Подведение итогов экспериментов по неформальному моделированию адмикса в популяциях

Выполняю с небольшим опозданием данное ранее обещание и расскажу о слабых местах выявления процентов этнического происхождения с помощью анализа результатов ДНК-тестирования. Последние лет пять этот тип изучения этно-популяционного происхождения с привлечением данных генетики вошел в моду — в 2011 году, когда я первый раз провел подобный анализ существовало все 2 крупные компании в пакет клиентских услуг которых входило проведение подобных анализов клиентских данных. Ровно столько же было заметных в инете любителей, предлагающих более развернутый и разжеванный вариант подобного разбора этнопроисхождения добровольных участников своих проектов. Главным инструментым и тех и других являлись программы типа Admixture и STRUCTURE (разработанные академическими биоинформатиками для решения одной из задач популяционный генетики — а именно определения этнической субструктуры в структуре изучемых в ходе конкретного исследования национальной или региональной выборки народонаселения).
Прошло лет 6, я провел более тысячи подобных экспериментальных анализов — на принципиально разных выборках и образцах аутосомных снипов представителей разных народов. Каждый из таких экспериментов хотя бы немного отличался от других — и не только числом заранее заданных предковых компонентов этнических популяций, но и разнообразием самих этих популяций, их числом и качеством генетипированных в этих популяциях снипов, — например степенью сцепления снипов между собой, процентом минорных вариантов, количеством снипов, соотношение гомо- и гетерозиготных аллельных вариантов. На первом этапе основной проблемой являлась недостаточная представленность отдельных этносов в выборке вкупе с неполным совпадением популяций по числу генотипированных снипов
Позднее я частично научился обходить проблему за счет импутирования аллельных вариантов недостающих (негенотипированных) снипов по большим референсным панелям. В частности используемый Сергеем Козловым калькулятор K27 был сделан мною как раз с использованием таких импутированых вариантов.
Еще позже — после прорыва в области изучения палеоДНК — появилась возможность не угадывать предковые компоненты слепым перибором числка K (предковых компонентов), а задавать заведомо предковые популяции людей (жителей мезолита, неолита и бронзового века) в качестве чистых предковых популяций К современного народонаселения. Таков, например мой этнокалькулятор K11 Ancient, загруженный зимой этого года на Gedmatch.
Всего же за это время я разработал не менее 60 разных моделей в интервале от K=7 до K33, причем для многих K я разработал сразу несколько моделей.

Все эти модели (только калькуляторы; без инструментов поиска ближайших к тестируемому популяций) я размещаю в открытый доступ на OneDrive (ссылка открывается при нажатии на картинку). Эти файлы работают с программой DIYDodecad, инструкцию использования которой можно найти на сайте Диеникиса

























































Я решил подвести итог этому направлению своей деятельности, на которое ушло много сил, cредств и почти все мое свободное время. Вместо этого я переключусь на более точные формальные методы определения этнического происхождения, разработанный в генетической лаборатории Дэвида Райха из Гарварда.

Главная причина — в силу своего перфекционизма я не был доволен точностью определения частот конкретных предковых компонентов в состав генома отдельно взятых людей. Кроме того, этой зимой в ходе бесед с подобным же любителем насчет проблем Admixture, мы обнаружили ряд причин, приводящих при анализе данных отдельно взятых людей к странным и заведомо неверным комбинациям этнического раскалада предков.
Есть еще одна причина — перенасыщение данного маленького сегмента на рынке инетрпретации генетических данных. В настоящий момент существует уже целый ряд компаний (не менее дюжины), вышедших на рынок ДНК-генеалогии в относительно недавнее время. Каждая из них разработала свой алгоритм и красивый графический интерфейс для визуализации данных по прогнозируемому этнопроисхождению клиента. Увеличилось число крепких и активных любителей (я знаю не менее 10 таких людей), занимающихся в принципе тем же самым, причем иногда качества полученных ими моделей этнического происхождения выше таковых в коммерческих компаниях. Благодаря их усилиям, число доступных этнопопуляционных калькуляторов увеличилось буквально в разы.

Но перейдем к конкретике. Часто люди систематически получают странные результаты — таких примеров можно приводить много. Причем иногда такие странные и неверные расклады можно встретить в больших этнических сообществах — например у чеченцев стабильно в MyHeritage выскакивают в раскаладе предковых групп одинаковые 10-15% жителей Британских остров.
Этот, конечно, нелепый пример, отлично иллюстрирует первую проблемы, связанную с разделением выборки и клиентской базы на кластеры. В отличии от любителей; большинство коммерческих компаний (за исключенеим разве что FTDNA, где алгоритм опеределения процентов этнического происхождения разработал как раз любитель) не занимаются поисками настоящих предковых компонентов — вроде европейских охотников-собирателей, земледельцев и скотоводов бронзового века. Вместо этого все образцы популяций — преимущественно из академических источников — объединяются по географическому признаку в отдельные кластеры — например скандинавский или балканские кластеры. Кластеры задаются как условные предковые компоненты (их может быть довольно много — как например в компании AncestryDNA), якобы позволяющие в данном случае более точно выявить недавнее этнопопуляционное происхождение клиента. И что хуже всего в эти же кластеры включают данные самих клиентов — очень часто просто со слов клиента о своем этническом происхождении (как было в своем время в 23andme), хотя в последнее время в некоторых компаниях (AncestryDNAO) алгоритм усовершенствовали путем включения дополнительных фильтров для отсеивания (например с помощью определения в анализе главных компонентов резко отличающихся и резко выделяющихся в плане этнического происхождения клиентов). Тем не менее, даже самое методичное применение всевозможных дополнительных фильтров не может гарантировать повышение точности предика этнического происхождения. Проблема что в человеческих популяциях — за исключением небольшого количества изолированных задрейфованных популяций вроде нганасан, чукчей, ульчей, калашей, папуасов — ни в одной из этнических групп компоненты не являются дискретными, а представляют собой градиенты частот аллелей, очень часто с большим расбросом из-за чего хвосты частот распределния этих частот перекрываются. На практике этот феномен приводит к появлению в индивидуальных клиентских данных фантомных компонентов — например у европейцев часто появляются всевозможные невозможные компонентоы происхождения — Amerindian, Papuan, Onge и так далее. Подобный подход только вносит сумятицу или — говоря статистическим языком — шум в результаты.

Очевидно, что данная проблема связана с классической проблемой статистики — проблемой организации и подразделения выборки. Схожей по характеру проблемой являеется проблема разнообразия выборки используемой для определения компонентов происхождения. Очевидно, что очень сложно впихнуть все генетическое разнообразие человечества в относительно небольшую выборку — даже еслии ее размер достигает полмиллиона или больше образцов (как у 23andme). Проблема в сверхпредставленности отдельных этнических или квазиэтнических групп в подобных базах данных (западных европейцев, американцев, финнов, ашкеназов и так далее). При неравномерности выборки наблюдается другой классический статистический эффект — искажение результатов выборки в сторону наиболее представленных групп (как было в свое время в 23andme, когда наблюдался эффект сверхпредставленности евреев-ашкеназов в количестве так называех генетических совпаденцев).
Еще одна схожая проблема — в количестве совпадающих снипов (одинакового числа снипов) между тестируемыми индивидуальными образцами и референсными группами. Это проблема затрагивает, правда, только калькуляторы разработанные любителями на базе DIYDodecad — в алгоритмах коммерческих компаний число снипов в рефренсных популяциях и индивидуальных образцах одинаково, т.к. анализируются только те образцы, которые тестировались самой компанией. В вышеупомянутых же этнопопуляционных калькуляторах анализируемые всегда «кроссплатформены» — и если разработчик использовал для разработки калькулятора только те снипы, которые содержаться в чипах 23andme, тогда при анализе данных полученных в компаниях FTDNA или AncestryDNA совпадением снипов будет частичным (так как снипы генотипируемые в этих компаниях совпадают лишь частично). В итоге ситуация в которой сравниваются аллельные частоты снипов референсных популяций (полученные при одном количестве снипов) с аллельными частотами снипов индивида (полученные при совсем другом количестве снипов). Элементарная логика подсказывает что в таком случае будет наблюдаться искажение результатов в совершенно непредсказуемую сторону.
К счастью, у обеих проблем есть разумные решения. Число совпадающих снипов между чипами FTDNA, 23andme (разных версий) и AncestryDNA составляет примерно 300 000, что достатчно для создания калькуляторов приемлемых для анализа данных от всех этих компаний. Решение первой же проблемы тоже есть, но его стоимость немыслимо выскоа — необходимл использовать примерно несколько десятков миллионов ПОЛНЫХ геномов популяций людей со всего мира. Разумеется, никакие любители никогда в жизни не смогут собрать такое количество данных необходимых для создания сверхточных калькуляторов.

