Публикации и работа с палеогеномами

Как я уже отмечал в своих предыдущих записях, за последние годы был опубликован ряд работ, посвященных попыткам генотипирования останков древних людей — от живших несколько тысячелетий назад до «усть-ишимца» с предположительным возрастом около 45 тысяч лет, неандертальцев и «денисовки». Количество таких расшифровок растет все быстрее, что не может не вызывать оптимизма.  Вторая половина 2014 года особенно примечательна как количеством подобных публикаций, так и числом полных геномных NGS-сиквенсов древних людей, размещенных в публичных репозиториях (банках геномных данных). Так, в сентябре в Nature была опубликована окончательная версия работы Lazaridis et al. 2014  «Ancient human genomes suggest three ancestral populations for present-day Europeans». Работа получила широкое освещение в СМИ, поскольку аналитическая выборка сэмплов в этом исследовании включала значительное количествао заново генотипированных (на чипе Affymetrix HumanOrigin) образцов ДНК из древних палеолитических стоянок Сибири (Афонтова Гора, Малта), представителя древней индейской культуры Кловис и палеоэскимоса Cаккак. В работе был представлен  целый  ряд образцов древней ДНК представителей европейских мезолитических и неолитических культур, опубликованных в более ранних работах 2012-2014 годов: Skoglund et a. 2014 «Genomic Diversity and Admixture Differs for Stone-Age Scandinavian Foragers and Farmers»(шведские земледельцы и охотники собиратели эпохи неолита); Olalde et al. 2014 «Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European» (дДНК мезолитического населения Иберийского полуострова) и т.д.

В этой связи необходимо также отметить статью Carpenter et al. 2013 «Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries»в которой целый авторский коллектив представил результаты исследований древних образцов ДНК найденных в захоронениях бронзового века II тыс. д.н.э (Болгария и Дания).  В следующей работе опубликованной в конце октября, Gamba et al. 2014. «Genome flux and stasis in a five millennium transect of European prehistory»,  читателям была представлена хронологическая перспектива на процесс изменения генофонда населения популяций живших на территории  Паннонской равнины на протяжении 5000 лет (с эпохи неолита до конца железного века), проиллюстрированная на примере изучения 13 образцов древней ДНК. Параллельно вместе с этим Wellcome Trust Sanger Institute разместил геномные «риды» геномов древних англосаксов и бриттов (сама статья еще находится в процессе пре-публикации, презентация статьи была представлена на последней конференции AJHG).

Более важные публикации появилась совсем недавно. В частности, таковой публикацией является статья Fu et al. 2014 «Genome sequence of a 45,000-year-old modern human from western Siberia» о  геноме так называемого «усть-ишимца» (возраст останков которого датируются 45 000 д.н.э) и статья Seguin-Orlando et al. 2014 «Genomic structure in Europeans dating back at least 36,200 years», посвященная обсуждению результатов анализа ДНК знаменитого «папусоида»  с палеолитической стоянки Костенки-14.Тело мужчины, жившего 37 тыс. лет назад и найденное в 1954 г. на юго-западе России, оказалось источником старейшей европейской ДНК. Анализ его генома, опубликованный на прошлой неделе, показывает, что большинство разнообразных европейских генетических комбинаций существуют более 30 тыс.лет и пережили последний ледниковый период. Генетики обнаружили что ДНК Костенки-14 является близкородственным по отношению к раннеевропейским охотникам-собирателям, современным европейцам и жителям Сибири.
В то же время другой древний геном, данные о котором были опубликованы несколько недель назад, принадлежащий сорокапятитысячелетнему западному сибиряку, известному как Усть-Ишим, имел родство как с европейцами, так и с азиатами.  Любопытно, что в этой статье подтверждается то о чем я говорил гораздо раньше: процент неандертальских генов у древних евразийцев был выше чем у современных (о чем я упоминал в одной из своих заметок в этом блоге).

Трудами известного геномного блоггера Феликса Чандракумара большинство из них было переведено в простой и доступный формат, аналогичный файлам raw data от FTDNA и 23andMe. В GEDMatch можно поиграть с этнокалькуляторами и даже попытаться сравнить свой геном с геномами древних людей.Для этого следует взять из таблицы (кот. видна, если пройти по ссылке) номера, которыми обозначены древние геномы.

Sample Name Sample Location GEDMatch Sex Y-DNA Mt-DNA Approx. Age by authors My Analysis or Comments
Altai Neanderthal Denisova Cave, Siberia F999902 Female 50,000 years
Denisova Denisova Cave, Siberia F999903 Female 30,000 years
Palaeo-Eskimo Qeqertarsuaq, Greenland F999906 Male Q1a D2a1 4,000 years Palaeo-Eskimo 2000 BC DNA
Clovis-Anzick-1 Montana, North America F999919 Male Q-Z780 D4h3a 12,500 years Matches Living people.
Mal’ta South-Central Siberia F999914 Male R U 24,000 years Matches Living people on X Chromosome.
La Braña-Arintero León, Spain F999915 Male C-V183 U5b2c1 7,000 years Analyzing La Braña-Arintero Ancient DNA
Motala-12 Östergötland, Sweden F999917 Male I-L460 U2e1 7,000 years My Analysis of Motala-12 ancient DNA
LBK Stuttgart, Germany F999916 Female T2c2 7,500 years Matches Living people
Loschbour  Loschbour, Luxembourg F999918 Male I-L460 U5b1a 8,000 years Matches Living people
Ajvide58 Sweden F999924 Male I-CTS772 U4d 5000 years Ajvide58 DNA Analysis
Gökhem2 Sweden F999934 Female H1c 5000 years Gökhem2 Ancient DNA Analysis
Hinxton-2 Cambridgshire, UK F999921 Female H2a2b1 1300 years Hinxton-2 Analysis
Hinxton-3 Cambridgshire, UK F999922 Female K1a4a1a2b 1300 years Hinxton-3 Analysis
Hinxton-4 Cambridgshire, UK F999925 Male R-DF25 H1ag1 2000 years Hinxton-4 has X-Matches with living people
Hinxton-5 Cambridgshire, UK F999926 Female H2a2a1 1300 years Hinxton5 Ancient DNA Analysis
KO1 Tiszaszőlős-Domaháza, Hungary F999931 Male I-L68 R3 5650-5780 cal BC Analysis of Neolithic KO1 genome
NE1 Polgár-Ferenci-hát, Hungary F999937 Female U5b2c 5070-5310 cal BC NE1 Ancient DNA Analysis
NE5 Kompolt-Kigyósér, Hungary F999927 Male C-F3393 J1c 4990-5210 cal BC Ancient Hungarian Genome NE5 Analysis
NE6 Apc-Berekalja I., Hungary F999932 Male C-P255 K1a3a3 4950-5300 cal BC Analysis of Hungarian genome-NE6
NE7 Apc-Berekalja I., Hungary F999928 Male I-L1228 N1a 4360-4490 cal BC Ancient Hungarian genome — NE7
CO1 Apc-Berekalja I., Hungary F999930 Female H 2700-2900 cal BC Analysis of Copper age genome CO1
BR2 Ludas-Varjú-dűlő, Hungary F999933 Male J-M67 K1a1a 1110-1270 cal  BC Ancient BR2 matches living people
IR1 Ludas-Varjú-dűlő, Hungary F999929 Male N-M231 G2a1 830-980 cal BC Ancient Hungarian genome — IR1
Tyrolean Iceman
(ERP001144)
Tisenjoch Pass, Oetztal Alps Male 5300 years Pending
Ust’-Ishim Ust’-Ishim, Siberia F999935 Male K-M526 R 45,000 years Ust’-Ishim matches with living people!
Kostenki14 European Russia F999936 Male C-V199 U2b 38,700-36,200 years Kostenki14 Ancient DNA Analysis
Sample Name Sample Location Sex Y-DNA Mt-DNA Approx. Age by authors
Mezmaiskaya Neanderthal Mezmaiskaya Cave Female 29,000 years
Tianyuan Tianyuan Cave, China R 40,000 years
Afontova Gora-2 South-Central Siberia Male R1? R 17,000 years
Motala-1 Östergötland, Sweden Female U5a1 7,000 years
Motala-9 Östergötland, Sweden Female U5a2 or U5a1f1a1 7,000 years
Motala-6 Östergötland, Sweden Male U5a2d 7,000 years
Motala-2 Östergötland, Sweden Male F-P139 U5e1 7,000 years
Motala-4 Östergötland, Sweden Female U5a2d 7,000 years
Motala-3 Östergötland, Sweden Male I-M258 U2e1 7,000 years
Hinxton-1 Cambridgshire, UK Male R-L151 K1a1b1b 2000 years
Ajvide53 Sweden Female U4d 5000 years
Ajvide59 Sweden Male I-PF3796 U5b2c1 5000 years
Gökhem7 Sweden Female H 5000 years
Ire8 Sweden Male I-CTS6343 U4d 5000 years
StoraFörvar11 Stora Karlsö, Sweden Male I-CTS4077 U5a1f1a 7500 years
Gökhem4 Sweden Male CF-M3690 H 5000 years
Gökhem5 Sweden Female K1e 5000 years
Ajvide52 Sweden Male HIJK-F929 HV0a 5000 years
Ajvide70 Sweden Female U4d 5000 years
NE4 Polgár-Ferenci-hát, Hungary Female J1c 5050-5290 cal BC
NE3 Garadna, Hungary Female X2b 5010-5210 cal BC
BR1 Kompolt-Kigyósér, Hungary Female K1c1 1980-2190 cal BC
KO2 Berettyóújfalu-Morotva-liget, Hungary Female K1 5570-5710 cal BC
NE2 Debrecen Tócópart Erdõalja, Hungary Female HV 5060-5290 cal BC
V2 Vratitsa, Bulgaria Male U2e1’2’3 1500-1100 BC
M4 Borum Eshøj, Denmark Male B2 1350 BC
K8 Krushare, Bulgaria Male R 450-400 BC
NA43 Laguna de los Condores, Peru Male B4b’d’e 1000-1500 AD
AusAboriginal Western Austalian Male F-M235 O1a 100 years
NA41 Laguna de los Condores, Peru Male L3 1000-1500 AD
P192-1 Svilengrad, Bulgaria Male U3b 800-500 BC
T2G2 Stambolovo, Bulgaria Male H1c9a 850-700 BC
NA42 Laguna de los Condores, Peru Male D1 1000-1500 AD
NA50 Laguna de los Condores, Peru B4b’d’e 1000-1500 AD
NA47 Laguna de los Condores, Peru L3 1000-1500 AD
NA40 Laguna de los Condores, Peru L3 1000-1500 AD
NA39 Laguna de los Condores, Peru Male B2 1000-1500 AD
Feld1 Neanderthal Neander Valley, Germany 42,000 years
Sid1253 Neanderthal El Sidron cave, Asturias, Spain 49,000 years
Vi33.16 Neanderthal Vindija cave, Croatia Female 38,310 years
Vi33.25 Neanderthal Vindija cave, Croatia Female
Vi33.26 Neanderthal Vindija cave, Croatia Female 44,450 years

