Две новые модели для калькулятора DIYDodecad

Закончил на 99% подготовку 2 моделей этно-популяционных калькуляторов ДНК — заточенную под deep ancestry (анализ современных геномов с использование древних геномов) K11 и модель для анализа популяционного происхождения современных популяций K16.

 

В число 16 «предполагаемых предковых» популяций в K16 входят следующие выделенные группы:

Австрало-веддоидная
Палеолитические охотники-собиратели Кавказа
Американские аборигены
Охотники-собиратели скандинавского мезолита
Австронезийцы
Ближневосточные неолитические земледельцы
Сибирские аборигены
Ближне-восточные популяции
Североафриканские популяции
Популяции западной Африки
Северные популяции Индостана
Юго-восточноазиатские популяции
Восточные охотники-собиратели
Неолитическое население Европы
Восточно-африканские популяции
Западноевропейские охотники-собиратели

 

Таблица FST между компонентами K11 (FST — Индекс фиксации Райта Fst, отражающий меру дифференциации популяций)

Кластеризация компонентов модели K11 по степени дифференциации

Таблица FST между компонентами K16

Кластеризация компонентов модели K16 по степени дифференциации

 

На следующем PCA графике отображены 2 группы компонентов — предковые компоненты K16 (полученные в программе ADMIXTURE в ходе анализа современных популяций) и предковые компоненты K11 (они вычислены в той же программе, но на другой выборке аутентичных палеогеномов). Поскольку у пользователей подобных калькуляторов часто возникает вопрос о соотношении компонентов разных моделей калькуляторов, я решил разместить их на одном графике. Методология довольно проста. Сначала я сгенерировал в программе PLINK 220 «синтетических» геномов (20 индивидов в 11 группах). В основу положен предложенный Понтикосом метод популяционных «zombies», в котором используется частоты аллелей снипов, полученных в программе ADMIXTURE. Каждая из 11 групп состоит из 20 «индивидов», геном которых на 100% состоит из одного компонента.
То же самое я сделал с компонентами K16. Затем в целях изучения соотношения компонентов этих двух разных моделей, я пропустил «геномы синтетических индивидов» K16 через калькулятор K11. В итоге выяснилось, что только несколько компонентов K16 полностью совпадают с компонентами K11 (например, Amerindian и African). Остальные компоненты K16 разложились на комбинации компонентов K11. Этот простой эксперимент еще раз подтвердил очевидный факт: предковые компоненты ADMIXTURE, выявленные в ходе анализа современных популяций только в редких случаях соответствуют настоящим предковым компонентам. Большинство подобных компонентов возникают в результате сложного процесса фиксации аллельных частот, например в тех случаях, когда непосредственно после смешивания предковых групп разного происхождения происходит процесс генетического дрейфа. Закон Харди—Вайнберга утверждает, что в теоретической идеальной популяции распределение генов будет оставаться постоянным из поколения в поколение. Так, в популяции растений количество «внуков» с генами высокорослости будет ровно таким же, сколько было родителей с этим геном. Но в реальных популяциях дело обстоит иначе. Из-за случайных событий частота распределения генов из поколения в поколение несколько варьирует — это явление называется дрейфом генов. Рассмотрим крупную размножающуюся популяцию со строго определенным распределением аллелей. Представим, что по той или иной причине часть этой популяции отделяется и начинает формировать собственное сообщество. Распределение генов в субпопуляции может быть нехарактерным для более широкой группы, но с этого момента и впредь в субпопуляции будет наблюдаться именно такое, нехарактерное для нее распределение. Это явление называется эффектом основателя.Дрейф генов сходного типа можно наблюдать и на примере явления с запоминающимся названием эффект бутылочного горлышка. Если по какой-либо причине численность популяции резко уменьшится — под воздействием сил, не связанных с естественным отбором (например, в случае необычной засухи или непродолжительного увеличения численности хищников), быстро появившихся и затем исчезнувших, — то результатом будет случайное устранение большого числа индивидуумов. Как и в случае эффекта основателя, к тому времени, когда популяция вновь будет переживать расцвет, в ней будут гены, характерные для случайно выживших индивидуумов, а вовсе не для исходной популяции.

PCA correlation between K11 and K16 components Вот эта таблица с усредненными значениями «симулянтов» компонентов K16 в калькуляторе K11 (колонки — компоненты K16, столбцы — компоненты K11, их пересечения — проекция компонентов K16 в компоненты K11).

Для облегчения понимания сказанного, приведу немного теории. Начну с основ.

Определение базовых терминов

ADMIXTURE (буквально: примесь) – это компьютерная программа (анализ), позволяющая выявлять смешанность состава некоего набора индивидов на основе данных о генотипах и тем самым строить предположения о происхождении популяции.

Принцип работы ADMIXTURE.

Рассмотрим принцип работы ADMIXTURE на примере образцов и популяций из проекта HapMap.

Всего у нас N = 324 образца/индивида, каждый из которых относится к одной из четырех нижеперечисленных популяций:

АФРИКА (ASW) – Африканские предки из Юго-Западной части США
ЮТА (CEU) – жители штата Юта США с корнями из Северной и Западной Европы
МЕКСИКА (MEX) – Мексиканцы, Лонг-Айленд США
ЙОРУБА (URI) – Йоруба, Нигерия
Для удобства дальнейшего изложения будем называть эти популяции «известными».

Также мы предполагаем, что они произошли от К разных предковых популяций (мы не знаем от каких именно). В дальнейшем будем называть эти предковые популяцие «предполагаемыми предковыми». Этих «предполагаемых предковых» популяций на самом деле не существует, у них нет общепризнанных названий и характеристик. И на этом этапе мы даже не знаем какие образцы к какой из этих К популяций могут быть отнесены. Теоретически возможно, что образцы из одной и той же «известной» популяции могут принадлежать к двум разным «предполагаемым предковым» популяциям.

Пример 1.

Предположим, что К = 3.

ADMIXTURE далее работает с образцами (их генотипами) и заданным нами числом К = 3. Имея сведения о генотипах и предположение о количестве «предполагаемых предковых» популяций (К) ADMIXTURE строит свою модель (предположение) того, каков вклад каждой из «предполагаемых предковых» популяций в каждый индивид. В результате мы имеем для каждого индивида 3 цифры: количественный вклад каждой из трех популяций (или образно говоря, на сколько процентов данный индивид состоит из первой «предполагаемой предковой» популяции, на сколько – из второй и на сколько – из третьей). При этом может быть и такая ситуация, что у конкретного индивида в составе отсутствует какая-то из «предполагаемых предковых» популяций, даже возможно, что он принадлежит только к одной из «предполагаемых предковых» поуляций. Предположим, для индивида №1 эти цифры такие: 0.3, 0.5 и 0.2. Что эти цифры означают? Означают они доли каждой из «предполагаемых предковых» популяций (ППП) в индивиде №1, т.е. индивид состоит на 30% из первой ППП, на 50% — из второй и 20% — из третьей. Чем больше вклад каждой ППП в индивида, тем больше индивид является «носителем» данной популяции и ее представителем.
Так называемый этно-популяционный калькулятор ДНК представляет собой инструмент, позволяющий использовать заранее определенные (вычисленные) компоненты этнического происхождения K для определения той комбинация исходных предковых компонентов дает наилучшее соответствие (аппроксимирует) происхождение носителя тестируемой ДНК.

При создании калькулятора ДНК в основу берется определенная модель (например, задается исходное число компонентов или состав референсной выборки), что неизбежно приводит к определенным уступкам в плане точности и проявлению слабых сторон модели. Например, часто люди критикуют подобные модели калькуляторов за излишнюю европоцентричность и недостаточную представленность геномов из других мест, или же используемые для определения компонентов происхождения выборки данных по отдельным популяциям слишком малы для определения сложной субструктуры генофонда референсной популяции. Наконец, более грамотные люди указывают на отсутствие необходимо инструментария (например, формальной статистики) для проверки статистической значимости определенных компонентов в отдельных моделях калькулятора.
Движок обеих калькуляторов — все та же программа DIYDodecad, После того, как ппрограммма ДНКа калькулятора выдаст первичные результаты — процентное распределение компонентов этно-популяционного происхождения в изучаемом геноме, можно будет перейти к вторичному анализу. Суть его проста — зная процентную комбинацию компонентов происхождения в своем геноме, довольно просто смоделировать свой геном в виде смеси нескольких референсных популяций.

Поэтому, в отличие от предыдущих релизов, K11 и K16 будут включать в себя дополнительный контент:

1) классический Oracle, позволяющий смоделировать анализируемый «геном» (точнее, набор из 100-200 тысяч информативный снипов) в виде комбинации двух референсных популяций, а также установить группу генетически ближайших референсных популяций к геному изучаемого индивида. Однако этот инструмент не может быть использован в случае сложного смешанного происхождения (например, когда изучаемый индивид происходит из более чем двух разных этнических популяций). Иногда программа выдает довольно глупые комбинации, cущественным образом понижая достоверность результатов. Впрочем основное преимущество Oracle и состоит в том, что программа предлагает вместо окончательного «простого» решения список альтернативных вариантов.