Все вышеперечисленные проблемы — сущая мелочь в сравнении с настоящими проблемами, обусловленными алгоритмической стороной вопроса. Дело в том, что все компании (и разумееися любители) — так или иначе — при вычислении аллельных частот в компонентах референсных популяций используют программы использующие парадигму Admixture/Structure. А они используют ML-алгоритмы, минимизирующие ГРУППОВЫЕ частоты аллелей между всеми образцами выборки, т.е. аллельные частоты ПОЛНОСТЬЮ зависят от состава исходной выборки, даже в случае так называемого supervised («обучаемого») анализа, в ходе которого некоторые популяции принимаются за исходные «чистые предковые группы». Поскольку в ранних версиях Admixture, отсутствовала опция фиксирования одной из вычисляемых матрицы (P- матрица аллельных частот снипов в каждом из гипотетических компонентов происхождения; Q-матрица — матрица индивидуальных коэффициентов вклада предковых компонентов в индивидуальный геном с общей построковой суммой в 100%), и практически все компании использовали один и тот же алгоритм (он в во всех подобных программх схож — хотя разняться его имплементации и способы оптимизации функции правдоподобия), то все они подвергнуты искажению истинных частот аллелей. Этот косяк вносит решающий вклад в появление фантомных компонентов происхождения.

То, что вычисленные таким способом значения (скажем русского) могут очень сильно отличаться в сравнении с индивидуальными частотами аллелей (для примера такого же русского из той же скажем Орловской области) — было впервые замечено геномным блоггером Polako.
К сожалению, в силу своем личной ненависти к первоначальному разработчику DIYDodecad — греку Диенекису Понтикосу — он не смог дать формальное объяснение феномена и назвал этот феномен «эффектом калькулятора» (как бы намекая на косорукость кода этой утилиты). На самом деле сам калькулятор здесь не причем — все дела в приниципиальных различиях между определение происхождения на основании частот аллелей вычисленных по группе образцов и тем же самым вычислением аллелей, но уже не в группе, а в индивидуальныом порядке. В этом легко убедиться самому — возьмите клиентские данные, например, норвежца. Вставьте его в большую выборку образцов (например 2000 человек) и прогоните в программе ADMIXTURE задав такое количество гипотетических предковых популяций (K), при котором становится заметна субструктура генофонда популяций на внутриконтинентальном уровне. А затем возьмите того же самого норвежца, но уже в единственном числе, и зафиксировав полученные в предыдущем шаге аллельные частоты в виде предковых популяций. Вы увидите, что различия между результатами анализа одних и тех же данных могут достигать 20 а то и более процентов. Это-то и есть ядро так называемого пресловутого эффекта калькулятора. Очевидно, что и Оракул (т.е. инструмент определения ближайших к клиенту этнических популяций а также моделирования происхождения клиента через набор из 2, 3, 4 популяций) в этом случае (искаженных аллельных частот) будет искусственно создавать фантомные предковые популяций. Например, у русского из Владимирской области могут появиться в качестве шведы,
эстонцы или англичане из Кента.

Строго говоря, первым написал об этой проблема некий Vikas Bansal — автор программы iAdmix:

«For comparison, we also ran ADMIXTURE (in supervised mode using the HapMap reference panel of individuals) on the same dataset (see Figure 1(b)). The European and African admixture estimates for each individual were highly consistent between the two methods. For some individuals, the European component of ancestry using our method was split between the TSI and CEU populations. This could reflect one important difference between the two methods in how they use data from reference individuals. Our method finds a maximum likelihood estimate of the admixture coefficients for each individual using the fixed set of allele frequencies. In contrast, ADMIXTURE, in the supervised mode, utilizes data for all individuals (both the reference populations and the individual(s) being analyzed) to estimate the allele frequencies for each cluster or population and maximize the likelihood function summed across all individuals. Therefore, the allele frequencies are determined not only by the genotypes of the reference individuals but also by the individual(s) that are analyzed for admixture. To confirm this, we estimated allele frequencies by running ADMIXTURE twice: (1) using 800 reference individuals simulated using allele frequencies for 8 HapMap populations (100 individuals per population, see previous section) and (2) 800 reference individuals and 1 additional individual with 100% CEU ancestry simulated using the HapMap allele frequencies. Subsequently, we used our method to estimate admixture coefficients for the simulated CEU individual using the two sets of allele frequencies separately. We found that using the first set of allele frequencies, the admixture coefficients for both CEU and TSI were non-zero. In contrast, using the second set of allele frequencies, only the CEU admixture coefficient was non-zero. This was similar to the results observed in the analysis of the Mozabite data and provided an empirical validation of our hypothesis regarding the difference in the admixture coefficients estimated by the two methods.»

Реклама

Демография миграций в эпоху неолита и бронзового века

C ресурса Генофонд.ру (автор: Надежда Маркина)

 

Статья американских и шведских исследователей (Goldberg  et al.),опубликованная на сайте препринтов, вновь обращается к дискуссионной проблеме миграций в эпоху неолита и бронзового века.  В работе исследуется вопрос о доле мужского и женского населения  в составе мигрирующих групп, которые сформировали  генофонд  Центральной Европы. Авторы проверяют исходную гипотезу, что миграции из Анатолии в раннем неолите и миграции из понто-каспийских степей в течение позднего неолита и бронзового века были преимущественно мужскими.

Для ответа на это т вопрос авторы опираются не на Y-хромосому, передающуюся по отцовской линии,  и не на митохондриальную ДНК, передающуюся по материнской, как традиционно поступают генетики, а  Х-хромосому. Они вычисляют отношение эффективного размера популяции по Х-хромосоме к эффективному размеру популяции по аутосомам (неполовым хромосомам). Поскольку мужчины имеют одну Х-хромосому, а женщины – две, то в популяции с одинаковым соотношением мужчин и женщин отношение Х-хромосомы к аутосомам должно быть ¾. Отклонение от этой цифры говорит о разной демографической истории по мужской и женской линиям. Такова логика, лежащая в основе метода исследования, подробнее с ним можно познакомиться в тексте статьи.

Авторы изучили опубликованные образцы древней ДНК раннего и позднего неолита и бронзового века, проанализировав более 1,2 млн SNP, в том числе без малого 50 тысяч SNP на Х-хромосоме. Исследуемые образцы относились к популяциям охотников-собирателей, земледельцев Анатолии и понто-каспийских степей.

 

new-1

Схематическая демографическая история земледельцев Центральной Европы в течение неолита и бронзового века.

 

В противоположность существующему мнению, результаты не подтвердили, что миграции в неолите из Анатолии в Европу были преимущественно мужскими. Анализ  показал примерно одинаковое соотношение мужского и женского населения среди мигрантов. А вот миграция из понто-каспийских степей в Центральную Европу в  течение позднего неолита и бронзового века , действительно, была преимущественно мужской: по подсчетам  среди мигрантов на 5-14 мужчин приходилась одна женщина. Авторы показали, что эта миграция была растянута по времени на несколько поколений. В соответствии со своим мужским характером, именно она принесла в Европу технологические инновации.