В своем блоге Феликс размещает аналитические отчеты по каждому из проведенных анализов, отчеты включают графическое отображения «состава различных геномных компонентов происхождения» каждого из образцов в калькуляторах Gedmatch (включая мой последний калькулятор K23b), фенотипические признаки (предположительный цвет кожи и глаз), возраст на момент смерти и т.д.
Пытаясь ответить на вопрос,  насколько  правдоподобны (в смысле реального генеалогического родства) результаты совпадения сегментов древних и современных людей, Феликс приводит замечательные вычисления оценки правдоподобия совпадений в геномах современных людей и древних образцов. К сожалению, рассуждения замечательные, но вызывающие определенные вопросы, которые я озвучу в другой заметке.

Так или иначе, поставленная Феликсом на поток и практически полностью автоматизированная работа с древними геномами заслуживает безусловного признания, поскольку в силу разделения труда позволяет другими исследователям-любителям полностью сконцетрировать свое внимание на процессе непосредственного анализа полученных данных, вместо того чтобы тратить свои ресурсы на процесс извлечения снипов из «сырых» геномных данных. Благодаря этому разделению труда,  Давид Веселовский из проекта Eurogenes провел ряд замечательных экспериментов с этими данными (включая PCA, Treemix и вычисление генного дрейфа с помощью f3). В основном выводы этих экспериментов повторят то, что было написано в статьях профильных генетиков, за исключением одного интересного вывода на основании графа Treemix, в котором отображено направление процессов обмена генами между различными древними популяциями:

«В отношении Kostenki14, графики  Treemix  подтверждают один из основных выводов работы Seguin-Orlando et al. 2014, согласно которой  главны компонент образца  Kostenki-14  является базальным «предковым» компонентом более поздних европейцев (Basal_Eurasian). Тем не менее, два последних графика показывают, что этот базальный «компонент» не тот же самый «базальный» компонент в геноме неолитического образца из Штутгарта, связанного с базальным евразийским  компонентом, который был описан  в работе Lazaridis et al. 2013″.

Другой геномный блоггер, Сергей Козлов, использовал те же самые данные палеогеномов (взятые с сайта Ф. Чандракумара) для создания замечательных карт, иллюстрирующих количество и интенсивность общих IBD-сегментов палеогеномов и геномов современных популяций.

Я решил не оставаться в стороне и провел собственный анализ PCA и кластеризации популяций по значениям компонентов генетического разнообразия.

Ниже приведены иллюстрации к моему опыту кластеризации собственного генома с геномами древних жителей Евразии. В качестве входных данных алгоритма ward-кластеризации в программе R, я использовал собственные значения 4 векторов главных компонентов (PC) разнообразия. Эти векторы, в свою очередь, были получены путем вычислений в большом массиве (2024 образца) генетических данных (примерно 110 тысяч снип-полиморфизмов) представителей современных и древних популяций. Мой геном (обозначенный как Vadim) представляет собой набор, полученныq в ходе импутации по датасету Human Origin значения снипов информативных с точки зрения эволюционного происхождения, и используется в качестве контрольной группы.

Для начала график PCA, и положение палеогеномов на этом графике.

10805810_10205228379818844_2683994891484833194_n

В аналитической выборке я задействовал снипы геномов высших и низших приматов (дендрограмма выборка укоренена на геноме мармозетки), древних гоминидов (денисовского человека и неандертальцев). Остальное — как я и упоминал выше — представляет собой совокупность снипов современных и древних популяций.

Благодаря характеру выборки и характеру используемых снипов, я могу взглянуть на свое происхождение с наиболее широкой перспективы, позволяющей проследить индивидуальный эволюционный путь от древнейших людей до наших современников.
Можно сказать, что я проделал самое далекое (из всех предыдущих) генеалогическое путешествие в собственное прошлое. Разумеется, без предыдущего выделения обработки образцов древнего ДНК новейшими биохимическими методами, а также публикации данных — это путешствие длинной в сотни тысяч лет не могло бы просто состоятся. Так что огромное спасибо всем биохимикам, генетикам и биоинформатиков работавшим с образцами древней ДНК.

Полученные мной кластерные дендрограммы вышли очень большого разрешения. В силу этого, имеет смысл изучить топологию, структуры и расположение популяционных групп-кластеров в полномасштабном варианте, иначе могут возникнуть интересные вопросы.

1557253_10205127321932460_4975988878575720296_o 10801887_10205156832150197_5471832914364777784_n (1) 10801887_10205156832150197_5471832914364777784_n 247121_10205156832710211_7030394711716209950_n 1235004_10205156831950192_4536397005560655073_n 1379610_10205156832350202_753531489446222277_n 10411811_10205156831710186_6596784203743263163_n

Поэтому — я подготовил соответствующие файлы PDF и разместил ссылки на эти файлы для удобного просмотра.

tree1

tree2

tree3

tree4

tree5

tree6

tree7

tree8

tree9

tree10

tree11

tree12

tree13

tree14

tree15

tree16

Здесь их опубликовать не представляется возможным, и по этой причине я ограничу себя размещением тех фрагментов трех вариантов кластерных диаграмм, на которых присутствуют древние образцы.
Забегая вперед, можно заметить, что образцы ДНК древних людей (т.е людей современного анатомического типа — homo sapiens sapiens), строго говоря, разбиваются на три органические суперкластера — древних сибириков (или евразийцев), древних европейских охотников-собирателей, и ранних неолитических европейских земледельцев. В основной своей части состав и топология популяционных кластеров стабилен в разных вариантах, наибольшие видоизменения заметны у тех образцов, чье множество снипов имеет меньшее пересечение с общим набором снипов. Отсюда довольно таки тривиальный вывод: чем меньше общее число снипов — тем больше флуктуаций наблюдается в расположении древних образцов внутри ветвей кластерной дендрограммы.

Кластер древних евразийцев наиболее стабилен (т.к. там всего два древних генома Afontova Gora 2 (AG2) и знаменитый мальчик с сибирской стоянки Malta (MA1); причем оба образца взяты из одного источника данных). Из современных популяций к этому кластеру наиболее органично примыкают различные группы населения центральной Азии — от таджиков до гуджаратов, и от калашей до пуштунов.

Кластер древних охотников-собирателей Европы наиболее неустойчив, и это объясняется прежде всего разным числом снипов в образцах, а также тем что сами образцы взяты из разных исследований. Тем не менее тенденция наглядна — древнейшие европейцы (охотники-собиратели мезолита) наиболее близки по своим аутосомным снипам к жителям современной западной и северной Европы — особенно Британских островов, Скандинавии и Балтийского региона. Практически во всех вариантах прибалтийцы близки к древним жителям Швеции (Готланда), а также мезолитическим образцам La Brana, Motala и Loshbour. Последние также близки к финнам, эстонцам и северным русским. Из более поздних и географически удаленных образцов к ним близки древние образцы из Венгрии неолитического периода, бронозового и железного веков (BR1, NE2 и KO1).