Пример: в качестве примера я буду использовать собственные данные.
Исходя из полученных в модели K16 значений компонентов, мой условный наиболее близок к восточнославянским популяциям
«Ukrainian-Center» «2.5884»
«Pole» «3.0962»
«Sorb» «3.1733»
«Polish_West» «3.5992»
«Russian-North-West» «3.7265»
«Russian_Smolensk» «3.834»
«Polish» «4.0348»
«Belarusian_EastBelarus» «4.0852»
«Belarusian_WestBelarus» «4.1216»
«DonKuban_cossack» «4.7769»

В комбинированном варианте двух смешанных популяций распределение предковых компонентов происхождения может быть аппроксимировано следующими комбинациями:

«65.8% Belarusian_EastBelarus + 34.2% Norwegian» «1.1023»
«66.4% Belarusian_EastBelarus + 33.6% Icelandic» «1.1118»
«80.9% Latvian + 19.1% Spanish_Baleares_IBS» «1.1154»
«30% French + 70% Lithuanian» «1.1206»
«29% French + 71% Latvian» «1.1215»
«55% French_West + 45% Lithuanian_Zemajitia» «1.1302»
«28.9% French_East + 71.1% Latvian» «1.1402»
«29% French_Northwest + 71% Latvian» «1.1563»
«72.3% Belarusian_EastBelarus + 27.7% Orcadian» «1.1766»
«57.2% European_Utah + 42.8% Lithuanian_Zemajitia» «1.1825»

Основная часть генома — условно славяно-балтийская (что ожидаемо), но с существенным сдвигом в сторону Скандинавии и западной Европы(примерно 20-30%). Скорее всего, это наследие готов, или контактов балтийских племен с викингами. Интересно, что модель K11 (c использованием современных референсных популяций) дает примерно такой же расклад — разве что древний скандинавско-германский пласт выражен чуть резче чем в модели K16

«Belarusian_West» «2.3841»
«Belarusian» «2.4187»
«Pole_Poland» «2.5278»
«Belarusian_East» «3.7288»
«Russian_Central» «3.7635»
«Swede» «3.9724»
«Russian_cossack» «4.1139»
«Ukrainian» «4.2647»
«Russian_Southern» «4.5204»
«Ukrainian_East» «4.8635»
«66.6% Icelandic + 33.4% Latvian» «1.586»
«41.1% Latvian + 58.9% Orcadian» «1.5898»
«47.9% Lithuanian + 52.1% Orcadian» «1.6007»
«60.2% Icelandic + 39.8% Lithuanian» «1.6082»
«5.7% Basque_Spanish + 94.3% Belarusian» «1.6386»
«5.8% Basque_French + 94.2% Belarusian» «1.6406»
«67.2% Belarusian + 32.8% Swede» «1.659»
«40.2% Lithuanian + 59.8% Norwegian» «1.6876»
«33.7% Latvian + 66.3% Norwegian» «1.689»
«94.1% Belarusian + 5.9% Spanish_Pais_Vasco_IBS» «1.7359

В палеокалькуляторе K11 (т.е. с древними геномами) картинка кажется более убедительной

«Unetice_EBA» «2.7065»
«Bell_Beaker_Czech» «5.0633»
«British_AngloSaxon» «5.1998»
«Nordic_LN» «5.6157»
«Corded_Ware_Proto_Unetice_Poland» «6.3751»
«Nordic_MN_B» «6.3865»
«Halberstadt_LBA» «6.4422»
«BenzigerodeHeimburg_LN» «7.4695»
«Nordic_IA» «7.5404»
«Corded_Ware_Estonia» «7.7635»

Из всех палеогеномов наиболее близок к моему геном представителя унетицкой культуры. Происхождение унетицкой культуры до сих пор не выяснено. Между позднейшими энеолитическими культурами и унетицкой культурой существует типологический и хронологический разрыв. Наибольшее признание в результате последних исследований получило предположение, согласно которому в ее возникновении главную роль сыграли культура колоколовидных кубков и надиревская культура, распространенная в Венгрии (см. ниже). У культуры колоколовидных кубков и унетицкой имеется сходство в керамике, в погребальном обряде и в орудиях труда. Небольшую роль могла сыграть культура шнуровой керамики, хотя в целом они очень различаются. Закономерно, что следующими — хотя и с большим отрывом — близкими к моему геному группами палеогеномов являются геномы древних англосаксов (которые близки к древним скандинавам) и представителей чешского ареала культуры колоковидных кубков).
Аналогично, в режиме смешенных популяций хорошо заметны две тенденции. Во-первых, мой геном может быть представлен в виде комбинации палеогенома представителя позднебронзового века (Хальберштадт) и палеогеномов восточных охотников-собирателей эпохи энеолита, во-вторых как смесь 23.4% генома представителей балтийской позднебронзовой эпохи и все того же позднебронзового палеогенома из Хальберштадта

«86.4% Halberstadt_LBA + 13.6% Karelia_HG» «2.139»
«74.1% Bell_Beaker + 25.9% LesCloseaux13_Mesolithic» «2.1574» «35.9% Hungary_BA + 64.1% Poltavka_MBA_outlier» «2.319»
«65.7% Halberstadt_LBA + 34.3% Poltavka_MBA_outlier» «2.4387»
«83.2% Alberstedt_LN + 16.8% Karelia_HG» «2.443»
«23.4% Baltic_LBA + 76.6% Halberstadt_LBA» «2.4846»
«16.7% Europe_MN + 83.3% Poltavka_MBA_outlier» «2.4897»
«83.4% Halberstadt_LBA + 16.6% Samara_Eneolithic» «2.536»
«12.9% Halberstadt_LBA + 87.1% Unetice_EBA» «2.5603»
«16.1% Bell_Beaker_Czech + 83.9% Unetice_EBA» «2.5747»

2) файлы модели K11 и K16 для более сложной программы 4Admix (разработанной Александром Бурнашевом). Вторым инструментом вторичного анализа является 4Mix. Он работает по методу brute-force, шаг за шагом перебирая все возможные комбинации, а по окончанию цикла программа возвращает результат с наименьшим евклидовым расстоянием (по выбору можно использовать гауссово сглаживание, снижающее случайный статистический шум результатов). Как и в классическом Oracle, комбинация cмешиваемых этнических групп не может содержать более 4 популяций, хотя в отличие от классического Oracle, программа может моделировать комбинации из 3 и 4 этнических групп.