 

new-2

Доли мужского (синие стрелки) и женского (розовые стрелки) населения в составе неолитической и степной миграций.

 

«Ледниковый период в Европе и изучение останков древнего человека на территории России»

Лекция Йоханнеса Краузе  (Johannes Krause) «Ледниковый период в Европе и изучение останков древнего человека на территории России» состоится в рамках Фестиваля науки

8 октября 2016  в  Шуваловском корпусе МГУ, аудитория «В4» 

12.45-13.45

Йоханнес Краузе  — профессор археологии и палеогенетики,  директор Института наук об истории человека Общества Макса Планка (Max Planck Institute for the Science of Human History) в Йене.

программу Фестиваля науки 7-9 октября можно скачать здесь  program-2016

«МОСКВА, 10 окт – РИА Новости. Известный палеогенетик Йоханнес Краузе рассказал РИА «Новости» о том, почему ученые сегодня считают степи Прикаспия родиной народов Европы, поделился мыслями о причинах почти полного вымирания Европы в конце ледникового периода, а также порассуждал о перспективе «воскрешения» средневековой чумы.

Йоханнес Краузе, палеогенетик из Института истории человека в Йене (Германия) – один из самых известных «некромантов» современности, которому удалось за последние несколько лет восстановить и изучить геномы средневековых возбудителей чумы и проказы, раскрыть тайны миграций и вымирания первых жителей Земли.

Кроме того, он обнаружил, что в конце ледникового периода фактически вся Европа вымерла и была заново заселена «северными евразийцами», поселенцами с юга России, а также нашел однозначные генетические свидетельства того, что неандертальцы были каннибалами. Обо всем этом Краузе рассказал на лекции в МГУ имени М.В. Ломоносова, которая проводилась в рамках всероссийского фестиваля Наука 0+.

— Йоханнес, недавно вы выяснили, что почти все первые жители Европы вымерли и не оставили следов в ДНК современного населения субконтинента. В чем могли быть причины такой катастрофы, вызвали ли ее болезни или климат?

— Сам по себе ледниковый период был периодом масштабных климатических изменений. Поэтому мы собственно и называем его ледниковым периодом – температуры упали на 10 градусов Цельсия, и большая часть Европы была покрыта льдом во время последнего ледникового максимума, 20 тысяч лет назад.

В то время, по сути, в Центральной Европе было невозможно жить – она представляла собой области вечной мерзлоты, покрытые тундрой и льдами.

Череп кроманьонца из Чехии
Генетики: в конце ледникового периода почти вся Европа вымерла

Поэтому то, что в то время местное население полностью вымерло и было замещено новой группой людей, никого не должно удивлять. Поэтому я считаю, что болезни, в том числе и чума, вряд ли могли вызвать это вымирание, а климатические изменения – вполне могли это сделать.— Вы и ваш коллега Дэвид Рейчпоказали в недавнем прошлом, что Европа была заселена несколькими волнами мигрантов, которых было или три, или четыре. Сколько их было на самом деле?

— На текущий момент у нас есть сведения о том, что первые люди появились в Европе примерно 40 тысяч лет назад. Следы этой популяции людей были найдены в Румынии в виде скелета одного человека, а также останками еще одного древнего кроманьонца, которые были открыты в окрестностях Омска, в Усть-Ишиме. Они являются на сегодняшний день древнейшими останками человека современного типа за пределами Африки.

Оба этих человека принадлежали к особой популяции древних людей, следов которых вообще не осталось в нашей ДНК. Иными словами, они не были предками современных жителей Азии и Европы. Их популяцию можно назвать первой провалившейся попыткой колонизовать мир за пределами Африки.

За ними следовали люди, подобные тем, чьи останки были найдены в окрестностях деревни Костенки в Воронежской области. Их следы уже можно заметить в ДНК последующих групп древних людей.

Реконструкция облика члена ямной культуры Прикаспя
Генетики нашли новые доказательства каспийских корней индоевропейцев

Со времени жизни людей в Костенках и до конца ледникового периода, который завершился примерно 15 тысяч лет назад, в генетике Европы почти ничего не поменялось. Примерно 14 тысяч лет назад в Европу проникли первые мигранты с Ближнего Востока, и затем, около 7-8 тысяч лет назад, произошла вторая волна ближневосточной миграции, принесшая с собой фермерское искусство. И последняя волна миграции, самая масштабная из них, произошла примерно пять тысяч лет назад, когда Европа была заселена жителями прикаспийских и причерноморских степей.

Проблема, на самом деле, не в подсчете волн миграции, а в самом термине. Под миграцией мы обычно понимаем перемещение больших групп людей, условно говоря, из точки А в точку Б. С другой стороны, в реальности могли происходить не массовые миграции, а просто медленная экспансия новых групп людей, распространявшихся по Европе со скоростью, скажем, пять километров в год. Поэтому нельзя говорить о том, что древние люди в один момент вдруг сказали «мы покидаем Россию, едем в Европу», собрали вещи и поехали – этот процесс мог протекать органично и незаметно для коренных жителей субконтинента, постепенно замещая их благодаря большему числу потомства и другим факторам. Мне кажется, именно так нужно думать, когда мы рассуждаем о волнах миграции в прошлом.»

 

Формальный анализ смешивания предковых популяций: белорусы, часть 2

Итак, после определения значимых для формального статистического моделирования комбинаций предковых популяций (или вернее, их суррогатов) представляется возможным смоделировать две вещи. Во-первых, необходимое с точки зрения статистики, число «импульсов» или «потоков» смешивания, а во-вторых, пропорции вклада «предковых» групп в генофонд белорусов.

Результаты анализа в программах qp3Pop и qpDstat показали, что в референтной группы белорусов присутствуют сигналы смешивания трех групп — мезолитических охотников-собирателей Европы (WHG), неолитических популяций земледельцев с Ближнего Востока и cибирских охотников-собирателей (чьи потомки в составе индоевропейцев) распространили свои гены по всей Европе.

Но меня больше интересует вопрос оценки величины доли вклада так называемого «базального компонента»(Basal Eurasian):

«четвертый элемент» — тот «базальный» компонент генофонда Европы, который проявился при моделировании истории сложения генофонда Европы в работе [Lazaridis et al., 2014] (см. раздел 8.4, рис 8.20) — предковой евразийской группой, которая внесла свой большой вклад и в геном неолитических земледельцев. Из аналогичной по методам модели, созданной в рассматриваемой работе [Seguin-Orlando et al., 2014], следует (рис. 8.6), что в геном человека из Костенок эти таинственные «базальные евразийцы» внесли не менее важный вклад, чем и верхнепалеолитические западные евразийцы. Также из модели следует, что он имел и общих, хотя и более отдаленных предков с древними северными евразийцами восточного ствола.

