Формальный анализ смешивания предковых популяций: белорусы, часть 2

Итак, после определения значимых для формального статистического моделирования комбинаций предковых популяций (или вернее, их суррогатов) представляется возможным смоделировать две вещи. Во-первых, необходимое с точки зрения статистики, число «импульсов» или «потоков» смешивания, а во-вторых, пропорции вклада «предковых» групп в генофонд белорусов.

Результаты анализа в программах qp3Pop и qpDstat показали, что в референтной группы белорусов присутствуют сигналы смешивания трех групп — мезолитических охотников-собирателей Европы (WHG), неолитических популяций земледельцев с Ближнего Востока и cибирских охотников-собирателей (чьи потомки в составе индоевропейцев) распространили свои гены по всей Европе.

Но меня больше интересует вопрос оценки величины доли вклада так называемого «базального компонента»(Basal Eurasian):

«четвертый элемент» — тот «базальный» компонент генофонда Европы, который проявился при моделировании истории сложения генофонда Европы в работе [Lazaridis et al., 2014] (см. раздел 8.4, рис 8.20) — предковой евразийской группой, которая внесла свой большой вклад и в геном неолитических земледельцев. Из аналогичной по методам модели, созданной в рассматриваемой работе [Seguin-Orlando et al., 2014], следует (рис. 8.6), что в геном человека из Костенок эти таинственные «базальные евразийцы» внесли не менее важный вклад, чем и верхнепалеолитические западные евразийцы. Также из модели следует, что он имел и общих, хотя и более отдаленных предков с древними северными евразийцами восточного ствола.

В этих целях я решил использовать в качестве суррогата базального евразийского генома геном Mota (древнего жителя Африки), примерно половину генома которого составлял тот самый пресловутый базальный компонент (результат обратных миграций натуфийского населния Ближнего Востока в восточную Африки)

Итак, в начале используем программу qpWave из того же пакета Admixtools

parameter file: qpWave.par

THE INPUT PARAMETERS

##PARAMETER NAME: VALUE
indivname: data.ind
snpname: data.snp
genotypename: data.geno
popleft: left
popright: right
maxrank: 6

qp4wave2 version: 200

left pops:
Levant_N
Mota
WHG
EHG

right pops:
Han
Onge
Papuan
Kostenki14
Ust_Ishim
Siberian_Upper_Paleolithic

0 Levant_N 13
1 Mota 1
2 WHG 2
3 EHG 3
4 Han 33
5 Onge 15
6 Papuan 14
7 Kostenki14 1
8 Ust_Ishim 1
9 Siberian_Upper_Paleolithic 1
jackknife block size: 0.050
snps: 572603 indivs: 84
number of blocks for block jackknife: 719
dof (jackknife): 631.955
numsnps used: 177238
f4info:
f4rank: 0 dof: 15 chisq: 574.447 tail: 9.47752373e-113 dofdiff: 0 chisqdiff: 0.000 taildiff: 1

<cf4info:
f4rank: 1 dof: 8 chisq: 115.553 tail: 2.7408605e-21 dofdiff: 7 chisqdiff: 458.894 taildiff: 5.4614954e-95
B:
scale 1.000
Onge -0.475
Papuan -0.521
Kostenki14 0.069
Ust_Ishim -0.746
Siberian_Upper_Paleolithic 1.986
A:
scale 290.851
Mota -0.932
WHG 0.299
EHG 1.429

f4info:
f4rank: 2 dof: 3 chisq: 8.502 tail: 0.036691843 dofdiff: 5 chisqdiff: 107.050 taildiff: 1.7204978e-21
B:
scale 1.000 1.000
Onge -0.462 -0.050
Papuan -0.522 -0.105
Kostenki14 0.288 2.189
Ust_Ishim -0.733 0.378
Siberian_Upper_Paleolithic 1.973 -0.232
A:
scale 286.604 578.115
Mota -0.951 -1.197
WHG 0.385 0.752
EHG 1.396 -1.001

f4info:
f4rank: 3 dof: 0 chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 8.502 taildiff: 0.036691843
B:
scale 1.000 1.000 1.000
Onge -0.400 -0.203 1.065
Papuan -0.459 -0.258 0.882
Kostenki14 0.299 2.175 0.273
Ust_Ishim -0.645 0.116 1.513
Siberian_Upper_Paleolithic 2.031 -0.382 0.850
A:
scale 282.949 595.536 1395.824
Mota -0.857 -1.172 0.944
WHG 0.466 0.827 1.449
EHG 1.431 -0.971 0.093

## end of run

Нас интересует статистика f4rank 2, и как видно она убедительна: chisq: 8.502 tail: 0.036691843 dofdiff: 5 chisqdiff: 107.050 taildiff: 1.7204978e-21.  То есть, для моделирования референсной популяции достаточно трех «источников» (в f4rank 3, т.е с 4 предковыми популяциями, статистика гораздо хуже: chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 8.502 taildiff: 0.036691843 ).