Пример. Приведу пример этих 3- и 4-членных аппроксимаций. В принципе, все то же самое, c той лишь разницей что теперь программа выделяет в комбинациях балтийскую и славянскую составляющую. Интересно, что скандинавская составляющая никуда не исчезла, оставаясь в пределах 20-25%
Using 3 populations approximation:
1 50% Belarusian_EastBelarus +25% English_Kent_GBR +25% Latvian @ 0.973956
2 50% Belarusian_EastBelarus +25% English_Kent_GBR +25% Lithuanian @ 0.988467
3 50% Latvian +25% French +25% Balt @ 1.036492
4 50% Lithuanian_Zemajitia +25% French +25% Irish_Connacht @ 1.05259
5 50% Lithuanian +25% Sorb +25% French_West @ 1.059638
6 50% Belarusian +25% Icelandic +25% French_West @ 1.06158
7 50% Lithuanian_Zemajitia +25% French +25% Irish_Cork_Kerry @ 1.074796
8 50% Lithuanian_Aukstajtia +25% French_East +25% Irish_Connacht @ 1.076771
9 50% Lithuanian_Zemajitia +25% French +25% Irish_Ireland @ 1.078576
10 50% Belarusian +25% Norwegian +25% French_West @ 1.079741
11 50% European_Utah +25% Lithuanian_Zemajitia +25% Balt @ 1.084317
12 50% Dane +25% Belarusian_EastBelarus +25% Lithuanian_Aukstajtia @ 1.090086
13 50% Lithuanian_Zemajitia +25% French +25% Scottish_Highlands @ 1.093951
14 50% Lithuanian +25% North_European +25% Sorb @ 1.103744
15 50% Lithuanian_Aukstajtia +25% English_GBR +25% French_Northwest @ 1.105369
16 50% Lithuanian_Zemajitia +25% French +25% Scottish_Grampian @ 1.106616
17 50% Lithuanian_Aukstajtia +25% French_Northwest +25% Irish_Connacht @ 1.106771
18 50% Lithuanian_Aukstajtia +25% French_Northwest +25% Scottish_Dumfries_Galloway @ 1.108261
19 50% Lithuanian +25% French_West +25% Polish_West @ 1.113695
20 50% Latvian +25% North_European +25% Sorb @ 1.115164
31501779 iterations.
Using 4 populations approximation:
1Belarusian_EastBelarus+Lithuanian_Zemajitia+Swede+French_West @ 0.947002
2Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Sorb @ 0.971605
3Belarusian_EastBelarus+Belarusian_EastBelarus+English_Kent_GBR+Latvian @ 0.973956
4Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Polish_East @ 0.986863
5Belarusian_EastBelarus+Belarusian_EastBelarus+English_Kent_GBR+Lithuanian @ 0.988467
6 French+Lithuanian_Zemajitia+Swede+Balt @ 0.98916
7Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Polish @ 0.996302
8 Belarusian+Lithuanian_Aukstajtia+Shetlandic+French_West @ 1.010485
9 Belarusian+Lithuanian_Zemajitia+Irish_Ulster+French_West @ 1.01227
10 Belarusian+Lithuanian_Zemajitia+French_West+Irish_Ulster @ 1.012977
11 Belarusian_EastBelarus+Lithuanian_Aukstajtia+Swede+Welsh @ 1.013043
12Belarusian_EastBelarus+European_Utah+Lithuanian_Aukstajtia+Swede @ 1.013805
13Belarusian_EastBelarus+Lithuanian_Aukstajtia+Swede+French_West @ 1.018296
14German_NorthGermany+Lithuanian_Aukstajtia+Balt+French_West @ 1.026503
15 Lithuanian_Aukstajtia+Sorb+Ukrainian-Center+French_West @ 1.027473
16 Belarusian+Lithuanian_Zemajitia+French_West+Irish_Connacht @ 1.031967
17Belarusian+Lithuanian_Zemajitia+French_West+Irish_Cork_Kerry @ 1.035716
18 French+Latvian+Latvian+Balt @ 1.036492
и т.д.
То же самое, но в модели K11
Using 3 populations approximation:
1 50% Poltavka_MBA_outlier +25% Halberstadt_LBA +25% Hungary_BA @ 2.031302
2 50% Poltavka_MBA_outlier +25% Bell_Beaker_Czech +25% Hungary_BA @ 2.072453
3 50% British_AngloSaxon +25% Halberstadt_LBA +25% Poltavka_MBA_outlier @ 2.125791
4 50% Bell_Beaker +25% Bell_Beaker +25% LesCloseaux13_Mesolithic @ 2.209118
5 50% Halberstadt_LBA +25% British_AngloSaxon +25% Poltavka_MBA_outlier @ 2.244371
6 50% Halberstadt_LBA +25% Hungary_BA +25% Samara_HG @ 2.270667
7 50% Halberstadt_LBA +25% Poltavka_MBA_outlier +25% Unetice_EBA @ 2.291406
8 50% Poltavka_MBA_outlier +25% British_AngloSaxon +25% Hungary_BA @ 2.30791
9 50% Bell_Beaker_Czech +25% Hungary_BA +25% Samara_HG @ 2.356281
10 50% Halberstadt_LBA +25% Nordic_BA +25% Poltavka_MBA_outlier @ 2.358744
11 50% Bell_Beaker +25% Hungary_BA +25% Karelia_HG @ 2.369978
12 50% Bell_Beaker_Czech +25% Nordic_BA +25% Poltavka_MBA_outlier @ 2.385823
13 50% Halberstadt_LBA +25% Corded_Ware_Germany +25% Nordic_BA @ 2.490915
14 50% Poltavka_MBA_outlier +25% Hungary_BA +25% Unetice_EBA @ 2.503754
15 50% British_AngloSaxon +25% Bell_Beaker_Czech +25% Poltavka_MBA_outlier @ 2.53217
16 50% Halberstadt_LBA +25% Baltic_LBA +25% Halberstadt_LBA @ 2.540751
17 50% Hungary_BA +25% Poltavka_MBA_outlier +25% Samara_HG @ 2.551414
18 50% Poltavka_MBA_outlier +25% Alberstedt_LN +25% Hungary_BA @ 2.561557
19 50% British_AngloSaxon +25% Poltavka_MBA_outlier +25% Unetice_EBA @ 2.575398
20 50% Bell_Beaker_Czech +25% British_AngloSaxon +25% Poltavka_MBA_outlier @ 2.575919
1127348 iterations.
Using 4 populations approximation:
1 Halberstadt_LBA+Hungary_BA+Poltavka_MBA_outlier+Poltavka_MBA_outlier @ 2.031302
2 Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier+Unetice_EBA @ 2.03713
3 Bell_Beaker_Czech+Hungary_BA+Poltavka_MBA_outlier+Poltavka_MBA_outlier @ 2.072453
4 British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier+Unetice_EBA @ 2.088049
5 British_AngloSaxon+British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.125791
6 British_AngloSaxon+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.131526
7 Bell_Beaker_Czech+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.14648
8 Bell_Beaker+Bell_Beaker+Bell_Beaker+LesCloseaux13_Mesolithic @ 2.209118
9 Bell_Beaker_Czech+Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier @ 2.209365
10 Bell_Beaker_Germany+British_AngloSaxon+Hungary_BA+Samara_HG @ 2.212982
11 Bell_Beaker_Czech+Bell_Beaker_Germany+Hungary_BA+Samara_HG @ 2.232922
12 British_AngloSaxon+Halberstadt_LBA+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.244371
13 British_AngloSaxon+Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier @ 2.254756
14 Alberstedt_LN+British_AngloSaxon+Hungary_BA+Samara_HG @ 2.255589
15 Bell_Beaker_Czech+British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.256027
16 Halberstadt_LBA+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.270667

3) новым инструментом в релизе будет R программа nMonte, разработанная голландцем Гером Гизбертом. В отличие от двух предыдущих инструментов (ограниченных в числе используемых для моделирования этнических групп), nMonte позволяет использовать для моделирования (аппроксимации) генмоа все референсные грппы. Программа использует алгоритм эволюционного моделирования по методу Монте-Карло.
После пошагового добавления новой популяции программа определяет уменьшается ли евклидово расстояние; если да, то шаг сохраняется, в противном случае шаг отклоняется. Алгоритм завершает свою работу после выполнения примерно миллиона шагов. Как и два предыдущих инструмента программа стремится к минимализации евклидова расстония; но похоже за счет использования метода Монте-Карло, алгоритм гораздо более эффективен. И, также, как и в других инструментах, в nMonte «наилучшая комбинация» определяется как комбинация с наименьшим расстоянием. Недостаток же nMonte состоит в том, что она выдает только наилучшее подходящее решение, в то время как Oracle представляет альтернативные варианты.
Пример. Посмотрим, сколько потенциальных предковых популяций выдаст nMonte при аппроксимации моего генома.
При первом запуске программа выдала комбинацию (в cкобках процентный вклад референсной популяции) следующих 65 популяций. Также как и в других инструментах, тон задают балтийские популяции, а также белорусы, сорбы и поляки.

Lithuanian_Zemajitia 10.1
Latvian 7.85
Lithuanian_Aukstajtia 7.85
Belarusian_SouthBelarus 6.55
Lithuanian 6.5
Pole 5.45
Belarusian_WestBelarus 4.8
Balt 4.35
Sorb 3.35
Belarusian 3.05
Belgian 3
Norwegian 2.95
Czech 2.75
Dane 2.5
Slovak 2.4
Icelandic 1.9
Swede 1.9
French_SouthFrance 1.5
Slovenian 1.5
Basque_Spanish 1.3
Frisian 1.15
German_NorthGermany 1.1
Sardinian 1.1
Polish_East 1.05
Ukrainian_WestUkraina 1
Polish 0.95
Basque_French 0.9
Orcadian 0.7
Spanish_Pais_Vasco_IBS 0.7
Hungarian 0.65
Irish_Connacht 0.65
DonKuban_cossack 0.6
Dutch 0.6
Ukrainian_EastUkraina 0.6
Scottish_Argyll_Bute_GBR 0.55
European_Utah 0.5
English_GBR 0.45
Croatian 0.4
Russian-Pskov 0.4
French_South 0.4
Welsh 0.35
Irish_Ulster 0.35
Scottish_Fife 0.3
German_SouthGermany 0.25
Scottish_Dumfries_Galloway 0.25
Belarusian_CentralBelarus 0.2
Datog 0.2
English_Cornwall_GBR 0.2
North_European 0.2
Ukrainian 0.2
Russian_Orjol 0.15
Afar 0.1
Belarusian_EastBelarus 0.1
English_Kent_GBR 0.1
Irish 0.1
Kambera 0.1
Russian_Smolensk 0.1
Vindija 0.1
Belarusian-East 0.1
Spanish_Canarias_IBS 0.1
Spanish_Cantabria_IBS 0.1
Spanish_Cataluna_IBS 0.1
Peruvian 0.05
Russian_Voronezh 0.05

В K11 показаны следующие палеогеномы (или их группы). По-прежнему, основа генома 40% моделируется как геном представителя культуры колоколовидных кубков.