В этих целях я решил использовать в качестве суррогата базального евразийского генома геном Mota (древнего жителя Африки), примерно половину генома которого составлял тот самый пресловутый базальный компонент (результат обратных миграций натуфийского населния Ближнего Востока в восточную Африки)

Итак, в начале используем программу qpWave из того же пакета Admixtools

parameter file: qpWave.par

THE INPUT PARAMETERS

##PARAMETER NAME: VALUE
indivname: data.ind
snpname: data.snp
genotypename: data.geno
popleft: left
popright: right
maxrank: 6

qp4wave2 version: 200

left pops:
Levant_N
Mota
WHG
EHG

right pops:
Han
Onge
Papuan
Kostenki14
Ust_Ishim
Siberian_Upper_Paleolithic

0 Levant_N 13
1 Mota 1
2 WHG 2
3 EHG 3
4 Han 33
5 Onge 15
6 Papuan 14
7 Kostenki14 1
8 Ust_Ishim 1
9 Siberian_Upper_Paleolithic 1
jackknife block size: 0.050
snps: 572603 indivs: 84
number of blocks for block jackknife: 719
dof (jackknife): 631.955
numsnps used: 177238
f4info:
f4rank: 0 dof: 15 chisq: 574.447 tail: 9.47752373e-113 dofdiff: 0 chisqdiff: 0.000 taildiff: 1

<cf4info:
f4rank: 1 dof: 8 chisq: 115.553 tail: 2.7408605e-21 dofdiff: 7 chisqdiff: 458.894 taildiff: 5.4614954e-95
B:
scale 1.000
Onge -0.475
Papuan -0.521
Kostenki14 0.069
Ust_Ishim -0.746
Siberian_Upper_Paleolithic 1.986
A:
scale 290.851
Mota -0.932
WHG 0.299
EHG 1.429

f4info:
f4rank: 2 dof: 3 chisq: 8.502 tail: 0.036691843 dofdiff: 5 chisqdiff: 107.050 taildiff: 1.7204978e-21
B:
scale 1.000 1.000
Onge -0.462 -0.050
Papuan -0.522 -0.105
Kostenki14 0.288 2.189
Ust_Ishim -0.733 0.378
Siberian_Upper_Paleolithic 1.973 -0.232
A:
scale 286.604 578.115
Mota -0.951 -1.197
WHG 0.385 0.752
EHG 1.396 -1.001

f4info:
f4rank: 3 dof: 0 chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 8.502 taildiff: 0.036691843
B:
scale 1.000 1.000 1.000
Onge -0.400 -0.203 1.065
Papuan -0.459 -0.258 0.882
Kostenki14 0.299 2.175 0.273
Ust_Ishim -0.645 0.116 1.513
Siberian_Upper_Paleolithic 2.031 -0.382 0.850
A:
scale 282.949 595.536 1395.824
Mota -0.857 -1.172 0.944
WHG 0.466 0.827 1.449
EHG 1.431 -0.971 0.093

## end of run

Нас интересует статистика f4rank 2, и как видно она убедительна: chisq: 8.502 tail: 0.036691843 dofdiff: 5 chisqdiff: 107.050 taildiff: 1.7204978e-21.  То есть, для моделирования референсной популяции достаточно трех «источников» (в f4rank 3, т.е с 4 предковыми популяциями, статистика гораздо хуже: chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 8.502 taildiff: 0.036691843 ).

Следующим этапом будет оценка пропорций «адмикса», образованного смешением трех «источников»:

 

parameter file: qpAdm.par

THE INPUT PARAMETERS

##PARAMETER NAME: VALUE
genotypename: data.geno
snpname: data.snp
indivname: data.ind
popleft: left
popright: right
maxrank: 8

qpAdm version: 200

left pops:
Belarusian
Mota
WHG
EHG
right pops:
Han
Onge
Papuan
Kostenki14
Ust_Ishim
Siberian_Upper_Paleolithic
0 Belarusian 25
1 Mota 1
2 WHG 2
3 EHG 3
4 Han 33
5 Onge 15
6 Papuan 14
7 Kostenki14 1
8 Ust_Ishim 1
9 Siberian_Upper_Paleolithic 1
jackknife block size: 0.050
snps: 572603 indivs: 96
number of blocks for block jackknife: 719
dof (jackknife): 628.796
numsnps used: 227599
codimension 1
f4info:
f4rank: 2 dof: 3 chisq: 20.724 tail: 0.000120097824 dofdiff: 5 chisqdiff: -20.724 taildiff: 1
B:
scale 1.000 1.000
Onge -0.502 0.176
Papuan -0.562 0.218
Kostenki14 0.442 2.074
Ust_Ishim -0.735 0.779
Siberian_Upper_Paleolithic 1.923 -0.110
A:
scale 285.645 552.926
Mota -1.490 -0.238
WHG 0.017 1.685
EHG 0.883 -0.324
full rank 1
f4info:
f4rank: 3 dof: 0 chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 20.724 taildiff: 0.000120097824
B:
scale 1.000 1.000 1.000
Onge -0.502 0.178 0.403
Papuan -0.599 0.280 0.995
Kostenki14 0.455 2.029 -0.773
Ust_Ishim -0.773 0.879 1.373
Siberian_Upper_Paleolithic 1.893 0.008 1.168
A:
scale 288.199 555.700 1346.772
Mota -1.449 -0.056 0.947
WHG 0.026 1.726 0.141
EHG 0.948 -0.132 1.444
best coefficients: 0.318 0.148 0.534
ssres:
0.000295769 0.000789821 0.000059100 0.001247609 0.001271289
0.335431254 0.895733409 0.067025433 1.414909018 1.441765444

Jackknife mean: 0.316895017 0.150748678 0.532356305
std. errors: 0.035 0.067 0.045
error covariance (* 1000000)
1212 -1838 625
-1838 4506 -2668
625 -2668 2043
fixed pat wt dof chisq tail prob
000 0 3 20.724 0.000120098 0.318 0.148 0.534
001 1 4 125.483 0 -0.088 1.088 0.000 infeasible
010 1 4 25.750 3.55457e-05 0.378 0.000 0.622
100 1 4 102.973 2.28952e-21 0.000 0.702 0.298
011 2 5 336.445 0 1.000 0.000 0.000
101 2 5 127.950 6.47788e-26 0.000 1.000 0.000
110 2 5 184.757 0 0.000 -0.000 1.000
best pat: 000 0.000120098 - -
best pat: 010 3.55457e-05 chi(nested): 5.025 p-value for nested model: 0.0249831
best pat: 101 6.47788e-26 chi(nested): 102.201 p-value for nested model: 5.01661e-24

end of run

Итак, лучшими коэффициентам (пропорциями адмикса) являются 0.318 0.148 0.534. То есть референсная популяция белорусов может быть смоделирована как 30 % базального компонента, 15% компонента мезолитических охотников собирателей и 53% компонента жителей степи бронзового века («индоевропейцев»). Очевидно, что большая часть базального компонента попала в Европу вместе неолитическими земледельцами, а оставшаяся часть — была принесена индоевропейцами.

 

Формальный анализ модели смешивания предковых популяций: белорусы

Перед подготовкой релиза новых калькуляторов K16 и K11 на Gedmatch, я решил провести пилотный (пробный) анализ референсной популяции белорусов (в которую входят публичные образцы из  базы данных HumanOrigin, EGDP новой панели референсных геномов Эстонского биоцентра, а также данные белорусов — участников моего проекта MDLP). Основным инструментом формального анализа надежности модели будет известный и популярный пакет Admixtools.
Перед тем, как дать краткое описание первых шагов, хочу отметить трудности работы с Admixtools — в первую очередь, крайнее низкую степень документированности (описания) практических аспектов работы большинства входящих в пакет инструментов. Данное обстоятельство существенным образом снижает темп изучения этого все более популярного пакета (с другой стороны, похоже что лаконичность изложения задумывалась изначально, для отсеивания слабо мотивированных дилетантов-любителей). Второе обстоятельство, затрудняющее использование Admixtools, заключается в необходимости компилировать отдельные компоненты пакета.

Пакет содержит шесть программ

 

convertf: программа конвертирования форматов
qp3Pop: формальный анализ сигнала "смешивания" в трех популяциях
qpBound: программа, вычисляющая верхнюю и нижнюю границу смешивания в трех популяциях (2 референсные популяции и 1 одна популяция, предположительно образованная за счет смешивания двух референсных популяций) 
qpDstat: формальный анализ "адмикса" в 4 популяциях
qpF4Ratio: программа для определения пропорций адмикса за счет проведения 2 f4-тестов
rolloff:  программа датировки адмикса.

В приницпе, четкого порядка работы с этими программами нет, однако авторы рекомендуют следовать приведенному списку (т.е. начинать с qp3Pop и заканчивать rolloff)

Outgroup-статистика f3 является крайне полезным аналитическим инструментом для понимания взаимных отношений разных популяций: основная задача теста состоит в определении характера этих отношений. Образована ли целевая популяция (target) за счет смешивания двух рефересных популяций, или же  популяции представляют собой две простые ветви популяционного дерева человечества (т.е. в образовании таргетной популяций не участвовали референсные популяции)

Статистика f3, так же, как два других вида статистик — f4 и f2 — представляют собой меру корреляции частот аллелей между рассматриваемыми популяциями. Все эти виды статистик были введены в научный оборот попгенетики биоинформатиком Ником Паттерсоном в статье 2012 года.