Интересно, что в этот же кластер входят как современные популяции западной Европы (британцы, норвежцы, французы и др.), так и современные жители центральной Европы — чехи хорваты и венгры. Является ли это наследием древних времен (гальштатской общности связываемой с древними кельтами) — трудно сказать. Не этим ли объясняется тот факт, что образцы древних англо-саксов и бриттов (обозначенные здесь как Hixton) иногда кластеризируются с (современными!) венграми, хорватами, иногда с современными англичанами из Кента и корнуэлльцами. При этом некоторые из образцов Hixton остаются близки (в смысле схожести генома) к скандинавам, оркнейцам, шотландцам, и даже литовцам.

Мой собственный «геном» (Vadim) также входит в эту группу, причем в разных вариантах он определенно близок одновременно и древним мезолитическим и эпинеолитическим шведам, а также более поздним образцам из Венгрии (киммерийского мальчика IR1, а также самый «балтийский» из всех древних венгерских обрацов — KO1). Интересно что IR1 («аутосомный геном» «киммерийского » мальчика Y-гаплогрупы N1a из захоронения паннонской культуры бронзового века Mezőcsát примерно 900 год до нашей эры) в первых четырех главных компонентах кластеризируется с моим собственным «аутосомным геномом»). Это наверное объясняет почему мой собственный геном дает хорошие комбинации (fit) к комбинации трапезундских турков и древних жителей Балтийского региона.

Как известно, попгенетики готовят к публикации большую статью, в которой подводятся итоги нескольких лет исследования генофонда представителей древних культуры шнуровой керамики* (известной также как культура боевых топоров) и ямной культуры** (другое название — древнеямная культурно-историческая общность). Безусловно, это исследование обещает пролить свет на некоторые темные места генетических связей жителей этих культур с современным населением Восточной Европы (особенно Польши, Украины, Беларуси и юго-западной части России).

Пока все детали исследования неизвестны, однако благодаря настойчивости некоторых энтузиастов генетической генеалогии (Веселовского и пр.) удалось выяснить, например, что генофонд древние образцы представителей Ямной культуры в рамках формальных тестов (f3 и D-статистик) наилучшим образом аппроксимируются как результат смешения древнего мезолитического населения севера Европы (в работе их представляют карельские образцы, очевидно из известных захоронений Палеострова) и населения, близкого к современным закавказским популяциям (лучший результат дали армяне из Еревана).

Признаюсь, эти сведения приободрили меня. Дело в том, что последние несколько недель я занимался изучением эволюции аутосомного генофонда беларусов (и своего тоже) из недавно опубликованного набора лаборатории Райха (это одна из усеченных версии их знаменитого кураторского набора Human Origin Dataset).
Как и раньше, для анализа я использовал инструменты разработанные программистами той же лаборатории (Admixtools), а также Alder — программу написанную на основе открытого кода Admixtools, и оптимизированную под более детальный анализ процесса смешивания различных предковых групп.

Так вот, до получения сведений о предварительных результатах попгенетиков, я был немного смущен полученной картиной. У меня получилось вот что. С точки зрения формальной оценки (f3-статистки, аналога более известной p-статистки) лучшие пары адмикса для беларусов (с отрицательным значением Z) представляли собой либо комбинацию мезолитического населения Европы (Loshbour) и современного населения современной Анатолии и ближнего Востока, либо комбинацию ‘генов’ неолитических жителей Европы (LBK380, а также современных сардинцев) и современных америндских популяций (происходящих, как нам известно, из восточной Сибири).
Вот начало списка значимых пар:

Mixe Sardinian Vadim -11.811
Sardinian Mixe Vadim -11.811
Karitiana Sardinian Vadim -11.757
Sardinian Karitiana Vadim -11.757
Zapotec Sardinian Vadim -11.638
Sardinian Zapotec Vadim -11.638
Loschbour Georgian_Megrels Vadim -11.599
Georgian_Megrels Loschbour Vadim -11.599
Piapoco Sardinian Vadim -11.482
Sardinian Piapoco Vadim -11.482
Loschbour Turkish_Trabzon  Vadim -11.434
Turkish_Trabzon Loschbour Vadim -11.434
Loschbour Assyrian_WGA Vadim -11.395
Assyrian_WGA Loschbour Vadim -11.395
LBK380 Piapoco Vadim -11.354
Piapoco LBK380 Vadim -11.354
Surui Sardinian Vadim -11.346
Sardinian Surui Vadim -11.346
Loschbour Abkhasian Vadim -11.293
Abkhasian Loschbour Vadim -11.293
Bolivian_LaPaz Sardinian Vadim -11.232
Sardinian Bolivian_LaPaz Vadim -11.232
Loschbour Iranian_Jew Vadim -11.231
Iranian_Jew Loschbour Vadim -11.231

Я выбрал около сотни значимых пар и проверил их достоверность «адмикса) с помощью инструментов D-статистки (qpDstat) в попарном сравнении каждой из значимых комбинаций (начало таблицы):

Vadim Italian_Tuscan : Loschbour Palestinian 0.0293 8.141 best
Vadim Iranian : LBK380 GujaratiC_GIH 0.0245 7.319 best
Vadim Motala12 : Druze Sardinian 0.0125 7.285 best
Vadim Loschbour : Palestinian Albanian 0.0146 7.17 best
Vadim Sardinian : GujaratiC_GIH Iranian 0.0121 7.151 best
Vadim Palestinian : Spanish_Pais_Vasco_IBS GujaratiC_GIH 0.0145 7.126 best
Vadim Egyptian_Comas : Basque_Spanish GujaratiC_GIH 0.0137 7.016 best
Vadim Sardinian : Loschbour Egyptian_Comas 0.0251 6.962 best
Vadim Sardinian : Loschbour Tunisian_Jew 0.0251 6.789 best
Vadim Palestinian : Basque_Spanish GujaratiC_GIH 0.013 6.758 best
Vadim Sardinian : Loschbour Palestinian 0.0237 6.69 best
Vadim Basque_Spanish : Balkar Palestinian 0.0076 6.601 best
Vadim GujaratiC_GIH : Tunisian_Jew Egyptian_Comas 0.0094 6.493 best
Vadim Spanish_Pais_Vasco_IBS : Balkar Palestinian 0.0079 6.458 best
Vadim Loschbour : Druze Italian_WestSicilian 0.0135 6.443 best
Vadim Loschbour : Iranian Albanian 0.0159 6.385 best
Vadim Palestinian : Sardinian Iranian 0.0083 6.344 best

Как видно, лучшая достоверность (обмена генами) у тех пар которые представляют собой комбинацию мезолитических популяций (Loshbour и Motala), популяций Кавказа, южной Европы и центральной Азии.

Это особенно хорошо заметно в тесте f4ratio. Вот например сравнение 2 квадропул, три популяции в каждой из которых идентичны (беларусы, кумыки и Losbour), а четвертая популяция отличается (балкарцы vs. Motala). Результат означает что кроме мезолитического компонента Loshbour (из западной Европы), у беларусов наблюдается эксцесс (28+-0.1%) дополнительного источника мезолитических «генов» (типично для балтийских популяций мезолита вроде Motala)

Vadim Kumyk Loschbour Motala12 : Vadim Kumyk Loschbour Balkar 0.285678 0.096194 2.97

Крайне любопытны и результаты проведенного мной в Alder исследования источников «древного» адмикса у беларусов.
Я выбрал только те пары, в которых амплитуда угасания LD в двух гипотетических популяциях-донорах была сопоставима с амплитудой угасания LD в популяции-реципиенте (т.е у беларусов). Интересно, что только две пары (пенджабцы + Motala) и (иракские евреи + чукчи) дали консистентную попарную подгонку кривой угасания LD с незначительным разбросом амплитуды (15-25%). К слову, комбинация Armenian+Motala-merge (примерно идентичная наиболее устойчивой модели адмикса у жителей ямной культуры) тоже присутствует в списке «успешных» комбинаций, однако кривые угасания LD имеют разную скорость угасания (их амплитуда отличается уже на 55% и поэтому они не консистентны, т.е несовместимы) в попарном режиме сравнения