«Bell_Beaker» 40.3
«Halberstadt_LBA» 31.6
«Samara_HG» 8.5
«Tyrolean_Iceman_EN» 2.05
«Esperstedt_MN» 1.95
«Swedish_Mesolithic» 1.95
«BerryAuBac_Mesolithic» 1.85
«Swedish_Motala_Mesolithic» 1.7
«Bichon_Azillian» 1.6
«Continenza_Paleolithic» 1.5
«Hungary_BA» 1.5
«LaBrana_Mesolithic» 1.35
«Bell_Beaker_Germany» 1.05
«Hungary_HG» 0.85

4) следующим новым инструментом будет 4mix, более упрощенный вариант 4Admix. Он разработан тем же Г. Гизбертом. Основное отличие от 4Admix — если 4Admix перебирает все возможные комбинации из 4 популяций, то в 4mix можно эксплицитно задавать отдельные комбинации и определять евклидову дистанции между этой комбинацией и аппроксимируемым геномом в пространстве моделей
5) карты компонентов с аннотацией. Аннотации компонентов будут чуть позже, а вот карты уже готовы

Карты распространения некоторых компонентов K16 и K11  в ряде географических ареалов

6) я включил в релиз модифицированный скрип GPS лаборатории Элхайка для определения географического ареала происхождения предков человека, чей геном является предметом изучения. Я включил пару строчек кода для проецирования вычисленных географических координат на географическую карту.
Пример. Ниже показаны две карты, на которые спроецированы географические координаты вычисленной алгоритмом GPS (GPS DNA tool ) точки «этнического происхождения».
Я проверил работоспособность алгоритма на обеих моделях.
В модели K16 (современные популяции) GPS-координаты точки моего «происхождения» 49.7648663288835 32.4345922625112 (примерно 49 градусов северной широты и 32 градуса восточной долготы), т.е где-то на левом берегу Днепра в Украине. Как утверждают разработчики программы, она позволяет определить место происхождения с радиусом погрешности в 500 км. Я вычислил расстояние от полученной точки до настоящего места жительства предков (южная часть Брестской области) и получилось 470 км. Т.е точка попадает в радиус, хотя и с некоторым трудом.

Rplot

Что касается модели K11 (древние геномы), то в этой модели мой «Urheimat» локализуется — весьма ожидаемо — на землях древней унетицкой и лужицких культур (51.1254133094371 13.2336209988448)

Rplot

 

 

Реклама

Расширенные карты для палеогеномов

Обновлено 30.11.2014

Этот пост также продолжает один из предыдущих, а именно визуализацию суммы IBD-сегментов (а возможно, это и не IBD — вопрос остается открытым) двух палеоевропейцев и мальчика со стоянки Мальта с современными  выборками. С тех пор в открытом доступе появилось еще несколько обработанных палеогеномов — «усть-ишимец«, «Костенки-14» («человек с Маркиной горы») и два палеогенома хорошего качества из Венгрии.

Результаты собраны мной в онлайн-таблицу, а также отрисованы на расширенных картах. Поскольку усть-ишимец явно тяготел к восточноазиатам, пришлось добавить к сравнению выборки из Южной и Восточной Азии. Ну а после этого логика подсказывала, что неолитических земледельцев Европы неплохо бы сравнить с жителями Ближнего Востока. Таким образом, все карты перерисованы.

Напомню также, что результаты для «мальтинца» и «костенковца» получены при ослабленных настройках фильтра из-за низкого качества прочтения этих двух геномов. Напрямую сравнивать их с пятью другими нельзя. Для отрисовки Loschbour значения умножены на 1,5 в целях повышения контрастности.

«Неолитическая фермерша» )) Stuttgart/LBK

«Неолитический земледелец» NE1:

Усреднение по двум земледельцам дает более ровную картинку:

«Охотник-собиратель» Loschbour:

Разница между «охотником-собирателем» и усреднением по двум земледельцам. Красное — больше сегментов с Loschbour, зеленое — c Stuttgart и NE1

Европеец позднего бронзового века BR2 из Венгрии:

«Усть-ишимец»:

Костенки-14 (ослабленные настройки):

Мальтинец (аналогично):

И наконец, в качестве примера результата нашего современника, моя собственная карта:

 

 

Визуализация уровня гомозиготности и генетического разнообразия у народов Евразии

Обновлено 30.11.2014

После составления при написании предыдущего поста таблицы уровня гомозиготности в выборках Евразии, мне, конечно же, захотелось визуализировать его на карте (дополнив рядом новых выборок) .  Можно считать, что эта карта показывает уровень генетического разнообразия у каждого народа (ведь чем ниже количество гомозиготных снипов, тем разнообразие выше), но с одной оговоркой. Дело в том, что это число сильно зависит от используемого набора снипов. Таким образом, если в наборе много снипов, более часто встречающихся у европейцев, то разнообразие у них автоматически окажется завышенным, а у жителей других частей света — заниженным. А поскольку чипы для генотипирования предназначены в первую очередь для европейцев, такое вполне возможно.

Но все же мне кажется, что этот эффект либо не повлиял на результаты, либо повлиял незначительно. Наиболее разнообразными выборками получились отнюдь не европейские, а жители районов, прилегающих к Красному Морю. Это выглядит вполне объяснимо, поскольку где-то там и находится прародина всех не-африканцев. Другие результаты смотрятся тоже очень логично — по мере удаления от прародины разнообразие постепенно терялось.

Update от 21.01.2015. Для оценки эффекта можно сравнить с подсчетами из работы Fu et al:

FuHomosyg

Как можно увидеть, результаты по неафриканским популяциям хорошо коррелируют с моими. Однако по африканским выборкам результат прямо противоположный. Очевидно, евразийские снипы у них менее распространены, зато имеются свои собственные. Таким образом, метод (с данным набором снипов) можно использовать для выборок за пределами Черной Африки.

На карте зеленым цветом выделены выборки с наибольшим разнообразием, красным — с наименьшим:

HomosygIBDext

Как я уже писал, наивысшим разнообразие получилось у жителей Египта, Эфиопии, Йемена. Наинизшее из присутствующих на карте — у народов Северо-Восточной Сибири и Южного Китая. Однако у не попавших на карту есть и гораздо более экстремальные значения гомозиготности. Наибольшей она оказалась у южноамериканских индейцев и выборки папуасов. Чуть отстали африканские пигмеи, а вот обычные африканцы (йоруба и кенийские банту) вышли примерно на уровне восточноазиатов. Возможно, их реальное разнообразие еще выше (с учетом эффекта, описанного в первом абзаце).

Видно снижение разнообразия у народов-изолятов — калашей и бедуинов. И наоборот, у народов смешанного происхождения разнообразие выше. Например, на границе Европы и Азии выделяются ногайцы, башкиры, татары, коми-зыряне. В целом в Европе разнообразие плавно снижается с юга на север, за исключением выборок-изолятов — басков и сардинцев. А, допустим, в Индии все наоборот — понижение идет с северо-запада, откуда шли вторжения пришельцев, на юг и восток, к дравидам и австроазиатам.

При подсчете суммы IBD-сегментов уровень гомозиготности в выборке играет заметную роль. Например, «экстремалы» эвенки и эвены всегда разделяют меньше сегментов с европейцами, чем их соседи, но зато больше — с восточноазиатами.

В заключение приведу обновленную таблицу среднего процента гомозиготных снипов по используемым выборкам (и по используемому набору снипов):

Yemenite 65,20%
Egyptian 65,31%
Ethiopian 65,33%
Nogay 65,49%
Moroccan 65,52%
BR2 65,61%
Tatar-Kazan 65,65%
Azerbaijani 65,66%
Tatar-Crimean 65,67%
Kumyk 65,71%
Uttar-Pradesh-HC 65,72%
Bashkir 65,73%
Balkarian 65,78%
Komi 65,88%
Gujarati 65,92%
Tadjik 65,92%
UAE 65,92%
Turkmen 65,95%
Uzbek 66,00%
Uygur 66,00%
Greek_Azov 66,01%
Ashkenazi 66,03%
Ossetian 66,04%
Spanish 66,05%
Burusho 66,05%
Chuvash 66,05%
Croatian 66,05%
Abkhazian 66,09%
Iranian 66,09%
Russian-North-East 66,10%
Lezgin 66,10%
German 66,10%
Armenian 66,13%
Bulgarian 66,13%
Russian-South 66,14%
Italian-South 66,15%
Romanian 66,16%
Ukrainian-West-and-Center 66,16%
Sicilian 66,16%
Russian-North-Kargopol 66,17%
Greek 66,17%
Cypriot 66,18%
Swedish 66,19%
Palestinian 66,19%
Chechen 66,20%
Belarusian 66,20%
Hungarian 66,23%
Hazara 66,23%
Moksha 66,23%
Erzya 66,24%
Udmurt 66,25%
Georgian 66,26%
Ukrainian-East-and-Center 66,26%
Sephard 66,27%
Italian 66,29%
Ust-Ishim 66,29%
Kazah 66,29%
Tatar_Lithuanian 66,30%
Kurd 66,32%
Jordanian 66,33%
Turkish 66,33%
Mari 66,33%
Polish 66,34%
Adygei 66,35%
Norwegian 66,35%
Russian-West 66,36%
French 66,36%
Estonian 66,42%
Balt 66,45%
Karelian 66,45%
Kol 66,47%
NE1 66,49%
Veps 66,50%
British 66,51%
Finnish 66,51%
Tunisian 66,52%
Uttar-Pradesh 66,53%
Mansi 66,60%
Sindhi 66,61%
Brahui 66,68%
Kanjar 66,71%
Pathan 66,75%
Syrian 66,78%
Kirgiz 66,79%
Saud 66,91%
Makrani 67,02%
Basque 67,02%
Druze 67,08%
LBK 67,08%
Sardinian 67,08%
Andhra-Pradesh 67,09%
Bedouin 67,27%
Karnataka 67,33%
Hakas 67,33%
Altaian 67,33%
Balochi 67,36%
Saami 67,55%
Mongol 67,56%
Kalash 67,59%
Shor 67,63%
Munda 67,75%
Kerala 67,88%
Burmese 67,97%
BantuKenia 68,08%
Tuvinian 68,08%
Dolgan 68,24%
Tamil-Nadu 68,27%
Buryat 68,48%
Selkup 68,49%
Ket 68,54%
Xibo 68,54%
Cambodian 68,61%
Mongola 68,63%
Tu 68,65%
Yoruba 68,68%
Yakut 69,01%
Daur 69,11%
Han-North 69,14%
Nivh 69,25%
Naxi 69,31%
Evenk 69,32%
Hezhen 69,34%
Oroqen 69,39%
Yi 69,40%
Han 69,48%
Dai 69,62%
Japanese 69,67%
Miao 69,73%
Tujia 69,80%
She 69,88%
Naga 70,06%
Lahu 70,14%
Nganassan 70,37%
Even 70,64%
BiakaPygmy 70,69%
Maya 71,08%
MbutiPygmy 72,80%
Melanesian 73,03%
Loschbour 73,79%
Papuan 75,67%
Karitiana 76,17%
Kostenki-14 85,96%
Motala12 90,19%
Malta 94,41%