Статистика f3 используется в двух целях:

  1. в качестве теста  сигнала «адмикса» двух популяций-источников (A и B) в «целевой популяции» (С)
  2. для измерения общего разделяемого дрейфа двух тестовых популяций  (А и В) по отношению к  внешней группе (С).


В этой публикации я приведу пример первого случая использования. Статистика f3 в обоих случаях определяется как произведение разниц частот аллелей  между популяции C, А и В, соответственно:

  1. F3=<(c-a)(c-b)>

Итак, первый случай употребления (для определения сигнала смешивания), белорусы выступают в качестве тестовой популяции, две референсные популяции образованы пермутацией имеющихся у меня популяций

Итак, промежуточные результаты (я выбрал только комбинации с негативным значением Z, свидетельствующие о сигнале смешивания) :

Следующий тип статистики — f4, — реализован в программе qpDstat в виде D-статистки. Это формальный тест адмикса четырех групп (таксонов или популяций), позволяющий определить направления потока вливания генов. Немного теории:

Для любых 4-х популяций (W, X, Y, Z), qpDstat вычисляет D-статистику следующего вида

num = (w — х) (у — z)
den = (w + х — 2wx) (у + z — 2yz)

D = num / den

Результат qpDstat показывает направления вливания генов. Таким образом, для 4 групп (W, X, Y, Z) верно следующее положение:

Если значение Z положительное ( + ), то обмен генами происходил либо между W и Y, либо между X и Z
Если значение Z отрицательное (-), то обмен генами происходил либо между W и Z,  либо между X и Y.

 Кроме определения направления генного дрейфа, очень важным практическим применением D-статистики служит определения «левых» и «правых» популяций для теста qpAdm (о нем чуть позднее). Так, например,  комбинация из двух первых популяций left {L,L}  и двух правых популяций {R, R} должна быть выбрана таким образом, чтобы значение Z в D-статистике
a) было неотрицательным, и b) имело высокое абсолютное значения.  Я решил последовать совету и сгенерировал 225822 комбинаций из четырех популяций {W,Y,X,Z}, где W — фиксированная первая таргетная популяция «левого» списка, в нашем случае белорусы, Y — одна из имеющихся групп палеогеномов, X и Z — пермутация из 16 «чистых» современных популяций описанных в работе Lazaridis et al. 2016.

Итак, вот результаты (и снова я не привожу полный список, а только те комбинации, которые могут быть использованы для выбора состава «левых» и «правых» популяций.  и последующего моделирования в qpAdm):

Этюд на тему ДНК-генеалогия.

Мой блог посвящен преимущественно тематике аутосомной ДНК, однако время от времени я затрагиваю тему однородительских маркеров происхождения (Y-ДНК и митоДНК).  Начну заметку издалека.
Среди обывателей села Стахова бытует легенда, о том, что род Вереничей пришли на земли пинского Полесья из Югославии.К сожалению, как и в большинстве подобных легенд, cовершено невозможно разобраться в том, где правда, а где позднейшие выдумки. Так и в этом случае. Ни в одном из имеющихся e меня исторических документах нет даже и намека на балканское происхождение Вереничей. Даже в самых ранних документах (например, в «Ревизии пущ и переходов звериных в бывшем Великом княжестве Литовском с присовокуплением грамот и привилегий на входы в пущи и на земли, составленной старостою мстибоговским Григорием Богдановичем Воловичем в 1559 г. «, или в «Писцовой книге Пинского староства Лаврина Воина, 1561—66«) уже видно, что даже в то время род Вереничей на Полесье считался «издавним«.



Так в ревизии Воловича (1559 года) читаем, что

«Павел Веренич на дворище у Стохови жъ не покладалъ листовъ, только давность, и на другое дворище у Дубой».


Слово давность означает существование в течение долгого времени, издревле, искони. Происходящие от корня этого слова прилагательные и наречия попадаются в разных актах с конца XIII века. Как юридический термин существительное <давность> употреблялось уже весьма рано в западнорусском законодательстве; собственно же в России оно появляется в виде термина лишь с XVIII века. Выражение земская давность было юридическим термином в Литовском Статуте, из которого заимствовано русским законодательство.

 



В строго юридическом смысле срок давности владения определялся десятью годами. Впрочем, здесь давность может употребляться в другом значении. Так, в актовых материалах все той же «Ревизии пущ и переходов звериных в бывшем Великом княжестве Литовском с присовокуплением грамот и привилеев на входы в пущи и на земли, составленная старостою мстибогским Григорием Богдановичем Воловичем» в числе прочих землевладельцев Пинского повета упомянуты Грынь Веренич с братом Павлом «с имений своих стародавних [т.е. с незапамятных времен] военную службу служащих«. Судя по этому, Вереничи могли появится в Стахове уже в середине 15 века, если не раньше.
Когда, откуда, и при каких обстоятельствах — обо всем этом известные мне историко-юридические источники умалчивают. Более поздние документы не только не дают ответа на эти вопросы, а скорее еще больше запутывают ситуацию. Так например в «Выводе фамилии урожденных Стаховских придомка Веренич» (Год 1802 Месяца ноября двадцать второго дня на на сессии Депутации выводовой Губернии Минской) читаем следущее:

«Принесена была просьба от фамилии древней родовитой панской шляхты урождённых Вереничей Стаховских герба “Огончик” (пол-стрелы белой на половине перстня стоящей, в поле красном, над шлемом две женские руки вытянутые вверх) которая на наследственных землях и осадах в повете пинском лежащих от найяснейшых времён королевства Польского, прерогативами шляхетства пользовалась, и клейнотом родовитости неискаженно и непрерывно пользовались. [стр. 616] В потверждение указов найяснейшей воли – линия родословной своей вместе с документами перед депутацией выводовой губернии Минской составлена, потверждена доводами и внесена в дворянские книги Минской губернии в соответстии с законом.Родословие своего дома разделили на две линии. Дух родных братьев Семена и Дмитрия Вереничей Стаховских за родоначальников взяли, и от них до себя довели. И правдивость этого они через доказательства и документы следующим порядком довели. Семен и Дмитрий Вереничи Стаховские братья между собой родные. В повете Пинском осели и дали начало своему роду и фамилии. И в подтверждение своего первого поколения они предъявили привилегию от наияснейшего короля польского Сигизмунда Августа за год тысяча пятьсот шестьдесят шестой от июня двадцатого дня где, между другими для шляхты пинской пожалованиями за военную службу выше упомянутым Семену и Дмитрию Вереничам Стаховским земли в наследственное владение в повете Пинском лежащими дворища Веренича в Стахове и Дубой называющееся им и потомкам их пожаловал…»

Содержание начала текста весьма типично для подобных документов, но здесь нет сведений о точном времени появления Вереничей в Стахове, не говоря уже о явных хронологических несуразицах, которые я разбирал в другой заметке.