DATA: success_consistent 0.0042 Belarusian Punjabi_Lahore_PJL Motala_merge 4.49 2.76 2.78 15%
DATA: success_consistent 0.0098 Belarusian Iraqi_Jew Chukchi 4.31 2.2 3.01 25%
DATA: success 0.0065 Belarusian Mongola Motala_merge 4.4 2.64 2.78 28%
DATA: success 0.011 Belarusian Yi Papuan 4.29 2.26 4.66 28%
DATA: success 0.00037 Belarusian Lebanese Papuan 4.98 2.69 4.66 38%
DATA: success 0.041 Belarusian Kusunda Motala_merge 3.98 2.61 2.78 41%
DATA: success 0.013 Belarusian Hezhen Motala_merge 4.25 2.17 2.78 49%
DATA: success 0.037 Belarusian Motala_merge Tu 4.01 2.78 3.13 51%
DATA: success 4.20E-06 Belarusian Kalmyk Motala_merge 5.79 2.36 2.78 54%
DATA: success 0.0086 Belarusian She Motala_merge 4.34 2.58 2.78 54%
DATA: success 0.0019 Belarusian Armenian Motala_merge 4.66 2.14 2.78 55%
DATA: success 0.048 Belarusian Daur Motala_merge 3.94 2.11 2.78 56%
DATA: success 0.0042 Belarusian Motala_merge Miao 4.49 2.78 3.5 59%
DATA: success 0.041 Belarusian Oroqen Motala_merge 3.98 2.28 2.78 59%
DATA: success 0.013 Belarusian Thai Motala_merge 4.25 2.13 2.78 65%
DATA: success 0.043 Belarusian Motala_merge Lahu 3.97 2.78 3.56 71%
DATA: success 0.0049 Belarusian Motala_merge Japanese 4.46 2.78 3.53 72%

Примечательно что для пары Belarusian Armenian Motala_merge  Admixtools датирует смешение 114.67+/-20.5 поколений тому назад. А вот датировка адмикса для двух первых пар (последняя колонка это датировка адмикса
Belarusian Punjabi_Lahore_PJL Motala_merge 4.49 2.76 2.78 15% 142.4+/-27.54
Belarusian Iraqi_Jew Chukchi 4.31 2.2 3.01 25% 43.28+/-9.45 То есь самое позднее 3500 лет до нашего времени.Итак, выводы: в эволюционной перспективе, костяк аутосомного генофонда беларусов составляет субстрат мезолитического генетического компонента Европы, к которому примешиваются два потока — один с юга, с наиболее значимым вливанием во времена неолита (земледельцы из Анатолии и ближнего Востока), другой — видимо более поздний (т.к. он отсутствует у ямников) из Сибири.


*Культура боевых топоров, культура шнуровой керамики (нем. Schnurkeramik) — археологическая культура медного и бронзового веков, распространенная на обширных территориях Центральной и Восточной Европы и датированная 3200 г. до н. э./2300 до н. э. — 2300 г. до н. э./1800 г. до н. э. Племена культуры боевых топоров часто считают первыми индоевропейцами на территории Средней Европы
**Я́мная культу́ра (точнее — Древнея́мная культу́рно-истори́ческая о́бщность) — археологическая культура эпохи позднего медного века — раннего бронзового века (3600—2300 до н. э.). Занимала территорию от Южного Приуралья на востоке до Днестра на западе, от Предкавказья на юге до Среднего Поволжья на севере.В рамках ранней версии курганной гипотезы Марии Гимбутас ямная культура связывалась с поздними протоиндоевропейцами.

 

Кластер древних жителей по своей устойчивости занимает промежуточное место между кластерами древних северных евразийцев и западных европейских охотников-собирателей.
В этот кластер, иерархически близкий популяциям Кавказа и ближнего Востока, предсказуемо входят предстаители самых классических популяции южной Европы — от греков и болгар, до басков и сардинцев. Как уже стало обычным, сардинцы кластеризуются с образцом тирольского человека Этци и женщины из линейноленточной культуры («LBK380»). В большинстве вариантов (2 из трех опубликованных) к этой подгруппе примыкают представители древнейших неолитических культур на территории современной Венгрии — CO1, H4, H3, NE5, NE7). Жители бронзового века (на графике они ошибочно обозначены как Europe оказались посередине между раннеевропейскими охотникам-собирателями и земледельцами.

Добавление к выборке древних геномов «усть-ишимца» и «костенковца» позволило пролить свет на некоторые особенности эволюции популяций центральной и восточной части Евразии. В кластерном анализе (вардовская кластеризация) по 4 первым компонентам PCA усть-ишимец у меня получился в одном кластере с киргизами и кажется селькупами. По первым двум компонентам в том варианте рейховского набора популяций, где нет андаманцев Onge — он попадает в один кластер с австралийскими аборигенами.
Думаю, что onge все же ближе, да к тому же во всех калькуляторах у усть-ишимца максимум «генома» приходится на сочетание южно-индийских и юго-восточноазиатских компонентов.  А вот «костенковец» оказывается ближе всего к чувашам и саамам. Что характерно — в предыдущих вариантах, в которых я не использовал костенковца, место костенковца часто занимал AG-2 (Afontova Gora).  Также заметна разница между кластерными схемами PC1-2 и PC-1-2-3-4.В первом случае костенковец в одном кластере с индусами, а во-втором с с чувашами и саамами. Характерно, что восточноевразийские палеогеномы Тяньюань и Усть-Ишим входят в один кластер (их положение не сильно меняется), а MA1 нет.

Древние геномы человека в перспективе генетического разнообразия современных популяций

Примерно месяц тому назад, один из замечательных представителей «гражданской науки» в области генетики, известный геномный блоггер Polako (Давид Веселовски) разместил в своем блоге заметку, в которой были приведены результаты самостоятельного изучения вариативности снип-мутаций в пяти наиболее известных  из отсеквенированных геномов древних людей.  Хотя, как мне представляется, основное внимание Давид уделил все же прояснению ответа на вопрос о расположении  древнего генома сибирского мальчика со стоянки Malta (13 тысяч снипов-вариантов в аутосомах) в пространстве главных компонентов генетического разнообразия (PCA) cовременных человеческих популяций. К слову, этот же образец (Malta-1) был на днях включен в новую таблицу откалиброванных процентных соотношений 13 конвенциональных генетических компонентов в популярном среди пользователей Gedmatch этно-популяционногенетическом калькуляторе Eurogenes K=13 .  Наряду с вышеназванным образцом, в отреферированном анализе использовались геномные снип-варианты древнего ДНК австралийского аборигена (46 тыс.снипов), Anzick-1 генома древнего индейца культуры Кловис (106 тыс.снипов), генома древнего экскимоса Saqqaq (68 тыс.снипов), геном обитателя мезолитической Испании La-Brana 1 (23 тыс.снипов).

Можно предположить, что при проведении статистических анализов PCA, Давид использовал в качества сравнительного эталона-референса известный график из статьи Lazaridis et al. 2013.

PCA из статьи-препринта Lazaridis et. al .2013.

К сожалению ,  Давид из Eurogenes по определенным причинам не включил в свой анализ варианты снипов остальных известных евразийских древних геномов задействованных в PCA-анализе статьи-препринта Lazaridis et al. 2013, в частности древние геномы неолитического периода — женщин  культур воронковидных кубков (Swedish_farmer) и культуры линейно-ленточной керамики Южной Германии (Stuttgart), а также неолитического жителя Тирольских Альп — Этци (Iceman). Нет в  анализе Давида и образцов мезолитического и эпинеолитического генофонда Европы — мезолитических охотников-собирателей Motala  и Losсhbour и неолитических охотников с острова Готланд (Skoglund_merge). C другой стороны, в широко обсуждаемой предварительной версии статьи Лазаридиса к анализу привлечены только актуальные в евразийской перспективе образцы, и поэтому на графике PCA отсутствуют геномы древнего аборигена Австралии и двух древних геномов из Северной Америки.

Я решил исправить эти недочеты за счет сведения всех древних геномов в единый график, увязав все эти геномы с древними популяциями предков современных этно-популяционных групп.  Принципы анализа были относительно просты, окончательная выборка популяций  была получена путем полуавтономного процесса слияния разных источников данных.  Отсеве снипов у представителей популяций в окончательной выборке был минимальный — использовались только модификаторы фильтра MAF (частота минорных аллелей) и HWE (пороговый критерий качества снипов с точки зрения закона равновесия Харди-Вайнберга).  Пороговое значение фильтр качества снипов по генотипированию я специально  оставил слегка заниженным, так как снипы отбирались по низкому значению коэффицента попарного сцепления в неравновесном наследовании.

Ниже в таблице приведены сводные данные о древних геномах и размерности числа снипов  этих образцов, которые использовались в моем анализе

Аncient (Afontova Gora) 10965
Australian Aborigen 236880 
Otzi_Tyrolean 171195 
Swedish_merged_farmer 1600
Swedish_merged_HG 4053
La Brana  57050
Malta-1 44459
LBK_Stuttgart 54220
Motala12 54677
Loschbour 54591
Motala_merged 35010
R Graphics Output
Визуализация двух первых главных компонентов разнообразия в популяциях выборки

В качестве программного обеспечения для проведения эксперимента с PCA, я использовал имплементацию PCA в новой версии программы plink. Эта имплементация уступает в точности вычислений классической программе Eigenstrat, однако заметно опережает в скорости, особенно на больших массивах данных.

Ниже я разместил серию визуализаций графика PCA. Первая иллюстрация — визуализация двух первых главных компонентов разнообразия, ставшая уже классической форма V-образного клина.