Оценка влияния уровня аутосомной гомозиготности при генотипировании на длину и количество ложных IBD-сегментов

В последнее время я пробовал сравнивать файлы геномов, полученные при генотипировании останков древних людей, с современными выборками в поисках  длинных общих IBD (или все же на деле это IBS?)-сегментов. Как выяснилось, результат в первую очередь зависит от качества прочтения древнего генома, особенно от уровня гомозиготности. Большинство древних геномов прочитывают с небольшим уровнем покрытия (1х-2х), и естественно, при этом захватывается лишь один аллель. Например. если реальные значения снипа A и T, при единичном прочтении можно увидеть либо A, либо T — второе значение останется нерасшифрованным. Любой длинный сегмент при этом окажется разорван.

Есть и геномы, прочитанные с высоким качеством. Их уровень гомозиготности близок к получающемуся у наших современников при коммерческом тестировании в FTDNA и 23andMe. Например, к таким относится BR2 из недавней работы Gamba et al. «Genome flux and stasis in a five millennium transect of European prehistory». Сумма общих сегментов у «венгра» бронзового века с европейскими выборками вполне сопоставима с тем, что получается у наших современников. Как уже неоднократно писалось, возраст таких сегментов вполне может насчитывать несколько тысячелетий, поэтому результат не слишком удивляет. Однако общие сегменты с нашими современниками нашлись и у «усть-ишимца» — древнейшего расшифрованного генома человека современного типа возрастом около 44 тысяч лет (согласно радиоуглеродной датировке). Сложно поверить, чтобы IBD-сегменты могли сохраняться так долго. Что послужило этому причиной? Поддержка отбора, ошибки генетической карты (расстояния между многими снипами получены интерполированием, а это может быть неправильно)? А может быть, это вовсе и не IBD-сегменты, а просто случайно возникшие IBS?

(IBD (identical by descent) — участки совпадающих последовательностей снипов, полученные несколькими людьми от одного и того же предка в результате общности происхождения. IBS (identical by state) — тоже участки совпадающих последовательностей снипов, но причины этого совпадения могут быть другими. Формально IBD это частный случай IBS, но часто понятие IBS используют как синоним лже-IBD сегмента)

Если высокий уровень гомозиготности способен разрушать сегменты, не может ли высокий уровень гетерозиготности создавать лже-сегменты? Вообще, насколько протяженными могут быть лже-IBD сегменты, и каково их количество? Понятно, что идеально гетерозиготный генотип (то есть несущий оба аллеля для каждого снипа) будет совпадать на уровне «родитель-ребенок» с любым человеком (в реальной жизни его возникновение невозможно, разве что искусственным путем). Также понятно, что по теории вероятностей между любыми двумя людьми будут возникать микро»сегменты» из случайно совпавших снипов. Насколько протяженными они могут быть?

Для начала я решил попробовать оценить уровень гомозиготности в используемом мной для IBD-карт наборе выборок. Для сравнения туда же добавлено несколько древних геномов (они выделены жирным шрифтом). «Усть-ишимец» пока выложен лишь до 8 хромосомы, это составляет около половины протяженности аутосом по количеству снипов. Используется набор из примерно 255 тысяч снипов, на другом наборе результаты должны отличаться. Показан усредненный по выборке процент снипов от общего числа, где оба аллеля совпадают.

Уровень гомозиготности по выборке:

Nogay 65,49%
BR2 65,61%
Tatar-Kazan 65,65%
Azerbaijani 65,66%
Tatar-Crimean 65,67%
Kumyk 65,71%
Bashkir 65,74%
Balkarian 65,78%
Komi 65,88%
Tadjik 65,92%
Turkmen 65,95%
Uzbek 66,00%
Uygur 66,00%
Greek_Azov 66,01%
Ossetian 66,01%
Ashkenazi 66,03%
Croatian 66,05%
Chuvash 66,08%
Iranian 66,09%
Lezgin 66,10%
German-Austrian 66,13%
Armenian 66,13%
Bulgarian 66,13%
Belarusian 66,13%
Russian-South 66,14%
Abkhazian 66,15%
Turkish 66,15%
Romanian 66,16%
Russian-North 66,17%
Greek 66,17%
Swedish 66,19%
Erzya 66,19%
Chechen 66,20%
Moksha 66,21%
Ukrainian-East-and-Center 66,21%
Georgian 66,22%
Hungarian 66,23%
Udmurt 66,25%
Sephard 66,27%
Italian 66,29%
Kazah 66,29%
Tatar_Lithuanian 66,30%
Ukrainian-West-and-Center 66,31%
Finnish 66,33%
Mari 66,33%
Polish 66,34%
Adygei 66,35%
Norwegian 66,35%
French 66,36%
Russian-West 66,37%
Estonian 66,42%
UstIshim 66,44%
Karelian 66,45%
Balt 66,46%
Veps 66,50%
British 66,51%
Mansi 66,60%
Kirgiz 66,79%
Basque 67,02%
LBK 67,08%
Sardinian 67,08%
Hakas 67,33%
Altaian 67,33%
Saami 67,55%
Mongol 67,56%
Shor 67,63%
Tuvinian 68,08%
Dolgan 68,24%
Buryat 68,48%
Selkup 68,49%
Ket 68,54%
Xibo 68,54%
Mongola 68,63%
Yakut 68,98%
Daur 69,11%
Han-North 69,14%
Nivh 69,25%
Evenk 69,32%
Hezhen 69,34%
Oroqen 69,39%
Nganassan 70,37%
Even 70,62%
Loschbour 73,79%
Motala12 90,19%
Malta-1 94,41%

Выборкой с наибольшим аутосомным разнообразием (наименьшей гомозиготностью)  оказались кубанские ногайцы, что совершенно не удивляет в связи с их смешанным происхождением. Многие другие народы из начала списка также известны своей смешанностью. Любопытно, что близки к началу и ашкенази, хотя я ожидал от них, наоборот, большего однообразия. Видимо, здесь проявляется их происхождение от двух различающихся групп — ближневосточников и европейцев.

Большая часть списка расположилась в промежутке 66-67% , в том числе и усть-ишимец. Несмотря на более свежий вклад неандертальцев и близость к общему корню, по уровню разнообразия он оказался таким же, как и наши современники. Либо здесь сказываются сложности с расшифровкой столь древнего генома, либо аутосомное разнообразие с тех времен поддерживалось на примерно одном уровне — вымывание одних снипов сопровождалось появлением новых.

Самым низким уровень разнообразия оказался у народов Сибири (где мы явно видим результат генного дрейфа) и китайцев (след быстрого расширения?). В Европе хуже всего с разнообразием оказалось у народов-изолятов — басков и сардинцев. Геном охотника-собирателя Loschbour, скорее всего, прочитан со средним качеством — похоже, это и было причиной того, что в предыдущей заметке у него оказалось меньше общих сегментов с нашими современниками, чем у «фермера» LBK, а вовсе не вымирание его народа.