  1. Во-первых, под «привелем» 1566 года понимается общий «привилей» Сигизмунда-Августа, данные всей пинской шляхте в подтверждение их землевладельческих и шляхецких прав.
  2. Во-вторых, Семен и Дмитрий жили не в 1566 году, а как минимум на сто лет раньше — около 1456-1466 годов. В доказательство верности моих вычислений можно привести следующие аргументы. В решении судей Главного Трибунала ВКЛ от 1637 года упоминается о привелее кн. Марии Семеновны (+1501) ( в документе ошибочно указано Ярославовны) и ее сына кн. Василия Семеновича (+1495) от 6998 года индикта 8 (1490 года согласно современному летоисчислению), в котором подтверждается совместное владение Волошиным (sic!) Павлом и Ходором Вереничами даниной своей бабки в селе Тупчицы, Согласно родословной, Павел — сын Дмитрия и племянник Семена. В следующем по времени привилее кн. Федора Ивановича Ярославича от 26 апреля 1514 данном дочерям Антона (Андрей?) Дмитриевича Веренича потдверждается их вотчинное права на земли пожалованные их отцу в Стахове, Дубое и Тупчицах. Очевидно, Антон(или Андрей) — тоже сын Дмитрия, и более того, в 1514 году его дочери были уже совершеннолетними.
  3. В-третьих, в переписе войска литовского 1528 года упомянут пинский боярин Верениш (sic!), который служил «сам со своего имения». Далее, из судебного дела от 26 марта 1543 года по иску Пашки Павлова и его братьи Игнатия и Гаврила к Ваське Лозичу, который унаследовал по своей жене Ульяне Лукашевичевой Веренич часть имений Дубой и Стахово. мы узнаем, что в 1543 году внуки Дмитрия (Пашко Павлович и его двоюродные братья Гавриил и Игнат Васильевич) были уже взрослыми, так же как и покойная Ульяна Лукьяновна (дочь Лукьяна Семеновича, внучка Семена Веренича), после смерти которой третья часть дворища Веренич в Дубое и дворища Веренич в Стахово перешла к Ваське Лозичу.

 



Далее, в 1554 году — за 12 лет до указанной в привелее даты — в материалах, собранных в ходе ревизии пущ и переходов лесных -упомянуются Грынь Веренич с (троюродным) братом Павлом с имений своих стародавных военную службу служащих. Как известно, Грынь — внук Семена, а Павел или Пашко — внук Дмитрия. О самих Семене и Дмитрии ни слова, хотя если бы они жили в это время, то скорее всего именно они или их сыновья были бы записаны как старшие в своем роду, но никак не их внуки.В 1559 году, по все той же ревизии Воловича, в числе земян Стаховских опять упоминается Павел Веренич, правда, уже без Гриня. В тексте четко сказано, что Павел не покладал листов (т.е. не предъявил привелея), только давность на дворище у Стахова и другое дворище у Дубоя. Поскольку большую часть книги Воловича составляют привелеи, выданные или подтвержденные королевой Боной, следовательно, от Боны Вереничи привлеев не получали, по крайней мере, на земли в Дубое и Стахове.Все вышесказанное означает, что уже задолго до 1566 года Вереничи владели своими дворищами и землями на основании вотчинного права, и что феодальные права Вереничей на эти земли восходят — как минимум -временам кн. Марии Семеновны и ее сына Василия (то есть к периду между 1475-1490 гг).


Реконструкция позволяет очертить интервал появления Вереничей в Стахове — но с обстоятельствами появления по-прежнему нет никакой ясности. Поскольку скудные исторические свидетельства обходят  этот вопрос сторонй, то можно обратиться к преданиями. Среди старожилов села Стахова якобы сохранилось следующее якобы древнее предание:


Когда-то, давным-давно, жил на Полесье князь Карачинский (sic!). В его владениях находился большой дремучий бор, около которого проходил торговый шлях. По прошествии времени, в этом бору поселилось 100 половцев, которые совершали нападения на проезжающих купцов и селян. Князь, прослышав о разбойниках, повелел своим «палявничим» (охотникам) узнать, где находится разбойничье логово. Один из охотников решил проследить путь до логово половцев и стал делать топором зарубки на деревьях. Услышав стук топора, войны князя отправились в сторону, где раздавалось эхо стука топора. Таким образом, они вышли прямиком на логово разбойников и истребили их. В награду за верную службу, князь наградил находчивого охотника землям, где находился стан половцев. Охотник постоянно носил с собой «Ксендз Лаврентий Янович, каноник венденский, в своей речи на погребении Элжбеты с Стаховских Каренжины, жены вилькомирского судьи, изданной в сборнике «Золотой улов на реках и водах смертности сего мира и т.д» (Вильно 1665 г.) размещает следущее предание, относящиеся к истории Стахова.: «Князь Карачевский, владелец обширных волостей, лежащих на Пинщине, крайне скудными силами 100 половцев положил трупами и на там же месте похоронил, как и по ныне свидетельсвтуют о том курганы того места. За это мужесто правящий князь ему отдал в удел это поле, а также столько земли, сколько мог объять звонкий звук трубы. Отсель то земельное надание стало называтся Стоховым, потому что там похоронено сто убитых врагов.» (веренька, вярэнька), и поэтому его прозвали Веренькой. Его потомки приняли прозвище родоначальника в качестве фамилии.


К сожалению, изучение этого предания показывает его недавнее происхождение. Скорее всего, оно выписано из 9-го тома «Полного географического описания нашего отечества» изданного в 1905 году В.П.Семеновым-Тян-Шанским , куда, в свою очередь перекочевало из известного издания «Słownik geograficzny Królestwa Polskiego» изданного в 1880–1902 гг., а именно из 11 тома, в котором на стр.171-172 была размещена довольно объемная статья Александра Ельского и Эдварда Руликовского о Стахове. Именно с подачи Руликовского в этой статье была размещена выписка из издания 17 века:

«Ксендз Лаврентий Янович, каноник венденский, в своей речи на погребении Элжбеты с Стаховских Каренжины, жены вилькомирского судьи, изданной в сборнике «Золотой улов на реках и водах смертности сего мира и т.д» (Вильно 1665 г.) размещает следущее предание, относящиеся к истории Стахова: «Князь Карачевский, владелец обширных волостей, лежащих на Пинщине, крайне скудными силами 100 половцев положил трупами и на там же месте похоронил, как и по ныне свидетельствуют о том курганы того места. За это мужесто правящий князь ему отдал в удел это поле, а также столько земли, сколько мог объять звонкий звук трубы. Отсель то земельное надание стало называтся Стоховым, потому что там похоронено сто убитых врагов.»

 


В приведенном отрывке приводится родословное предание рода Стаховских герба Огоньчик, (проживавшего в мстиславском, виленском, новогрудском и пр. воеводствах ВКЛ), генеалогическая связь которого с Вереничами пока никак не проясняется. Главным фигурантом здесь выступает князь Карачевский (которого, видимо, Cтаховские считали своим предком), а вовсе не «охотник с сумкой из бересты». Можно с уверенностью сказать, что «легенда старожилов» Стахова появилась самое ранее в начале 20 века в среде «грамотеев» села Стахове как результат переосмысления текста статьи их энциклопедического справочника,  а затем объединения легенды об основании Стахова с народной этимологии фамилии Веренич.



Итак, и этот источник не дал нам ничего ценного. Поскольку возможности документальной генеалогии на этом этапе практически исчерпываются (и открытие новых источников вряд ли предвидится), остается обратится к новой отрасли — ДНК-генеалогии.

Генетическая генеалогия использует ДНК-тесты совместно с традиционными генеалогическими методами исследования. Каждый человек несёт в себе своего рода «биологический документ», который не может быть утерян — это ДНК человека. Методы генетической генеалогии позволяют получить доступ к той части ДНК, которая передаётся неизменной от отца к сыну по прямой мужской линии — Y-хромосоме. ДНК-тест Y-хромосомы позволяет, например, двум мужчинам определить, разделяют ли они общего предка по мужской линии или нет. ДНК-тесты не просто помощь в генеалогических исследованиях — это современный передовой инструмент, который генеалоги могут использовать для того, чтобы установить или опровергнуть родственные связи между несколькими людьми.

Итак, в 2008 году узнал свою Y-хромосомную гаплогруппу (I2a). Немного терминологии для читателей, далеких от науки:

Гаплогруппа (в популяционной генетике человека — науке, изучающей генетическую историю человечества) — группа схожих гаплотипов, имеющих общего предка, у которого в обоих гаплотипах имела место одна и та же мутация — однонуклеотидный полиморфизм.

