовали свои карьерные интриги и трения «школ», в результате чего опеределение научности часто носило политический или идеологический характер.
Разумеется, общественность в этот процесс вовлечена не была — если в 90-ые года простым россиянам было просто не до науки, то в 00-ые этого интереса не было по причине отсутствия популяризаторов. К сожалению, так и не появилось талантливых популяризаторов науки, подобных советским популяризаторам науки (вроде Я.Перельмана с его «Занимательной физикой»).
Академическая среда, подпитываемая грантовой системой, продолжала существовать по инерции, а академическая деятельность часто носила формальный характер соблюдения некоторых этических стандартов, выполнения плана публикаций, и совместного поедания вкусных тортов на международных конференциях.

В силу этого инерционного существования, академическая генетика проглядела появление параллельного явления т.н. «коммерческой генетики», пробудившей значительный интерес в среде обычных людей, которые поняли что с помощью предлогаемых коммерческими компаниями тестов они могут изучать не просто некую абстрактную генетику абстрактной группы людей, а свой собственный геном на предмет собственного происхождения, генетических рисков и генетической совместимости. Хотя этот рынок услуг и не достиг еще глобальных масштабов, его рост стабилен даже в наше время, когда люди не склоны тратить деньги на праздные развлечения.

Короче говоря, академическая генетика не только не произвела талантливых популяризаторов, (в результате чего большинством обычных людей писания генетиков воспринимаются как «птичий», непонятный язык), но и упустила важный момент для выхода в массы. В итоге, по мере накопления массива данных полученных клиентами генетических компаний за собственные деньги, возник вопрос — а кто будет разжевывать эти данные в удобоваримый продукт для масс? Возник вакуум и первая предпосылка для появления феномена Клесова.

При моей взаимной неприязни к Клесову, ему нельзя отказать в ораторском мастерстве и умению производить впечетление умного сведующего человека.
Кроме того, в отличии от окостеневших академических генетиков, он умеет себя подать и что еще важнее — продать. Свое полное непонимание предмета генетики (его уровень познаний в генетике не выше уровня выпусника средней школы) он умело маскирует использованием умных слов и пышными титулами вроде «профессор Гарварда» (хотя того профессора в списках Гарварда никогда не было и нет). Популяризаторский талант Клесова (в отличии от «заумняков» академических попгенетиков) состоит в том, что говорит простым языком, бойко, громко и весело. Иногда может вставить красное матерное словцо. Вообщем, упрощает все до невозможности, украшает парочкой умных слов («логарифмический», «линейный», «кинетическая формула») и втюхивает пиплу свой продукт. Благодарный пипл хавает. В этом смысле Клесов напоминает не столько Клесова, сколько «логофета» Задорнова. Just for lulz.

Можно провести разбор полетов его методологических трюков, но я не вижу в этом особого смысла. Я внимательно изучал его «методологию ДНК-генеалогию» на протяжени нескольких лет и могу сказать, что она чуть больше чем полностью состоит из подтасовок, натяжек и присвоенных Клесовым формул. Например, та самая формула для вычисления «ближайшего общего предка гаплогруппы», которую Клесов выдает за собственное изобретение, попросту присвоенна им у Д.Адамова. Академическому ученному такое бы не простили, но Клесову нечего терять и поэтому на этические вопросы он попросту кладет. По этой причине, академические деятели, чьи руки связаны всевозможными этическими стандартами («informed consent», этика научного исследования и цитирования, этика академического общения и т.д.) оказались беспомощными в лобовом столкновении с Клесовым. Точно также, как оказывается беспомощным интеллигент в подворотне, где гопник отжимает у него мобилу и прочие рудименты хорошей жизни.

Но самое важное даже не это. Клесов быстро сообразил, что люди готовы платить деньги за получение продукта. Естественно, этот продукт — то есть некий нарратив на тему ДНК-генеалогии заказчика или целого народа — должен соответствовать ожиданиям заказчика. Например, требуется доказать что все коэны происходят от Аарона. ДНК-генеалогия Клесова дает ответ! Требуется показать, что все человечество (включая негров) зародилась 65 000 лет тому назад на русской равнине недалеко от города Зарайска. ДНК-генеалогия Клесова дает ответ! Требуется доказать, что такой-то народ является современников динозавров. ДНК-генеалогия Клесова дает ответ! Благодарный пипл хавает и платит в американских рублях. Кроме того, в последнее время Клесов держит нос по политическому ветру, о чем свидетельствуют его выступления по телевизору на тему того, что ДНК-генеалогия говорит о том что украинцы и русские — это оказывается один (!) народ. Видимо, кто-то на верху не только оплачивает, но и еще курирует его деятельность.

Когда-то в 2010 году ув. Дмитрий Беляев (крупнейший исследователь истории Мезоамерики с мировым именем), некоторое время ходивший на клесовский форум Родство.ру ради лулзов, охарактеризовал «научную» деятельность Клесова емким словом «гринго-сайенс». Так латиноамериканские историки называют писанину своих академических «коллег» из Штатов. Эта писанина представляет собой нарративные сочинения в стиле фэнтэзи с грубым перевиранием фактов (а то и с полным отсутствием фактологической базы), и полным отстутствием понимания вопроса, о котором они пишут (т.к. никто из них не был на местах археологических раскопок городов майя, ацтеков и пр.).
Зато эта литература неплохо покупается американскими домохозяйками.

А теперь сам текст Валерия:

«Увы, Шерлок Холмс оказался популярнее и любимее народом, чем сыщики Скотланд Ярда ((

Наши доклады примерно на 3/4 состояли из укусов в адрес Гаплофюрера, но мы не учли, что присутствующей северокавказской интеллигенции до лампочки наши внутринаучные склоки. Из всех докладывавших наилучшая аура была у Клесова, и именно он показал народу магические цифирки, в духе «Сатурн в третьем доме.. вам отрежут голову!» — ну или так «Линейный и логарифмический методы дали разный результат, поэтому карачаево-балкарцы не происходят от алана кости которого откопали на Дону».

И поделюсь наблюдениями X, которую обожаю.

— Честно говоря, я не понимаю секрет магизма этого человека. Он оперировал цифрами, из которых якобы должно что-то следовать, и люди сидящие в зале, внимали и верили ему! Я биолог, но совершенно не понимаю его доказательств, и уверена, что аудитория их тоже не понимала. «Гаплотипу 4000 лет, значит аланы не происходили от..» — а если найдут гаплотип 2000 лет, тогда что, будут происходить? И я не верю, что слушающие это понимают. Секрет в чем-то ином.

Знаете, я застала Лысенко. Я слушала его лекции на 5-ом курсе, в 1957. Он читал нам мичуринский дарвинизм. Время было уже другое, мы стучали ногами, хихикали. Заметьте, нормальную генетику еще не читали тогда, но монополии у Лысенко уже не было, поэтому можно было хихикать.

Так вот. Я хорошо помню все. Анатолий Клесов — это вылитый Трофим Денисович. Манера говорить с аудиторией, стиль упрощения фактов. Все от и до!

****

Ну, еще добавлю, что Клесову благоволил организатор конференции, при полном неучастии Тишкова, директора ИЭА. В итоге вместо прений круглый стол заончился пресс-конференцией Анатолия.»