Следующим этапом будет оценка пропорций «адмикса», образованного смешением трех «источников»:

 

parameter file: qpAdm.par

THE INPUT PARAMETERS

##PARAMETER NAME: VALUE
genotypename: data.geno
snpname: data.snp
indivname: data.ind
popleft: left
popright: right
maxrank: 8

qpAdm version: 200

left pops:
Belarusian
Mota
WHG
EHG
right pops:
Han
Onge
Papuan
Kostenki14
Ust_Ishim
Siberian_Upper_Paleolithic
0 Belarusian 25
1 Mota 1
2 WHG 2
3 EHG 3
4 Han 33
5 Onge 15
6 Papuan 14
7 Kostenki14 1
8 Ust_Ishim 1
9 Siberian_Upper_Paleolithic 1
jackknife block size: 0.050
snps: 572603 indivs: 96
number of blocks for block jackknife: 719
dof (jackknife): 628.796
numsnps used: 227599
codimension 1
f4info:
f4rank: 2 dof: 3 chisq: 20.724 tail: 0.000120097824 dofdiff: 5 chisqdiff: -20.724 taildiff: 1
B:
scale 1.000 1.000
Onge -0.502 0.176
Papuan -0.562 0.218
Kostenki14 0.442 2.074
Ust_Ishim -0.735 0.779
Siberian_Upper_Paleolithic 1.923 -0.110
A:
scale 285.645 552.926
Mota -1.490 -0.238
WHG 0.017 1.685
EHG 0.883 -0.324
full rank 1
f4info:
f4rank: 3 dof: 0 chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 20.724 taildiff: 0.000120097824
B:
scale 1.000 1.000 1.000
Onge -0.502 0.178 0.403
Papuan -0.599 0.280 0.995
Kostenki14 0.455 2.029 -0.773
Ust_Ishim -0.773 0.879 1.373
Siberian_Upper_Paleolithic 1.893 0.008 1.168
A:
scale 288.199 555.700 1346.772
Mota -1.449 -0.056 0.947
WHG 0.026 1.726 0.141
EHG 0.948 -0.132 1.444
best coefficients: 0.318 0.148 0.534
ssres:
0.000295769 0.000789821 0.000059100 0.001247609 0.001271289
0.335431254 0.895733409 0.067025433 1.414909018 1.441765444

Jackknife mean: 0.316895017 0.150748678 0.532356305
std. errors: 0.035 0.067 0.045
error covariance (* 1000000)
1212 -1838 625
-1838 4506 -2668
625 -2668 2043
fixed pat wt dof chisq tail prob
000 0 3 20.724 0.000120098 0.318 0.148 0.534
001 1 4 125.483 0 -0.088 1.088 0.000 infeasible
010 1 4 25.750 3.55457e-05 0.378 0.000 0.622
100 1 4 102.973 2.28952e-21 0.000 0.702 0.298
011 2 5 336.445 0 1.000 0.000 0.000
101 2 5 127.950 6.47788e-26 0.000 1.000 0.000
110 2 5 184.757 0 0.000 -0.000 1.000
best pat: 000 0.000120098 - -
best pat: 010 3.55457e-05 chi(nested): 5.025 p-value for nested model: 0.0249831
best pat: 101 6.47788e-26 chi(nested): 102.201 p-value for nested model: 5.01661e-24

end of run

Итак, лучшими коэффициентам (пропорциями адмикса) являются 0.318 0.148 0.534. То есть референсная популяция белорусов может быть смоделирована как 30 % базального компонента, 15% компонента мезолитических охотников собирателей и 53% компонента жителей степи бронзового века («индоевропейцев»). Очевидно, что большая часть базального компонента попала в Европу вместе неолитическими земледельцами, а оставшаяся часть — была принесена индоевропейцами.