 

 

Позднее протестировались еще 2 Веренича, и наши гаплогруппы совпали, что подтверждается достоверность официальной родословной. Казалось бы, после всех усилий, можно было бы легко определить ареал, откуда появились предки Вереничей (очевидно, что это ареал с наибольшей частотой или наибольшим разнообразием гаплогруппы I2a). На поверку же все оказалось гораздо сложнее. Географический ареал гаплогруппы I2a (вернее ее восточноевропейской, «динарской» ветви) характеризуется бимодальным распределением — в восточной Европе они приходятся на регион Полесье-Карпаты и на регион Балкан (с макисмальной частотой в Боснии-Герцеговине).

По иронии cудьбы, именно с этими двумя регионами связаны две наиболее вероятные версии происхождения Вереничей. Таким образом, знание одной лишь корневой гаплогруппы мне, по большому счету, не помогло ни подтвердить, ни опровергнуть одну из этих альтернативных версий.

Тупиковая ситуация изменилась лишь после того, как один из Вереничей сделал полный сиквенс Y-хромосомы (BigY в FTDNA). Благодаря ему удалось достаточно точно позиционировать расположение нашей ветви-кластера внутри общей структуры филогенетического дерева I2a.Благодаря присутствию Y-хромосомного сиквенса (YF03602) представителя рода Вереничей в базе данных yfull.com (спасибо за помощь Vladimir Semargl и Vadim Urasin) представляется возможным оценить возраст моего кластера. На настоящий момент в него входит еще один полный сиквенс Y-хромосомы (YF04188), о хозяине которого мне ничего неизвестно.

Возраст линии Вереничей оценивается в 1438 лет до настоящего времени, линии YF04188 — всего лишь в 546 лет.По расчету снип-мутаций возраст I-Y17665 (и возможно I-A7318) оценивается примерно в 1000 лет (т.е. временами Киевской Руси), а возраст родительской ветви A1328 в 1850 лет до настоящего времени (начало нашей эры). Возраст, определенный по снипам, указывает на время выделения ветви I-A1328, хотя возраст последнего общего предка (определенный по значениям других маркеров Y-хромосомы) чуть ниже -1400 лет (т. е примерно 5-6 века нашей эры). То есть ветвь моих прямых предков в это время прошла пресловутое бутылочное горлышко, сопровождаемое, как правило, падением числа представителей линии и уменьшением разнообразия.

Здесь начинается самое интересное.



Недавно, зайдя на сайт проекта I2a в FTDNA, я обнаружил результаты некоего Враньешевич из Черногории. Я бы не обратил на него внимание, если бы он не попал в тот же кластер, что и я (в этот кластер входит ветвь Вереничей, гаплогруппа (I2-A7318, т.е подветвь I-A1328)).Я решил рассчитать возраст I-A1328 с помощью калькулятора semargl.me и стандартных для набора 37 маркеров скорости мутации. К сожалению, в базе данных Semargl немного гаплотипов из конкретно моего кластера и ближайщих к нему братских кластеров. В общем возраст, по ASD методу получилось что возраст моего кластераI (Y17665) — 1050 лет, а при подключении (в качестве outgroup) гаплотипа из I-A1328* возраст кластера I-A1328* составил примерно 1850 лет. То есть, это верхний интервал временного промежутка, когда мог жить последний мой общий предок (MRCA) и Враньешевича.

I2a2 ‘Dinaric’ ..L621>CTS10228>S17250>Y4882>A1328>A7318 (I-A7318)

568 362501 Verenich Werenicz,Werenich,Verenich,Werenitz,Stachowski. Belarus I-A7318

I2a2 ‘Dinaric’ ..L621>CTS10228>S17250>Y4882>A1328 (I-A1328)
564 E13120 Vranjesevic Vranjesevic Milan-Mico, birth 1913, death 1992 Bosnia and Herzegovina I-A1328


Нижний интервал можно определить с помощью калькулятора McDonald. Для вычисления дистанции в годах я сравнил значения 67-маркерного гаплотипа одного из Вереничей с аналогичными маркерами гаплотипа Враньешевича. 10 маркеров имеют другое значения. Получается разница в 10 маркеров на 67 маркерных гаплотипах.

Generations Probability Cumulative
1 0.000000 0.000
2 0.000000 0.000
3 0.000000 0.000
4 0.000004 0.000
5 0.000022 0.000
6 0.000091 0.000
7 0.000279 0.000
8 0.000699 0.001
9 0.001495 0.003
10 0.002825 0.005
11 0.004827 0.010
12 0.007592 0.018
13 0.011137 0.029
14 0.015396 0.044
15 0.020223 0.065
16 0.025408 0.090
17 0.030697 0.121
18 0.035824 0.157
19 0.040537 0.197
20 0.044616 0.242
21 0.047893 0.290
22 0.050258 0.340
23 0.051662 0.391
24 0.052111 0.444
25 0.051660 0.495
26 0.050401 0.546
27 0.048451 0.594
28 0.045943 0.640
29 0.043014 0.683
30 0.039796 0.723
31 0.036412 0.759
32 0.032973 0.792
33 0.029568 0.822
34 0.026274 0.848
35 0.023146 0.871
36 0.020225 0.891
37 0.017537 0.909
38 0.015097 0.924
39 0.012906 0.937
40 0.010961 0.948
41 0.009252 0.957

 

14202591_10210357856572557_5019604267960638228_n-1 14199500_10210357943174722_1769976137139415870_n

Пик гистограммы приходится на интервал между 21-30 поколениями, начиная с 26 поколения кумулятивная вероятность родства достигает убедительных значений достигая 0.95 в 41 поколении. Т.е. нижняя граница приходится примерно интервал в 600-1025 лет до настоящего времени — другими словами между 15 и 10 веками нашей эры.

Разумеется, c генеалогической точки зрения, исследование нижнего интервала (с общим предков в 14-15 веках нашей веры) более перспективен, тем более что я проследил свою прямую мужскую линию до 19 поколения.

Но насколько возможен факт наличия общего прямого мужского предка белоруса и черногорца в 21-30 поколениях? Дает ли генеалогия Вереничей предпосылки для такого утверждения? Прямых предпосылок, разумеется, нет.


Зато есть соображение ономастического характера. Один из сыновей второго родоночальника — Дмитра — Василь носил прозвище Волошин — так обычно в русских землях называли валахов, хотя часто прозвище Волошин не имело этнической коннотации и могло выступать в качестве отыменного прозвища: например, Володшин cын -> Волошин или Власий -> Волос -> Волошин. Наконец, составитель документа или переписчик мог сделать обычную описку. Впрочем, последнее опровергает существование 2 топонимов в окрестностях Стахова — урочища и острова Волошиново — причем именно там находились в 16-17 веках владения потомков Дмитра Веренича (старшим сыном которого являлся Василь Волошин). Кстати, любопытно отметить, что иногда в документах 16 века фамилия Веренич записывается не с окончанием —ч, а с более традиционным для южных славян окончанием — ш (Верениш)

А как же тогда быть с Вранешьевичем? Какое отношение он может иметь к валахам?

Лет 8 тому назад я порылся в исторических документах и обнаружил, что похожая фамилия Вранчич (в хорватском произношении Веранчич) действительно существовала на территории так называемого царства Сербия. После фактического распада Сербского царства (около 1366-1371 года), часть Вранчичей переселилось в Южную Сербию и Черногорию (где потомок Вранчичей воевода Радич Црноевич основал династию Црноевичей, которая в 15 веке праваила Зетой и Черногорией), другая перешла на службу к усилившемуся после падения «црства Српскаго» боснийскому королю Стефану Твртко I, который в 1370 и 1389 годах принял титул короля сербов, Боснии (1379) , Далмации и Хорватии (1389). Эти боснийские Вранчичи после падения Боснии (1463 год) под ударами турков частью переселились в Далмацию (г.Шибеник), которая с1420 была под венецианским владычеством, другая переселилась на границу Герцеговины и Черногории, где владели под турками «хематом» Вранеш, названого так в честь «валашского» князя Херака Вранеша (Вранеш — это герцеговинское диалектное видоизменение имени Вранчич).»Из возможных потомков Вранчичей, оставшихся в восточной Боснии и Герцеговине, особого внимания заслуживает «влашский» (sic!) кнез Херак (Владиславич?) Враньеш.