Из-за высокой плотности точек на графике, первая иллюстрация сложна для чтения. Поэтому  вместо того, чтобы наносить названия точек на график, я рассчитал центроиды точек популяций и разместил их на графике вместе с названием популяции.

Центроиды популяций
Центроиды популяций

 Как видно из второго графика, мировый популяции равномерно распределились по углам триангуляции. Африканские популяции длинным шлейфом-вектором  от пигмеев до фулани, cахарцев и эфиопских этносов распредились в левой части V-клина. Между ними и европейцами находится большая группа смешанных рассовых групп — пуэрто-риканцы, доминиканцы, афроамериканцы Карибского региона и Северной Америки, морокканцы, мозабиты и жители Туниса. В вершине угла V клина находятся все классические европейские этнические группы и народности. Они образуют внутренний европейский градиент генетической вариативности, уменьшающийся по мере удаления на север.  Северные популяции европейцев (особенно в Скандинавии и Прибалтике) смыкаются с находящимися на самой веришине угла древними геномами европейцев времен мезолита (Motala, Loschbour, La Brana,и перехода к неолита. Эта картина соответствует тому, что мы наблюдаем на графике Lazaridis et al. 2013.  Наблюдаемая на моем графике более значительная дистанция шведских охотников-собирателей шведской культуры ямочной керамики от современных популяций северной Европы объясняется только тем, что в работе Lazaridis et al. 2013 использовалась большее количество тех снипов древних геномов, которые встречаются и в современных популяциях (т.е находятся в пределах современной вариативности генов жителей современной северной Европы). Поэтому дистанция в узказанной работе между древними и современными популяцими ниже (тот же феномен наблюдается и в неолитическом векторе). Неолитический «вектор» представлен шведским неолитическим фермером, Этци Тирольцем, женщиной из неолитического поселения возле современного Штуттгарта. Из современных популяций к этому вектору находятся близко сардинцы и баски.
 

Однако наиболее интересная картина наблюдается в правой части графика, где мы наблюдаем наложение сразу нескольких клинов-градиентов разнообразия. Наиболее сложная структура наблюдается в том месте правого «крыла» графика, куда проецируются геномы двух палеолитических жителей Сибири (Malta-1 и AG). В этом месте график начинает ветвиться на три тесно переплетенные вектора-градиенты. Один уходит через Средную Азию-Непал-Северную Индию на юг, где встречается в двигающимся ему навстречу вектору-градиенту представленному австралийскими аборигенами, онге, папуасами, меланизийцами, андаманцами и дравидами.  Второй вектор ведет через Алтай-Монголию и Китай в Индокитай и юго-восточную Азию.

Третий вектор разделяется сразу на две части — одна ведет к палеосибирским народами и далее к алеутам и экскимосам. Этот вектор заканчивается древним геномом Saqqaq, который видимо является самым чистым «образчиком» генома древних людей, связанных с этими группами. Второй уходит через группу североамериканских индейских народов на юг, в Мезоамерику и далее к индейцам южной Америки. Вектор заканчивается на Anzick-1, и — по аналогии c Saqqaq, — можно сделать вывод о том, что этот геном является квинтэссенцией «чистого америндского компонента» без позднейших вкраплений в ходе контактов с европейцами.

Примечательно, что эти вектора переплетены между собой настолько, что в 2-мерном пространстве первых двух компонент, чукчи и коряки, североамериканские индейцы и экскимосы, кхмеры и индусы оказываются рядом. Очевидно, что эта иллюзия. С целью доказать это  утверждения, я построил трехмерную визуализацию положения центроидов популяций в пространстве первых трех главных компонентов генетического разнообразия.

persp3d
Трехмерная перспектива PCA

За кулисами: как создавался этно-популяционный калькулятор World-22

Летом 2011 года я создал целый рядсобственных модификаций получившего широкую известность калькулятора DIY Dodecad гениального грека Диенека Понтикоса. К моему приятному удивлению, за прошедшее время калькулятором успело воспользоваться несколько тысяч людей, некоторые из которых даже выложили свои результаты в Интернете.  Разумеется, многие также разместили и свои собственные интерпретации полученных результатов. Некоторые из приведенных в комментариях интерпретации выделялись (в хорошем смысле этого слова) высоким академическим уровнем, но мне попадались и такие комментарии, при чтении которых становилось понятно, что авторы не только не понимают принципов и сути парадигмы анализа, предложенного Понтикосом, но и — что гораздо хуже — выдавали свои фантазии за действительности. Особенно часто мне попадались подобные фантастические рассуждения в русскоязычном секторе Интернета.Пример такого невежества можно найти в рассуждениях само-провозглашенного академика ДНК-генеалогии Анатолия  Клесова:

Но и в этом случае различия все равно будут между русскими и монголами. Качественно и как-то полуколичественно его можно рассматривать, но не в виде профанации, как это делает Понтикос. Более того, это рассмотрение – если правильно – надо проводить не на выбранных маленьких фрагментах, а действительно по всему геному. На маленьких фрагментах будут вылезать отдельные особенности – то присущие в основном, например, гаплогруппам Y-I2 и мтДНК-Н, то кому-то еще. И это еще будет зависеть от разрешения, которые и обозначают индексами К=4, К=8 и другими. То есть берут маленький фрагмент генома, да еще с малым (или бóльшим) разрешением, стягивают в точку, и все равно получают в целом ерунду. Но для коммерции годится. Годятся для коммерции и вот такие, в частности, «открытия» того же Понтикоса: Перевод: Интересно то, что европейская популяция показывает присутствие американских индейцев, что показывает и f-статистика, и она же показывает присутствие компонента с Сардинией. Как видим, Понтикос уже забыл, что названия им придуманы как попало, и уже придает им абсолютные значения. Про Сардинию Понтикос уже вошел в состояние экзальтации. Он придает Сардинии некую пра-европейскую значимость, на основании, конечно, этой ерунды с «геномом», который анализирует как хочет. Пример – он трубил по всему свету, что Отци, «ледовый человек», имел геном «Сардинии». Однако только что опубликована статья о том, что Отци – никакая не Сардиния, а типичная Центральная Европа. Ну, и что делать будем? Понтикос, с его страстным желанием сенсаций, каждый раз наступает на одни и те же грабли. Впрочем, фарс продолжается. Теперь тем же занялся некто российский Веренич, а именно тоже насчитывает «польскую компоненту», пользуясь подходом своего гуру-Понтикоса.

Принимая во внимание вышесказанное, я решил просветить русскоязычную общественность относительно каким образом создавалось один из вышеупомянутых калькуляторов-модификаций (а именно World22, поскольку я считаю ее самой удачной модификацией). Тем более что в ходе многочисленных экспериментов было убедительно показано, что результаты моего калькулятора являются наиболее точными для выходцев из Восточной Европы.  В просветительских целях я перевел одно  из сообщений своего англоязычного блока на русский язык.  Надеюсь, что по прочтению этого текста, у читателя сложится более полное представление о принципах этно-популяционного анализа с помощью DIY калькуляторов.

Предварительные замечания

Как вы возможно знаете, MDLP блог не обновлялся с февраля 2012 года.  Полгода тому назад я пообещал себе, что я не буду писать новые сообщения на MDLP блоге до те пор пока я не напишу краткую научный отчет о проделенной работе. Так как приоритеты завершения научной работы были важнее рутиного обновления блога,  то  в связи с нехваткой времени, я был не в состоянии продолжать обновление блога на регулярной основе, в связи с нехваткой времени, я должен был внести изменения в свой исследовательский график. Поэтому я решил воздерживался от размещения новых данных на блоге в течение нескольких месяцев, фокусируясь на более важных вопросах. Несмотря на все ограничения, я продолжал втайне работать  на проектом MDLP, сбором необходимых данных и выполением различных ‘геномных’ экспериментов в целях достижения своей конечной цели. Однако с течением времени, некоторые результаты секретных экспериментов с новыми полногеномными популяционными выборками и инструментами в конечном итоге просочились в Интернет,  порождая огромный интерес к моему проекту. После выпуска новой версии моей собственной модификации DIYDodecad калькулятор на сайте Gedmatch.com, я был буквально завален письмами пользователями сервиса Gedmatch.com.
Тогда я осознал свою основную стратегическую ошибку, которая заключалась в  отсутствии подробной документации к выпущенными мной данными и результатам анализа, и почувствовал себя обязанным разместить более подробные разъяснения. Очевидно, я начну новую серию публикацию в своем блоге,  которая будет тесным образом связанна с теми аспектами моей работы, которая наиболее интересует общественность, то есть с калькулятором MDLP World22.

Основы отбора референсных популяций калькулятора MDLP World22.