Таким образом, за базовый уровень гомозиготности можно смело принять 66,6%, то есть 2/3 снипов из используемого мной набора у среднего европейца гомозиготны. Попробуем сделать оценку длины и количества лже-сегментов. Очевидно, что на гетерозиготных участках сегмент разорваться не может. Таким образом, вероятность разрыва на отдельно взятом снипе уже падает до 2/32/3=44,36% . (это оценка вероятности, что у обоих сравниваемых геномов выбранный снип гомозиготен. К сожалению, для упрощения модели пришлось использовать предположение, что для каждого снипа вероятность гетерозиготности примерно одинакова, в то время как в реальности это должно быть не так). Далее, если на гомозиготном участке у обоих геномов сравниваемый аллель один и тот же, то разрыва сегмента также не произойдет. Возьмем для простоты вероятность минорного варианта снипа как 1/6 (вероятность гетерозиготности на снипе 1/3, минорным мог быть либо первый, либо второй аллель, значит, делим вероятность пополам. В реальности надо считать сложнее, но для оценки подойдет). К разрыву могут привести два варианта — в первом геноме мажорный вариант снипа, во втором минорный — вероятность 5/61/6=5/36, и наоборот — в первом минорный, во втором мажорный вероятность такая же. Для получения итоговой вероятности разрыва сегмента на один снип мы умножаем 44,36% на (5/36+5/36) и получаем 12,32% вероятность разрыва лже-сегмента на любом случайно выбранном снипе.

Да уж, есть где запутаться ))) Надеюсь, я все же нигде сильно не ошибся и оценка близка к истине ))

Исходя из вероятности разрыва 12,32% на снип, лже-сегмент будет иметь кумулятивную, то есть накопленную вероятность разрыва 50% при прохождении 5-6 снипов (это медиана). Значит, половина лже-сегментов будет короче этого числа, половина-длиннее. Кумулятивная вероятность разрыва растет в 10 раз каждые 17-18 снипов — 90% лже-сегментов будут короче 18 снипов, 99% — короче 37,  99,9%-54 и так далее. Так как медианное значение при нормальном распределении обычно составляет около 0,7 от среднего, средняя длина лже-сегмента оценивается в 7,5 снипов. На 245 тысяч снипов будет приходиться 32 тысячи сегментов, а на 1130 геномов из используемых выборок — в общей сложности около 36 с половиной миллионов.

Из них около трех с половиной тысяч будут иметь длину не менее 72 снипа, около 36 — 107 снипов, а чтобы гарантированно снизить число лже-сегментов до нуля, нужно установить фильтр в районе 130-140 снипов. Что интересно, примерно на те же цифры я вышел экспериментальным путем, пробуя различные настройки. Оптимальным мне показалось отбрасывать все сегменты с длиной менее, чем 150 снипов. Теория неплохо сошлась с практикой.

Итак, лже-УПСы (участки половинного совпадения), возникшие по статистическим причинам, не должны оказывать особого влияния на IBD-сегменты. Подавляющее большинство из них по длине не превышает несколько десятков снипов (лишь примерно каждый тысячный преодолевает рубеж 50-60 снипов). Разумеется, из-за их наличия реально существующие сегменты неизбежно удлиняются, однако принципиально исказить картину это не может. Конечно, такие причины, как поддержка отбором и искажения, вызванные неточностью генетических карт, остаются в силе. Возможны и другие причины — загадка наличия значимых сегментов с палеоДНК продолжает требовать объяснения.

При ослаблении фильтра до 50 снипов, как в случае с мальтинцем, лже-УПСы уже должны стать заметными. Неудивительно, что при нормальных настройках значимых сегментов почти не получалось — уровень гомозиготности оказался весьма велик.

В заключение приведу график зависимости вероятности разрыва лже-сегмента от уровня гомозиготности в популяции при использовании той же формулы. Как уже писалось, идеально гетерозиготный геном не будет иметь разрывов вообще. Но и в идеально гомозиготной выборке разрывов не будет, ведь аллели у всех совпадают! Что же происходит в промежутке между этими двумя крайностями? Как выяснилось, максимальна вероятность разрыва лже-сегмента при уровне гомозиготности около 70%, что близко к реально существующему уровню. При больших значениях длина лже-сегментов начинает быстро расти из-за того, что все слишком похожи между собой, при меньших — из-за того, что на гетерозиготных снипах сегмент порваться не способен. Уровни ниже 0,45 я убрал из-за их явной нереалистичности. Как можно догадаться, там график движется к нулю.

HZ

Сравнение двух древних европейцев и одного сибиряка с выборками из современных народов методом поиска общих аутосомных сегментов

За последние годы был опубликован ряд работ, посвященных попыткам генотипирования останков древних людей — от живших несколько тысячелетий назад до «усть-ишимца» с предположительным возрастом около 45 тысяч лет, неандертальцев и «денисовки». Количество таких расшифровок растет все быстрее, что не может не вызывать оптимизма.  Трудами известного геномного блоггера Феликса Чандракумара большинство из них было переведено в простой и доступный формат, аналогичный файлам raw data от FTDNA и 23andMe.

Ради интереса я попробовал проверить геномы (предположительно, это два «бритта» железного века и три «англа», «сакса» или «юта» времен переселения этих племен в Британию) из одной из таких недавних работ на наличие IBD-сегментов с современными выборками. Ничего особенного от этой попытки я не ожидал, но результат все равно разочаровал. Никаких связей с современными германцами или кельтами, лишь короткие обрывки сегментов с северо-восточными европейцами.

Как выяснилось, большинство из имеющихся сейчас древних геномов совершенно не годится для такого рода анализа. Основная причина — крайне низкое качество генотипирования. Количество снипов и прочтений на один снип невелико, и подавляющее большинство из них гомозиготно (то есть второй аллель не прочитан). А это значит, что практически все IBD-сегменты разрушены и мы можем увидеть лишь самый базовый и древний уровень родства. В терминах этнокалькуляторов на основе Admixture это оказался (в данном случае) «северо-восточноевропейский» предковый компонент, который наиболее ярко проявляется у народов восточной Балтики — с ними и нашлось наибольшее количество обрывков.

Тем не менее, не все так плохо. Можно выделить известную работу Иосифа Лазаридиса с коллегами о трех предковых популяциях современных европейцев. Геномы европейского раннего земледельца культуры линейно-ленточной керамики (образец Stuttgart, или LBK. Около 7500 лет назад) и почти синхронного ему охотника-собирателя, останки которого найдены на территории нынешнего Люксембурга (Loschbour, около 8000 лет назад) прочитаны очень качественно и почти не уступают файлам от 23andMe и FTDNA.

Карта сумм общих сегментов древнего земледельца с современными выборками:

LBKIBD

С заметным отрывом от остальных лидируют жители острова Сардиния, считающиеся сохранившимися в наиболее чистом виде потомками когда-то переселившихся в Европу земледельцев Восточного Средиземноморья. За ними следуют другие южноевропейские популяции (включая ашкенази и сефардов), скандинавы и восточноевропейцы.

Sardinian 61,06 —//Confidence: very high
Italian 50,14 —//Confidence: very high
French 49,56 —//Confidence: very high
Bulgarian 48,9 —//Confidence: high
Hungarian 48,29 —//Confidence: very high
Basque 45,92 —//Confidence: very high
Greek 45,7 —//Confidence: very high
Norwegian 44,95 —//Confidence: high
Ashkenazi 44,04 —//Confidence: high
Sephard 43,52 —//Confidence: high
Croatian 42,23 —//Confidence: very high
Belarusian 42,12 —//Confidence: high
Swedish 41,86 —//Confidence: high
German-Austrian 41,33 —//Confidence: very low
British 41,2 —//Confidence: very high
Russian-South 40,7 —//Confidence: very high
Balt 40,38 —//Confidence: high
Greek_Azov 39,61 —//Confidence: low
Ukrainian-East-and-Center 39,49 —//Confidence: medium
Estonian 39,27 —//Confidence: high

Наличие общих сегментов с этими народами можно объяснять и миграциями потомков земледельцев на север, и ассимиляцией «земледельцами» «охотников» при продвижении вглубь Европы. Думается, для южных европейцев более актуальна первая причина, для восточных вторая, скандинавы где-то посередине.

Все это не новость, хотя мне понравилось подтверждение работоспособности метода. Более интересным мне показался «язык», протянувшийся на восток — через Кавказ и Среднюю Азию до самой Монголии. Забегая вперед, скажу, что у «охотника» Loschbour такого не наблюдается. Чем может объясняться эта связь? Приток генов с Востока к предкам «штутгартца»? Или же наоборот, его родственники, переселившиеся на восток, оставили свой след в геноме монголов? Для проверки я решил использовать один из этнокалькуляторов, разработанных до появления образца LBK в открытом доступе. При разработке более поздних он был использован как европеец и мог исказить картину.

LBK

Как видите, никаких следов Восточной Азии — чистый средиземноморец. Так что совсем не исключено, что на востоке мы здесь видим следы, к примеру, афанасьевцев.