Казалось бы, вышеприведенные рассуждения выглядят убедительно. На самом же деле, остается главная проблема — дело в том, что фактически на протяжении 14-17 веков неизвестно никаких миграций жителей Балкан и влахов на территорию Полесья. Да, действительно была т.н. валашская колонизация, но она затрагивала главным образом территорию юго-западной Украины (прежде всего «червонной Руси» и «любельской земли», т.е. земли вокруг Львова, Звенигорода, Галича, Теребовля, Санока, Кросно, Белза, Замосця, Холма (Хелма). Причем интенсивность расселения «валахов» даже в этих регионах резко уменьшалось по мере продвижения на север (см. приложенную ниже карту).

14212036_10210384176630542_5840107323456791924_n

Например, на ближайшей к Полесью Волыни встречаются лишь фрагментарные упоминания бояр «Волошинов» в документах Метрики Литовской начала 16 века — они касаются пожалования земель в кременецком повете, т.е на рубеже ВКЛ и русского воеводства короны Польской (причем многие из этих «волошинов» носят чисто румынские имена Негое, Урсул и так далее). Такой же фрагментарный характер носят и земельные пожалования «волошинам» и на Подолье. И уж совсем единичные упоминания Волошинов мы находим в документах Метрики Литовской, касающихся земель современной Беларуси. Правда, на Брестчине одна семья «волошинов» — Ходько, Зань и Васько — получила в начале 16 века привелей на имение Чернско (от них происходит род Черских в брестском воеводстве, который вымер в 17 веке).

Размышления над эффективностью алгоритма SPA

Перед тем,  как закрыть тему SPA, я решил поразмышлять о причинах неточности определения географического ареала происхождения с помощью генома. Те, кто воспользовался моей моделью для программы SPA (последняя версия — сентябрь 2016 года), могли убедится в том, что даже при наличии большого количества маркеров, модель не во всех случаях точно определяет ареал происхождения (даже с поправкой на погрешность радиусом в 500 км).
В основу алгоритма SPA положены примерно те же самые предпосылки, что и в случае с классическим анализом главных компонент (PCA)

  • Первая предпосылка  подхода SPA состоит в том, что частота аллели каждого SNP в популяции может быть смоделирована в виде непрерывной двумерной функции на карте. Другими словами, при выборе хромосомы индивидуума из локации с позицией (х, у) на карте, вероятность наблюдения минорного аллеля в SNP j на хромосоме может быть сформулирована в виде функции F (х, у), где Fj является непрерывной функцией, описывающей поведение частоты аллеля в зависимости от географического положения
  • Затем на основании сказанного делается упрощающее предположение, что эта функция является экземпляром логистической функции

 

где х представляет собой вектор переменных, указывающих географическое местоположение и а и Ь коэффициенты функции. Авторы понимают каждую из этих функций, как функцию FJ функции наклона градиента частота в SNP J. Эта функция кодирует крутизну склона по норме а, при этом предпологается что смещение параметра b фиксировано. Кроме того, направленность наклона  кодируется в значении вектора а.  Более подробно, θj = арктангенс (aj(1) / aj(2)) могут быть приняты в знчения угла для SNP j, где aj(1)  и aj(2)  являются первым и вторым элементами вектора а.

Поскольку SPA имеет явные географические координаты, подход может быть расширен для систем за пределами обычной картезианской двумерной плоскости координат. В качестве демонстрации этого, авторы программы SPA использовали алгоритм для анализа пространственной структуры населения земного шара, в которой двухмерное отображение на двухмерной плоскости не может точно фиксировать структуру популяции. Таким образом, каждый индивид проецируется на точку земного шара в трехмерном пространстве. Соответственно, авторы использовали трехмерный вектор х (с ограничением || х || равным определенной константе), чтобы представить индивидуальную позицию.

Используя данные (генотипы индивидов из различных популяций из  HGDP), авторы обнаружили что пространственная топология расположения индивидов в пространстве SPA мы наблюдали, что сильно напоминала топологию географической карту мира. В частности, люди из того же континента были сгруппированы вместе, а континенты были разделены примерно так, как это следовало бы ожидать из пространственного расположения.

ng-2285-f3

 

Главная проблема метода состояла в другом. Несмотря на точность топологии взаимного расположения индивидов,  на карте SPA сильно искажены расстояния между континентами.

Например, продольный размер континента Евразии составил 92 градусов в  SPA-пространстве земного шара, в то время как в пространстве реального земного шара — 150 градусов. Продольное расстояние между Европой и Северной Америкой составило 167 градусов на SPA карте земного шара, в то время как на самом деле оно составляет 90 градусов.  Любопытно отметить, что мой опыт работы с этой программы показал, что наибольшую проблему составляют географические координаты долготы, в то время как широты предсказываются довольно точно. То есть по какой-то причине (несимметричность генетических градиентов в направлении север-юг и направлении восток-запад?) пространство SPA очень сильно искажается в продольном измерении (т.е в долготу).
По этой причине, вычисленные географические точки происхождения для европейцев часто оказываются в Атлантическом океана и так далее.

Я решил использовать данные импутированных генотипов для европейских популяций (я занимался их импутацией на протяжении последнего полгода). На этот раз я ограничился только европейскими популяциями. Я  сделал два разных набора с разным числом снипов — один с 1 062 376 снипами, которые содержатся в платформах генотиприрования клиентов 23andme и FTDNA, другой — примерно 590 395 снипов.  Обе модели можно скачать с Google Drive  (здесь и здесь).

Несмотря на тщательный подбор снипов, обе модели продолжают страдать характерным сдвигом географических долгот, а это означает, что данная проблема обусловлена не выборкой генотипов, а самим алгоритмом программы (т.е. улучшение качества выборки или увеличение количества снипов не приводит к повышению точности даже в том случае, если мы используем для тренировки программы на обучающей выборке  индивидов с известной географической локацией).

Это хорошо видно на полученных в ходе анализа моих собственных данных географических координатах 2 точек происхождения (одна из них в Гренландии,  другая в Средиземном море)

untitled

Разумеется, вряд ли можно говорить о точности подобных вычислений. В ходе размышлений над способом решения проблемы я вспомнил о существовании ортогонального прокрустового анализа.

Я взял две матрицы — одну с географическими координатами (фактически центроиды — географические центры стран) и  вторую с предсказанными  (в модели 1M cнипов) величинами географических координат тех же самых образцов (с усредненными значениями по этносам), а затем совершил прокрустово преобразование в программе R, получив новую матрицу с преобразованными значениями координат. Ниже виден результат операции (преобразованные усредненные координаты образцов спроецированы вместе с центроидами на карту Европы). И хотя координаты по-прежнему немного сдвинуты относительно истинных, в целом результат уже гораздо лучше (правдоподобнее).rplot14При проведении прокрустова анализа, кроме Xnew (трансформированной матрицы),  мы получили значения матрицы вращения R, s- коэффициент масштабирования и tt — вектор трансляции координат, минимизирующие дистанцию между матрицей предсказанных координат и матрицей географических координат.

Эти значения можно использовать для коррекции значений географических координат, рассчитанных в SPA. Я снова использую свои данные (2 предсказанные точки географического происхождения Xp):


Xt=sRXp + 1tt


При подстановке Xp получаем следующие значения

точка A:  60.245448+-11.059673 северной широты;  21.394898 +- -5.979712  восточной долготы (северо-западная Балтика и Скандинавия)

точка B: 43.000748+-8.801889 северной широты;  20.725216+-52.159598 восточной долготы (юго-восточная Европа, Балканы и Греция).