Референсный набор  популяций в этом калькуляторе был собран в программе PLINK   методом «intersection&thinning» ( дословно «пересечением и истончением») образцов из различных источников данных: HapMap 3 (отфильтрованный набор данных КЕС, YRI, JPT, CHB), 1000genomes,   Rasmussen et al. (2010),   HGDP (кураторская база данных Стэнфордского университета), Metspalu et al. (2011),  Yunusbayev et al (2011), Chaubey et al. (2010) и т.д.
Кроме того, я отобрал произвольным образом по 10 сэмплов (или максимальное количество доступных сэмплов в тех случаях, когда общее число сэмплов в популяции было меньше 10) от каждой европейской страны, представленной в панеле базе данных POPRES. Наконец, для того чтобы оценить степень корреляции между современным и древним генетическим разнообразием населения Европы, я также включил в выборку образцы древней ДНК Эци (Keller et al. (2012)) ,  образцы житлей шведского неолита Gök4, Ajv52, Ajv70, Ire8, STE7 ( Skoglund et al. (2012)) и 2 образца La Braña  — останков мезолитических жителей Пиренейского полуострова (Sánchez-Quinto et al.(2012)).
Затем я добавил 90 образцов — анонимизированных данных — участников моего проекта. После слияния вышеупомянутых наборов данных и истончения набора SNP с  помощью особой команды PLINK, я исключил SNP-ы с  более чем 1% минорных аллелей. После чего я отфильтровал дубликаты, лиц с высоким уровнем общих по происхождению идентичных сегментов (IBD). В качестве критерия фильтрации  были использованы расчеты IBD в Plink, где IBD представлена как средняя доля аллелей общих между двумя людьми по всем анализируемым локусам.  Затем я удалил из выборки лиц с  высоким коэффициентом предпологаемого родства (коэффициенты родства были вычислены в программном обеспечении King). Для получения более стабильных результатов, я также отфильтровал сэмплы с более чем 3 стандартными отклонениями от средних данных  по популяции. Поскольку коэффициент родства может быть надежно определен с помощью оценки HWE (ожидания, вытекающего из закона Харди-Вайнберга) между SNP-ами с той же базовой частотой аллелей, то SNP-ы с существенным отклонением (p < 5.5 x10−8) от  ожидания Харди-Вайнберга были удалены из объединенного набора данных. После этого я выделил те SNP-ы, которые присутствовали в чипах Illumina / Affymetrix, и затем произвел фильтрацию снипов на основе расчетов степени неравновесного сцепления  (в этой я использовал хромосомное ‘окно’ размером в 50 базовых пар, с шагом 5 базовых пар и пороговым значением уровня сцепления R ^ 2, равным 0,3).
По окончанию этой сложной последовательности операций, я получил окончательноый набора данных, который включал в себя 80 751 снипов,  2516 человек и 225  референсных популяций.

Анализ этно-популяционного адмикс

 В ходе следующенго этапа, окончательный набор данных по референсным популяциям (которые я храню в linkage-формате PLINK) был обработан в программе Admixture.  Во время выбора подходящей модели проведения теста на этно-популяционный адмикс, я столкнулся с крайне трудной задачей: как было показано в профильных научных исследованиях (Patterson et al.2006) количество маркеров, необходимых для надежной стратификации популяций в анализе обратно пропорциональна генетическому расстоянию (фСТ) между популяциями. Согласно рекомендациям пользователей программы Admixture, считается что примерно 10 000 генетических SNP-маркеров достаточно для выполнения интер-континентальной GWAS -коррекции обособленных популяций (например, уровень дивергенции между африканскими, азиатскими и европейскими популяциями  FST > 0.05), в то время как для аналогичной коррекции между внутриконтинентальными популяциями требуется более чем 100000 маркеров (в Европе, например, ФСТ < 0.01). Для повышения точности результатов Admixture я решил использовать метод, предложенный Dienekes. Этот метод позволяет преобразовать частот аллелей в «синтетические» индивиды (см. также пример Зака Аджмала из проекта HarappaDNA). Идея метода довольно проста: сначала необходимо запустить unsupervised анализ Admixture с целью вычисления частот аллелей в так называемых предковых компонентов, а затем на основании аллельных частот сгенерировать «фиктивные популяции».  Именно эти фиктивные популяции и индивиды будут использоваться в ходе чистых референсов в ходе последующего анализа этно-популяционного анализа.
Впрочем, как и любой другой исследователь, работающий над четким решением проблемы этно-популяционного адмикса, я вынужден считаться с ограничениями этого подхода. Хотя я и отдаю себе отчет в существовании явных методологических подвохов в использовании смоделированных искусственных индивидов для определения адмикса в реальной популяции, я все же скорее склонен согласиться с Понтикосом, которые считаeт полученных в ходе  аллельно-частотного моделирования «фиктивных индивидов» лучшей аппроксимацией древних генетических компонентов мирового народонаселения.Как бы то не было, моделирующий подход, предложенный Диенеком и Заком, сослужил свою хорошую службу, поскольку были мной были получены  значимые результаты в ходе создания нового калькулятора. Сначала я произвел unsupervised Admixture (при значении К = 22, т.е 22 кластера частот аллель или предковых компонентов). По выполнению анализа нами были получены оценки коэффициентов адмикса в каждой из этих 22 аллельных кластеров, а также частоты аллелей для всех SNP-ов в каждой из 22 родовых популяций.
Затем я использовал мнемонические обозначения для каждого компонента (имена для каждого из компонентов выведены в  порядке их появления). Нужно помнить, что обозначения этих компонентов носят скорее мнемонический условный характер:
Pygmy
West-Asian
North-European-Mesolithic
Tibetan
Mesomerican
Arctic-Amerind
South-America_Amerind
Indian
North-Siberean
Atlantic_Mediterranean_Neolithic
Samoedic
Proto-Indo-Iranian
East-Siberean
North-East-European
South-African
North-Amerind
Sub-Saharian
East-South-Asian
Near_East
Melanesian
Paleo-Siberean
Austronesian
Вышеупомянутые частоты аллель, вычисленные в ходе unsupervised (безнадзорного) анализа (Admixture K = 22) объединенного набора данных, были затем использованы для симуляции синтетических индивидов, по 10 индивидов на каждую из 22 предковых компонент.  Это симуляционное моделирование проводилось с помощью PLINK команды -simulate Когда моделирование было закончено, я сделал визуализацию расстояния между симулированными индивидами с использованием многомерного масштабирования.
На следущем этапе, я включил группу смоделированных индивидов (220 индивидов) в новую эталонную популяцию. После чего я запустил новый анализ А, на этот раз в полном «поднадзорном» режиме для K = 22, причем полученные в ходе симуляционного моделирования фиктивные популяции фиктивных индивидов использовались в качестве новых референсных эталонных групп.  На конвергенцию 22 априорно заданых предковых компонентов было затрачено  31 итераций (3 7773,1 сек) с окончательным loglikelihood: -188032005,430318 (ниже приведена таблица значений Fst  между расчетными ‘предковыми’ популяциями):
Приведенная выше матрица  Fst дистанций  была использована для определения наиболее вероятной топологии NJ-дерева всех 22 предковых компонентов ( примечание: в качестве outgroup-таксона использовался South-African component). Индивидуальные результаты ‘поднадзорного’ анализа этно-популяционных миксов (в формате Excel) для участников проекта были загружены на GoogleDrive.

MDLP World22 DIYcalculator

Выходные файлы «поднадзорного» анализа  Admixture K=22 (средние значения коэффициентов адмикса в референсных популяциях и значения Fst) были использованы для разработки новой версии DIYcalculator MDLP, который более известен под кодовым названием «World22» (онлайн версия доступна разделе Admixture-утилит на сервисе Gedmatch в рамках проекта MDLP). Как я уже упоминал выше, MDLP DIYcalculator работает на коде Dodecad DIY calculator (c) Dienekes Pontikos.
В свою очередь,  реализованная на сервисе  Gedmatch модификация DIYcalculator ‘World22’ комбинирована с  Oracle ‘World22’ MDLP, который также работает на коде Диенека и Зака Аджмала ​​(Хараппа/DodecadOracle). Программа «Oracle» работает в двух режимах. В режиме single population программа определяет ближайщие (к анализируемому геному) референсные популяции калькулятора Word22. В смешанном режиме, Oracle рассматривает все пары населения, и для каждой из пар вычисляет минимальное Fst-взвешенное расстояние между парой и анализируемым геномом, а также  коэффициенты сходства.
Предковые популяции (т.е. полученные в ходе симуляционное моделирования популяции — см. выше) обозначены в результатах Oracle суффиксом anc, в то время реальные современные и древние популяции обозначены суффиксом der.
Если у Вас возникли проблемы с пониманием/интерпретацией результатов Oracle и DIYcalculcator,  то я настоятельно рекомендую обратится к соответствующим темам в блогах  Dodecad и НаrappaWorld . Я полагаю, что не имеет особого практического смысла заново изобретать велосипед и слово в слово повторять то, что уже было написано более компетентными в этом вопросе людьми.

Что представляют собой компоненты MDLP World-22?