«Охотник» Loschbour не показал такого яркого сходства ни с одной из современных выборок. Можно предположить, что его племя не оставило дожившего до наших дней потомства, или же оставило мало. Тем не менее, очень хорошо видно, кто из наших современников в наибольшей степени родственен древнему охотнику — это восточноевропейцы с максимумом на восточном побережье Балтийского моря

LoschbourIBD

Finnish 41,21 —//Confidence: very low
Estonian 39,63 —//Confidence: high
Balt 37,85 —//Confidence: high
Russian-North 36,25 —//Confidence: very high
Belarusian 35,31 —//Confidence: high
Karelian 35,21 —//Confidence: high
Veps 34,75 —//Confidence: medium
Ukrainian-West-and-Center 34,48 —//Confidence: medium
Polish 33,8 —//Confidence: high
Norwegian 32,34 —//Confidence: high
German-Austrian 31,4 —//Confidence: very low
Russian-South 30,87 —//Confidence: very high
Russian-West 30,73 —//Confidence: medium
Erzya 30,19 —//Confidence: medium
Saami 30,12 —//Confidence: high
Swedish 29,78 —//Confidence: high
Hungarian 28,55 —//Confidence: very high
Ukrainian-East-and-Center 28,54 —//Confidence: medium
Croatian 27,31 —//Confidence: very high
Komi 26,48 —//Confidence: high

Образец Loschbour в том же этнокалькуляторе MDLP K5:

Loschbour

Для визуализации разницы между «охотником» и «земледельцем» я нормировал значения первого путем умножения на 1.5. Красный цвет означает большее родство с Loschbour, зеленый — LBK. Бурый, как у удмуртов, эвенков или китайцев — нейтрален.

LminusLBKIBD

Но что же наш третий источник наследственности европейцев, аутосомный компонент Ancestral North Eurasian, полученный при генотипировании останков мальчика с сибирской палеолитической стоянки Мальта? К сожалению, его геном расшифрован не так хорошо по сравнению с двумя предыдущими. Это и неудивительно — оценочный возраст мальтинца втрое больше, около 24 тысяч лет. К тому же за это время и количество сегментов, дошедших до наших современников, должно заметно упасть. Поэтому поиск общих сегментов со стандартными настройками дал весьма невразумительную картину. Пришлось резко ослабить настройки фильтра — вместо минимального размера сегмента в 15о снипов (из примерно 200 тысяч) до 50, и вместо минимальной длины сегмента в 3 сМ до 2. После этого алгоритм смог кое-что уловить:

MaltaIBD

Итак, наиболее родственным мальтинцу народом среди наших современников получились удмурты. Вспоминается, что этот народ является одним из чемпионов по наличию Y-гаплогруппы N, пришедшей в Европу с востока. Впрочем, дело тут может быть совсем в другом.

Конечно, уровень погрешности здесь еще выше, чем в предыдущих случаях, но тем не менее, картина вырисовывается довольно отчетливо и неплохо коррелирует с распространением компонента ANE.

Сборный образец «древнего скандинава» Motala1-2 не показал столь же отчетливой картины, как Loschbour и LBK. Видимо, дело в том, что он получен в результате объединения данных из разных наиболее качественно прочитанных геномов. При ослаблении настроек фильтра аналогично мальтинцу получается весьма похожая на Loschbour картина, но более размытая. Не думаю, что есть смысл приводить ее здесь.

Итак, среди современных европейцев можно найти родственников представителей всех трех основных источников (по крайней мере, известных сейчас) их современного генофонда. Насколько реально это родство? Сложно сказать. Конечно, тяжело поверить в сохранение IBD-сегментов на протяжении сотен поколений. С другой стороны, как показало моделирование, мелкие сегменты почти неуничтожимы. А ведь для отрисовки карт используются в основном именно маленькие сегменты в диапазоне 3-4-5 сМ. Возможно, многие из них являются результатом случайного объединения еще более мелких сегментов, или они поддерживаются отбором, или случайно закрепились в популяции. Думаю, что мы в любом случае можем считать этих людей своими родственниками, хотя и не очень близкими ))

Исследование генетики татар Поволжья при помощи анализа на IBD-сегменты

Исследование генетики татар Поволжья при помощи анализа на IBD-сегменты

Не секрет, что под этнонимом «татары» в России зачастую скрываются совершенно разные этнические группы. Существуют татары казанские, астраханские, сибирские, крымские и т.д. В данном исследовании нас интересуют татары среднего Поволжья — казанцы и мишари.

Это достаточно многочисленный и активно тестирующийся народ, неплохо представленный в аутосомных базах 23andMe и FTDNA. По мере роста статистики прогонов татарских генотипов через калькулятор Вадима Веренича К27, я начал впадать в некоторое замешательство. В своем большинстве татары получались довольно близкими друг к другу по соотношению предковых компонентов Admixture. Однако одновременно существовали и различия, где было весьма сложно понять — не результат ли это попросту случайных отклонений? Разделение между казанскими татарами и мишарями проявлялось скорее как тенденция к несколько большим значениям «балто-славянских» и «финских» компонентов у вторых, чем как явный сигнал.

Поэтому при появлении у меня нового инструмента — скрипта, анализирующего наличие общих IBD-сегментов с научными выборками, я не замедлил пропустить через него имеющиеся генотипы татар из коммерческих выборок. Сразу же проявились различия, что позволило сделать вывод — несмотря на сходство татар по пропорциям предковых компонентов, их источники частично различаются.

Чтобы по возможности снизить влияние случайных отклонений, я постарался выделить усреднения по территориально-этническим группам. Наиболее бросающимся в глаза признаком казанских татар оказалось большое количество общих сегментов с марийской и чувашской выборками. Однако это еще не означает, что казанцы разделяют большую часть общих предков с марийцами или чувашами. Дело в том, что эти выборки испытали очень сильный генный дрейф. В результате даже не очень значительное родство с ними проявляется весьма ярко. В прошлой заметке я назвал это «эффект ашкенази», по имени наиболее известного примера. Судя по всему, марийцы и чуваши разделяют заметную часть общих предков, поэтому и «эффект ашкенази» у них общий.

Усреднение по трем казанским татарам из Апастовского района Татарстана:

Tatar-ApastovIBD

Довольно типичная картина — фоновая засветка по Восточной Европе, яркое пятно у марийцев и чувашей и более бледное — у татарской научной выборки. Точный источник татарской выборки мне неизвестен, но сравнительно слабые показатели могут хорошо объясняться большей численностью и генетическим разнообразием татар.

Татары из Тархановского района, 5 человек, выглядят весьма похоже, лишь марийско-чувашское пятно менее яркое:

Tatar-TarhanIBD

Татары из северо-западной части Башкирии, четыре человека. По сравнению с предыдущими выборками, добавилось некоторое влияние удмуртов и башкир:

Tatar-Bash-NWIBD

Насколько же велико может быть количество общих предков татар с чувашами и марийцами? Попробуем сравнить апастовскую выборку с усреднением по трем чувашам:

ChuvashIBD

В калькуляторах на базе Admixture у чувашей ярко проявляется «уральский» компонент, и здесь мы хорошо видим его распространение — от саами до манси. Уровень пересечения с чувашской выборкой при моих типичных настройках — 115 сМ. Примерно такой же уровень получился у марийца (отличие от чувашей — в более высоком пересечении с марийской выборкой). При этом у людей с наполовину марийским или чувашским происхождением этот показатель составил чуть меньше 80. У апастовской выборки — 67. Можно сделать прикидку, что при недавнем адмиксе это соответствовало бы примерно 1/3 общих предков. Однако если эти предки жили давно, когда дрейф проявился еще не так сильно, их доля могла быть выше. Таким образом, оценкой снизу будет 30%. Провести оценку сверху поможет упоминавшийся «уральский» компонент. При калибровке К27 его содержание у чувашей получилось равным 19, усреднение по татарам из апастовской выборки —  около 9. Таким образом, даже если все не пересекающиеся с чувашами предки были из популяций с нулевым содержанием этого компонента (что малореально), вклад чувашей не мог быть выше 50%. Думаю, что наиболее реалистичным вариантом будет все же 1/3.

Разумеется, существует еще вариант, что чуваши получили «уральский» компонент уже после разделения с татарами. Тогда количество общих предков может быть и гораздо большим. Однако этому варианту скорее соответствует некий более древний уровень родства, чем рассматриваемые здесь исторические времена.

Я попробовал подсчитать, исходя из предположения, что «чувашские» компоненты составили 1/3 наследственности татар, на что могли быть похожи оставшиеся 2/3 по К27. В одиночном режиме результат оказался непохожим ни на один народ, кроме самих татар. В режиме смеси комбинации тоже показались на первый взгляд очень странными, однако, как мы позже увидим, кое-какой смысл в них был:

Using 2 populations approximation:
1 Nogay_D+Russian_Novgorod_D @ 6,174824

Using 3 populations approximation:
1 50% Russian_North_R8 +25% Kazakh_R2 +25% Romanian_D @ 3,826868

2 50% Russian_North_R8 +25% Bulgarian_S14 +25% Kazakh_R2 @ 4,087314

У меня не нашлось полноценной мишарской выборки из районов за пределами Татарстана и Башкирии, поэтому пришлось объединить три образца, получившиеся похожими и по IBD-картографу, и по предковым компонентам в калькуляторе Вадима Веренича. Первый происходит из мишарей Нижегородской области, второй — из пензенских мишарей, третий — из служилых татар Самарской области.