 

Формальный анализ модели смешивания предковых популяций: белорусы

Перед подготовкой релиза новых калькуляторов K16 и K11 на Gedmatch, я решил провести пилотный (пробный) анализ референсной популяции белорусов (в которую входят публичные образцы из  базы данных HumanOrigin, EGDP новой панели референсных геномов Эстонского биоцентра, а также данные белорусов — участников моего проекта MDLP). Основным инструментом формального анализа надежности модели будет известный и популярный пакет Admixtools.
Перед тем, как дать краткое описание первых шагов, хочу отметить трудности работы с Admixtools — в первую очередь, крайнее низкую степень документированности (описания) практических аспектов работы большинства входящих в пакет инструментов. Данное обстоятельство существенным образом снижает темп изучения этого все более популярного пакета (с другой стороны, похоже что лаконичность изложения задумывалась изначально, для отсеивания слабо мотивированных дилетантов-любителей). Второе обстоятельство, затрудняющее использование Admixtools, заключается в необходимости компилировать отдельные компоненты пакета.

Пакет содержит шесть программ

 

convertf: программа конвертирования форматов
qp3Pop: формальный анализ сигнала "смешивания" в трех популяциях
qpBound: программа, вычисляющая верхнюю и нижнюю границу смешивания в трех популяциях (2 референсные популяции и 1 одна популяция, предположительно образованная за счет смешивания двух референсных популяций) 
qpDstat: формальный анализ "адмикса" в 4 популяциях
qpF4Ratio: программа для определения пропорций адмикса за счет проведения 2 f4-тестов
rolloff:  программа датировки адмикса.

В приницпе, четкого порядка работы с этими программами нет, однако авторы рекомендуют следовать приведенному списку (т.е. начинать с qp3Pop и заканчивать rolloff)

Outgroup-статистика f3 является крайне полезным аналитическим инструментом для понимания взаимных отношений разных популяций: основная задача теста состоит в определении характера этих отношений. Образована ли целевая популяция (target) за счет смешивания двух рефересных популяций, или же  популяции представляют собой две простые ветви популяционного дерева человечества (т.е. в образовании таргетной популяций не участвовали референсные популяции)

Статистика f3, так же, как два других вида статистик — f4 и f2 — представляют собой меру корреляции частот аллелей между рассматриваемыми популяциями. Все эти виды статистик были введены в научный оборот попгенетики биоинформатиком Ником Паттерсоном в статье 2012 года.

Статистика f3 используется в двух целях:

  1. в качестве теста  сигнала «адмикса» двух популяций-источников (A и B) в «целевой популяции» (С)
  2. для измерения общего разделяемого дрейфа двух тестовых популяций  (А и В) по отношению к  внешней группе (С).


В этой публикации я приведу пример первого случая использования. Статистика f3 в обоих случаях определяется как произведение разниц частот аллелей  между популяции C, А и В, соответственно:

  1. F3=<(c-a)(c-b)>

Итак, первый случай употребления (для определения сигнала смешивания), белорусы выступают в качестве тестовой популяции, две референсные популяции образованы пермутацией имеющихся у меня популяций

Итак, промежуточные результаты (я выбрал только комбинации с негативным значением Z, свидетельствующие о сигнале смешивания) :

Следующий тип статистики — f4, — реализован в программе qpDstat в виде D-статистки. Это формальный тест адмикса четырех групп (таксонов или популяций), позволяющий определить направления потока вливания генов. Немного теории:

Для любых 4-х популяций (W, X, Y, Z), qpDstat вычисляет D-статистику следующего вида

num = (w — х) (у — z)
den = (w + х — 2wx) (у + z — 2yz)

D = num / den

Результат qpDstat показывает направления вливания генов. Таким образом, для 4 групп (W, X, Y, Z) верно следующее положение:

Если значение Z положительное ( + ), то обмен генами происходил либо между W и Y, либо между X и Z
Если значение Z отрицательное (-), то обмен генами происходил либо между W и Z,  либо между X и Y.

 Кроме определения направления генного дрейфа, очень важным практическим применением D-статистики служит определения «левых» и «правых» популяций для теста qpAdm (о нем чуть позднее). Так, например,  комбинация из двух первых популяций left {L,L}  и двух правых популяций {R, R} должна быть выбрана таким образом, чтобы значение Z в D-статистике
a) было неотрицательным, и b) имело высокое абсолютное значения.  Я решил последовать совету и сгенерировал 225822 комбинаций из четырех популяций {W,Y,X,Z}, где W — фиксированная первая таргетная популяция «левого» списка, в нашем случае белорусы, Y — одна из имеющихся групп палеогеномов, X и Z — пермутация из 16 «чистых» современных популяций описанных в работе Lazaridis et al. 2016.

Итак, вот результаты (и снова я не привожу полный список, а только те комбинации, которые могут быть использованы для выбора состава «левых» и «правых» популяций.  и последующего моделирования в qpAdm):