Один из наиболее частых вопросов, которые задают мне пользователи калькулятора, напрямую касается практической интерпретации референсных популяций и предковых компонентов в моих калькуляторах K = 12 и World-22 анализов в виду. Чуть выше по тексту я уже привел часть ответа на этот вопрос , но — как гласит старинная китайская пословица — одна картинка стоит десять тысяч слов. Вот почему я решил визуализировать компоненты на поверхности земного шара путем отображения коэффициентов адмикса. Избегая излишних премудростей, я воспользовался готовым рецептом Франсуа Оливье, который предложал  использовать графическую библиотеку статистического программного обеспечения R для отображения пространственной интерполяции  коэффициентов адмикса (Q матрица) в двух измерениях (где пространственные координаты записываются как географические долгота и широта).  Благодаря этому решению, мне удалось создать по 2 контурные карты на каждый из предковых компонентов.Pygmy (модальный компонент в  популяциях африканских пигмеев Biaka и Mbuti)

West-Asian (бимодальный компонет с пиком на Кавказе и юго-восточной части Ирана, приблизительно идентичен компонентам Caucasian/Gedrosia Диенека Понтикоса)
North-European-Mesolithic (локальный архаичный компонент с пиком в популяции древних европейских жителей Иберийского полуострова La_Brana и современной популяции саамов).
Tibetan (Indo-Burmese) component (Гималаи-Тибет)
Mesomerican (главный генетический компонент  у мезоамериканских америндов)

 

North-Amerind (нативный компонент северо-американских америндов)

South-Amerind (нативный компонент южно-американских индейцев)
  Atlantic-Mediterranean-Neolithic (доминируюший компонент  в западной и юго-западной Европе)

Контурные карты прочих компонентов можно скачать здесь.

Ученые вдвое «состарили» предка всех мужчин

http://ria.ru/science/20130306/926203809.html#ixzz2MtC5OCDc

МОСКВА, 6 мар — РИА Новости. Один коммерческий генетический тест, проведенный в США, привел к пересмотру истории человечества — в результате теста была обнаружена Y-хромосома, которая почти в два раза старше, чем самые древние представители человека современного вида, сообщает New Scientist со ссылкой на исследование, опубликованное в American Journal of Human Genetics.

Носителем уникальной хромосомы был живший в Южной Каролине и недавно умерший афроамериканец Альберт Перри (Albert Perry). Несколько лет назад одна из его родственниц передала образцы его тканей в компанию Family Tree DNA для генеалогических исследований. Известно, что все мужчины наследуют Y-хромосому по мужской линии, и общий для них всех предок, «генетический Адам», жил от 60 до 140 тысяч лет назад.

Однако Y-хромосома Перри оказалась уникальной: ее не удалось «вставить» в общее генеалогическое дерево, для нее не нашлось ни предков, ни потомков. Майкл Хаммер (Michael Hammer) из университета Аризоны узнал об этом случае и начал поиски по всем известным базам данных, которые привели к обескураживающему результату: Перри не был потомком «генетического Адама» по мужской линии, его Y-хромосома «рассталась» с остальным человечеством примерно 338 тысяч лет назад. При этом наиболее древние известные останки человека современного вида относятся к значительно более поздней эпохе — 195 тысяч лет назад.

В ходе дальнейших поисков Хаммеру и его коллегам удалось обнаружить «родственников» Y-хромосомы Перри в одной африканской базе данных. Сходные хромосомы были обнаружены у 11 мужчин, живущих в одной деревне в Камеруне.

По мнению ученых, «казус Перри» означает, что на заре своей истории люди современного вида скрещивались с другой неизвестной популяцией людей, которая затем полностью исчезла. Исследователи считают, что необходимо провести новые генетические исследования людей, живущих к югу от Сахары. Возможно, генетических археологов ждут новые сюрпризы, которые сделают раннюю историю человечества еще более запутанно

 

Популяции Нового Света: f_3 статистика и датировка событий креолизации/метисизации

Итак, теперь можно попытаться проанализировать результаты предыдущего опыта по изучению генетической структуры ряда американских популяций. MDS-анализ показал, что популяции выстраиваются вдоль одного из двух ребер умозрительного треугольника, вершиной которого является популяцию белых американцев из США (штат Юта). Одно из ребер является проекцией градации присутствия в генофонде чистого аборигенного америндского компонента – самыми близкими к белым американцам оказываются метисизированные группы алеутов и индейцев с северо-западного побережья США (индейцы Кольвилль и так далее),  и самой удаленной группой является популяция индейцев Surui из Бразилии. Второе ребро условного треугольника довольно только отражает градацию чистого африканского компонента.  Наиболее близкими к CEU здесь оказываются пуэрто-риканцы и жители островов Карибского моря, однако значительная часть этой группы оказывается смещенной в сторону от основного вектора за счет присутствия в генофонде следов нативного индейского населения Пуэрто-Рико.  Примечательно также расположение на плоте популяции The Lumbee Tribe. В первом цензе США 1790 года Lumbee записывались в разряд лично-свободных цветных людей. Однако уже в середине 19 века Lumbee упорно опровергали утверждения ряда ученых о происхождении Lumbee от беглых черных рабов: современные потомки этой небольшой группы продолжают считать себя потомками от смешанных браков индейцев Северной Каролины с  потомками «потерянных» белых колонистов Каролины начала 18 века.

Однако мой эксперимент разоблачает этот миф. Представители этой группы оказываются рядом с пуэрто-риканцами, благодаря чему можно сделать два убедительных предположения: a) Lumbee возникли в результате сложно процесса смешения всех трех рас  и b) соотношение генетических компонент трех рас в геноме Lumbee приблизительно равно аналогичному соотношению в геноме пуэрто-риканцев. Этот феномен объясняет почему многие из пуэрто-риканцев и афро-американцев, которые пользуются моим геномным калькуляторам для предсказания своего этнического происхождения,  нередко находят в своих результатах совпадение с геномом представителей племени Lumbee.

f3-статистика адмикса

Поскольку  в отличие от моих предыдущих экспериментов с европейскими популяциями данная выборка содержат априорно известные популяции метисов и мулатов, то в целях сопоставления результатов я решил применить новейшие методы анализа геномного адмикса – f3статистику и алгоритм ROLLOFF — для изучения демографической истории популяций Нового Света. В качестве примера я использовал геномные данные пуэрто-риканцев, в анализе использована метрика f3-статистики в версии программы Admixtools. Для иллюстрации достоверности сигнала я выбрал только те пары референсных популяций, чья интерполяция в геном таргетной популяции пуэрто-риканцев дают наибольшее отрицательное значение

parameter file: /storage/hpchome/vadim78/admixtools/examples/test.par

### THE INPUT PARAMETERS

##PARAMETER NAME: VALUE

genotypename: /storage/hpchome/vadim78/admixtools/bin/American.geno

snpname: /storage/hpchome/vadim78/admixtools/bin/American.snps

indivname: /storage/hpchome/vadim78/admixtools/bin/American.ind

popfilename: /storage/hpchome/vadim78/admixtools/examples/amer_qp3test

## qp3Pop version: 204

nplist: 528

number of blocks for block jackknife: 662

snps: 618523

Source1 Source2 Target f_3 std.err Z SNPs
Afro-American Kumiai PuertoRican -0.016575 0.000547 -30.303

601008

Afro-American Tsimsian PuertoRican -0.016280 0.000525 -31.011

601177

Afro-American Huichol PuertoRican -0.015848 0.000498 -31.799

601268

Afro-American Pima PuertoRican -0.014528 0.000455 -31.952

602781

Afro-American Navajo PuertoRican -0.013458 0.000409 -32.877

602871

Afro-American Mixtec PuertoRican -0.015951 0.000431 -36.975

602204

CEU Afro-American PuertoRican -0.017152 0.000232 -73.777

608991

Если сравнивать с результатами ADLER-тестов европейских популяций, то сразу обращает на себя внимание высокие значения Z-score, особенно в сравнении со старыми европейскими популяциями. Разница в амплитуде значений составляет примерно 10-15 раз.  Говоря простым языком, генетический сигнал смешения исходных популяций у пуэрто-риканцев намного сильнее, что свидетельствует о недавном адмиксе.

Интервал активной фазы смешения предковых популяций.