Mishar-NPSIBD

Как мы можем видеть, здесь не только нет «марийского» пятна, но даже наоборот — на этом месте показано уменьшение количества общих сегментов по сравнению с соседними популяциями. Родство с чувашами имеется, однако, очевидно, идет по другой линии предков чувашей, не совпадающей с предками марийцев. Наиболее же сильно выделяются эрзяне. Как и в случае родства казанских татар с чувашами, это вовсе не говорит об определяющем вкладе эрзян в генетику мишарей. Нижний предел я бы оценил аналогичным предыдущему случаю методом примерно в 20-25%. Что касается верхнего ограничителя, тут сложнее из-за отсутствия специфического «эрзянского» компонента Admixture. Если ориентироваться на общий восточноевропейский компонент Balto-Slavic, то он ограничивает максимальный уровень примерно 70-80 процентами. Вполне возможно, что предками мишарей были не сами эрзяне или мокшане, а родственная им соседняя популяция — это дополнительно затрудняет оценку.

Для сравнения, эрзянская выборка, пять человек:

ErzyaIBD

Мишари из Дрожжановского района Татарстана, три человека:

Mishar-DrozzhIBD

Картина схожа с предыдущей мишарской выборкой, однако у марийцев уже нет провала. Возможно, это связано с близостью к Чувашии, возможно — с влиянием казанских татар.

Выборка мишарей из Башкирии получилась ближе к казанскому варианту. Это может объясняться спецификой именно данной выборки, либо различиями между мишарями в целом. Придумать объяснений можно много, но думаю, здесь нет смысла в них вдаваться.

Mishar-BashkIBD

Итак, для каждого из народов (или, при другом подходе, субэтносов), мы видим на картах один из предковых источников. Однако попытка вывести оставшиеся источники методом пересчета предковых компонентов оказалась малоудачной. Чтобы решить эту проблему, я попробовал визуализировать разницу с первым источником. На карте приведена разница между первой («сборной») мишарской выборкой и эрзянами, для контрастности умноженная на три:

MNPSminusErzyaIBD

Зеленые тона показывают выборки, более близкие эрзянам, красно-бурые — мишарской выборке. Промежуточные варианты одинаково близки и тем, и другим. Максимум разницы в пользу мишарей достигается из крупных выборок у бурят и тувинцев, что очень хорошо совпадает с недавней работой по генетическим следам тюркской экспансии . Немногим отстают от них и башкиры с казахами. Интересно, что кавказские выборки, за исключением ногайцев и балкарцев (наличие в этой компании армян остается загадкой )) ), получились несколько ближе к эрзянам, что говорит против теории о связи мишарей с Кавказом (либо она каким-то образом идет через эрзяноподобную сторону). Пятно у вепсов, думаю, тоже что-то означает, поскольку в слабом виде видно у многих татар. Однако это может быть и следствием более высокого уровня дрейфа у вепсов по сравнению с соседями.

При построении аналогичной карты для пары казанцы/чуваши в качестве базовой выборки я выбрал апастовскую. Башкирские по понятным причинам не могут служить типичным образцом, а тархановская демонстрирует тенденцию сдвига к мишарям. К тому же наиболее родственная чувашам выборка может выявить отличия с ними более показательно.

TAminusChuvashIBD

Зеленая зона вдоль северной части Сибири объясняется более высоким уровнем родства с этими народами у чувашей, чем у татар (все тот же уральский компонент). Родство с народами степной полосы и возможной тюркской прародины находится на примерно одном уровне у «чувашской» и «нечувашской» части генома казанских татар. Родство же с выборками Средней Азии, Кавказа, Средиземноморья — выше. Вероятно, средиземноморскими же пересечениями объясняется повышенный уровень общих сегментов с ашкенази (не забываем, что это число надо делить в разы из-за ашкенази-эффекта). Примерно такого же уровня пятно с крымскими татарами выглядит бледнее из-за небольшой площади полуострова. Интересно также пересечение с болгарами. Не думал, что их тюркский компонент проявится настолько заметно. Впрочем, возможно, это объясняется турецкими или татарскими вливаниями, а не древними булгарами. Ну и обращает на себя внимание знакомое пятно у вепсов и эстонцев.

А теперь вспомним еще раз раскладку при попытке реконструкции «нечувашской» части на базе К27:

2 50% Russian_North_R8 +25% Bulgarian_S14 +25% Kazakh_R2 @ 4,087314

Неправильно, однако уже не так странно, как казалось вначале.

Не следует думать, что перечисленные популяции составляют 2/3 наследственности казанских татар (раз уж 1/3 мы оцениваем вклад «чувашской» стороны). Более вероятным кажется вариант, когда заметную часть от этих 2/3 занимает некая нейтральная по отношению к чувашам популяция, у которой уровень IBD сегментов с другими уральцами и восточноевропейцами был близок к ней. Из-за нейтральности она плохо выделяется на картах IBD-разности, однако калькуляторы на базе Admixture показывают — вклад пришельцев с далекого Юга или Востока не мог быть определяющим. Возможно, именно на эту популяцию намекают «вепсско-эстонское» и «южно-русское» пятна.

В завершение я хочу привести карту разницы между мишарями и казанцами:

MNPSminusTAIBD

С казанской стороны мы видим знакомые марийско-чувашское и крымско-татарское пятна, а также, слегка неожиданно, но не удивительно, азербайджанское (с расширением вдоль Южного Каспия). С мишарской стороны знакомые эрзяне, неожиданно выделилась территория ВКЛ (какие-то вливания оттуда в геном мишарей?), и, по совсем непонятной причине, выборка коми. Родство с азиатскими выборками идет с некоторым перевесом в пользу казанцев, особенно в «зоне марийско-чувашского влияния».

Аналогично примечанию к предыдущей карте, не следует забывать — здесь показана разница. Нейтральная общность может быть велика, но не видна этим методом.

Визуализация количества общих (IBD) сегментов — часть вторая

Обзор волжско-уральских популяций я хочу начать несколько издалека — с карты для селькупа из селения парабель Томской области. В какой-то мере он служит той же цели, что и литовец в предыдущей части:

Selkup-ParabelIBD

Пересечение с соседями по западной Сибири зашкаливает, как и положено для небольших групп с высоким уровнем генного дрейфа. Однако интересно не это, а выбросы на запад — к башкирам, удмуртам, марийцам. чувашам. Видно и повышение у саами. Таким образом, здесь мы наблюдаем распространение «уральского» генетического компонента.

Очень специфичной популяцией являются и марийцы. Уровень «эффекта ашкенази» получился намного выше, чем у самих ашкенази. Таким образом, все народы, имеющие хоть в сколько-нибудь заметной степени общих предков с марийцами, хорошо видны на карте:

MariIBD

В первую очередь это чуваши, сильно влияние у выборки казанских татар, удмуртов, манси и башкир. Вот это и есть «волжско-уральский круг популяций». Интересно, что коми и удмурты оказались в разных категориях, несмотря на языковое родство. Впрочем. как видно по карте коми-зырянина в предыдущей части, есть между ними и генетические пересечения.

100% чуваша из коммерческих выборок у меня нет, однако человек наполовину чувашского происхождения проявляет сходство как с чувашами, так и с марийцами. В отличие от предыдущей карты, чуваши у него на первом месте (это видно в таблице, поскольку картограф обрезал оба зашкаливающих значения до допустимого максимума) :

Chuvash-MokshaIBD

А вот нижегородские мишари более уместно смотрелись бы в предыдущей части заметки:

Mishar-NizhniyIBD

Родство с балто-славяно-финским кругом популяций явно более выражено. чем с волжско-уральским.

Татарин смешанного казанско-мишарского происхождения, южная часть Татарстана:

Tatar-SamaraIBD

Еще раз напомню — неправомерно на основании наиболее яркого пятна у марийцев говорить, что этот человек наиболее близок марийцам. Наличие общих предков с этим народом проявляется в разы ярче из-за «ашкенази-эффекта». То, что татарско-казанская выборка гораздо бледнее, объясняется тем, что татары — более крупный народ с высоким генетическим разнообразием.

Татарин с Урала (часть предков-башкиры):

Tatar-Bashkir-UralIBD

Как ни странно, я не просчитал ни одного «классического» казанского татарина, увлекшись краевыми случаями. Возможно, у него казанская выборка оказалась бы ярче. Эту задачу оставим на будущее.

Башкир:

BashkirIBD

Интересно продление пятна на северо-восток, к уральским народам вплоть до юкагиров.

У сибирского татарина видна общность с селькупами и марийцами. Вспоминая яркость на карте парабельского селькупа, степень этой общности не так уж и велика. Виден и вклад из монгольских степей.

Tatar-SiberianIBD

Неожиданно, у казаха количество общих сегментов с восточносибирскими популяциями оказалось выше, чем с собственно казахской выборкой:

KazahIBD

На ум приходят два объяснения — гетерогенность казахов и более высокий уровень «ашкенази-эффекта» у восточносибирских народов. Впрочем, я недостаточно владею информацией по этногеномике казахов, чтобы строить предположения.

Результаты казаха замыкают мое исследование. Не скажу, что в его результате я открыл для себя что-то сильно новое и неожиданное, однако общая картина стала более понятной и наглядной. Эксперимент мне понравился.