На следующем этапе нашего эксперимента, мы использовали программу ADLER и генетические дистанции снипов, полученные путем интерполяции известных значений генетических дистанций (сантиморганид) и физических дистанции снипов. Конечной целью этого этапа – дать оценку хронологического интервала событий адмикса. Для большего разнообразия я выбрал  латиноамериканских жителей Карибского бассейна.   Из нижеприведенных результатов следует, что у популяции латиноамериканских жителей присутствует сигнал адмикса как с североамериканскими, так и с центрально-американскими индейцами. Временной интервал адмикса в упрощенном виде составляет примерно 17-10 поколений тому назад  т.е примерно в интервале между 1490-1660 годами.

        |

|      ALDER,   v1.0

\..|./

\ \  /       Admixture

\ |/ /      Linkage

\| /       Disequilibrium for

|/        Evolutionary

|         Relationships

|

 

+—————————————————————————+

|  ALDER computes weighted LD decay curves, performs curve-fitting to      |

|  infer admixture dates, and uses the results to test for admixture.      |

|  For full details about options and parameters, please see the README    |

|  file included with this software.                                       |

+—————————————————————————+

 

warning: ignoring ‘jackknife’ parameter, which only applies to raw output

———- contents of parameter file: alder.par ———-

genotypename: /storage/hpchome/vadim78/admixtools/bin/American.geno

snpname: /storage/hpchome/vadim78/admixtools/bin/American.snps

indivname: /storage/hpchome/vadim78/admixtools/bin/American.ind

num_threads: 10

jackknife: YES

output: Caribbean

seed: 24

admixpop: Caribbean_Hispanic

refpops: Mexican;Colombian;Dominican;Ecuadorian;PuertoRican;Bolivian;Totonac;Aleut;Athabask;Navajo;Apache;Mixtec;Huichol;Cochimi;Cucupa;Kumiai;Luiseno;Costanoan;Lumbee;Tlingit;Haida;Eskimo;Miwok;Serrano;Colville;Inuit-West;Inuit-East;Tsimsian;Pima;Maya;Karitiana;Surui;Caribbean_Hispanic;Afro-American;CEU

———- parameter settings used (with defaults for unspecified) ———-

 

Input data files:

genotypename: /storage/hpchome/vadim78/admixtools/bin/American.geno

snpname: /storage/hpchome/vadim78/admixtools/bin/American.snps

indivname: /storage/hpchome/vadim78/admixtools/bin/American.ind

 

Admixed population:

admixpop: Caribbean_Hispanic

 

Reference populations/weights:

refpops: Mexican;Colombian;Dominican;Ecuadorian;PuertoRican;Bolivian;Totonac;Aleut;Athabask;Navajo;Apache;Mixtec;Huichol;Cochimi;Cucupa;Kumiai;Luiseno;Costanoan;Lumbee;Tlingit;Haida;Eskimo;Miwok;Serrano;Colville;Inuit-West;Inuit-East;Tsimsian;Pima;Maya;Karitiana;Surui;Caribbean_Hispanic;Afro-American;CEU

 

Raw weighted LD curve output:

raw_outname: (none)

 

Data filtering:

mincount: 4

 

Curve fitting:

binsize: 0.000500

mindis: -1.000000

maxdis: 0.500000

 

Поскольку нет смысла приводить весь лог эксперимента, я ограничусь лишь теми результатами, которые дали положительные результаты по обоим тестам

 

*** Admixture test summary ***

 

Weighted LD curves are fit starting at 1.2 cM

 

Does Caribbean_Hispanic have a 2-ref weighted LD curve with Mixtec and Tlingit?

2-ref decay z-score:    5.11

2-ref amp_exp z-score:  4.68

YES: curve is significant

 

Do 2-ref and 1-ref curves have consistent decay rates?

1-ref Mixtec — 2-ref z-score:                       0.02   (  0%)

1-ref Tlingit — 2-ref z-score:                      1.11   ( 21%)

1-ref Tlingit — 1-ref Mixtec z-score:               1.76   ( 21%)

YES: decay rates are consistent

 

Test SUCCEEDS (z=4.68, p=0.00054) for Caribbean_Hispanic with {Mixtec, Tlingit} weights

note: p-value is multiplied by 190 for multiple-hypothesis correction

 

DATA:  success 0.00054            Caribbean_Hispanic   Mixtec Tlingit  4.68      5.26      5.97      21%     12.14 +/- 2.37            0.00002098 +/- 0.00000448       12.18 +/- 2.32   0.00015501 +/- 0.00001668       15.03 +/- 1.95   0.00009072 +/- 0.00001520

*** Admixture test summary ***

 

Weighted LD curves are fit starting at 0.9 cM

 

Does Caribbean_Hispanic have a 2-ref weighted LD curve with Mixtec and Haida?

2-ref decay z-score:    7.24

2-ref amp_exp z-score:  4.87

YES: curve is significant

 

Do 2-ref and 1-ref curves have consistent decay rates?

1-ref Mixtec — 2-ref z-score:                      -0.19   ( -3%)

1-ref Haida — 2-ref z-score:                        0.78   ( 18%)

1-ref Haida — 1-ref Mixtec z-score:                 1.06   ( 21%)

YES: decay rates are consistent

 

Test SUCCEEDS (z=4.87, p=0.00021) for Caribbean_Hispanic with {Mixtec, Haida} weights

note: p-value is multiplied by 190 for multiple-hypothesis correction

 

DATA:  success 0.00021            Caribbean_Hispanic   Mixtec Haida  4.87      5.26      5.06      21%     12.61 +/- 1.74            0.00004084 +/- 0.00000838       12.18 +/- 2.32   0.00015501 +/- 0.00001668       15.07 +/- 2.88   0.00006966 +/- 0.00001376

 

*** Admixture test summary ***

 

Weighted LD curves are fit starting at 1.1 cM

 

Does Caribbean_Hispanic have a 2-ref weighted LD curve with Haida and Pima?

2-ref decay z-score:    4.23

2-ref amp_exp z-score:  4.18

YES: curve is significant

 

Do 2-ref and 1-ref curves have consistent decay rates?

1-ref Haida — 2-ref z-score:                        0.15   (  4%)

1-ref Pima — 2-ref z-score:                        -0.53   (-11%)

1-ref Pima — 1-ref Haida z-score:                  -0.72   (-15%)

YES: decay rates are consistent

 

Test SUCCEEDS (z=4.18, p=0.0055) for Caribbean_Hispanic with {Haida, Pima} weights

note: p-value is multiplied by 190 for multiple-hypothesis correction

 

DATA:  success 0.0055  Caribbean_Hispanic   Haida  Pima    4.18      5.06      5.02      15%     14.44 +/- 3.41   0.00004388 +/- 0.00001049       15.07 +/- 2.88   0.00006966 +/- 0.00001376       12.93 +/- 2.57   0.00014421 +/- 0.00001779

 

MDS-анализ генетической вариативности американских популяций

В декабре прошлого года я занимался анализом аутосомных SNP-ов около трех десятков групп аборигенного народонаселения, проживающих в Новом Свете. Вот эти популяции:

Mexican
Colombian
Dominican
Ecuadorian
PuertoRican
Bolivian
Totonac
Aleut
Athabask
Navajo
Apache
Mixtec
Huichol
Cochimi
Cucupa
Kumiai
Luiseno
Costanoan    
Lumbee
Tlingit
Haida
Eskimo
Miwok
Serrano
Colville 
Inuit-West

Inuit-East

Inuit-West
Tsimsian
Pima
Maya
Karitiana
Surui
Caribbean_Hispanic

В программе Plink были произведены расчеты вариативности этих популяции; позднее эти расчеты были представлены в виде MDS-графика, отображающего взаимное расположение основных популяций Нового Света (за исключением потомков европейцев)  в пространстве первых двух главных генетических векторов, определенных статистическими методами мульти-дименсионального шкалирования.

mdsplot

 

 

test

 

Так как поставленная задача была довольно проста, то и  решилась она тривиальным способом за счет:

  1. включения в выборку генотипов 47 американских афро-американцев США из афро-американской панели проекта HapMap (ASW)
  2. увеличения числа снипов до 190 000.

Новый MDS плот образовал классическую правильную V-образную форму. Такая форма MDS и  PСA-графиков свидетельствует о том, что набор снипов обладает высокими дискриминантными свойствами за счет значимых величин Fst. Иными словами, имеющийся набор снипов дает высокую степень резолюции в определении генетической структуры различных групп народонаселения, которые в свою очередь объединяются в различные кластеры.

 

Собственно говоря, в более правильном виде, вилка американских популяций должна образовать треугольник, в одном углу которого должны располагаться потомки европейских переселенцев; в другом углу – нативное население Америк (америнды); а в третьем – потомки африканских народов.
Таким образом, положение любого индивида, имеющего относительно давние корни в Новом Свете внутри означенного треугольника будет указывать на степень его моно-,би-, и трирасовости.

В основу нашей гипотезы было положено предложение Тони Фрудакиса («Molecular Photofitting. Predicting Ancestry and Phenotype Using DNA») насчет отображения структуры генофонда жителей США в виде треугольника.

Genetic triangle
С целью проверки своей гипотезы о формировании классического треугольника популяционной дивергенции, я добавил в выборку генотипы (1,5 миллиона снипов) 50 мормонов из панели CEU (Utah residents with Northern and Western European ancestry from the CEPH collection). Из нового графика MDS наглядно следует,  что наша  гипотеза нашла свое подтверждение.

mds2

Именно по этой  причине, созданный нами калькулятор MDLP является самым точным из имеющихся в свободном доступе инструментов для обнаружения присутствия компонентов Native American и Afro-American в геноме современных коренных жителей Нового Света.

В качестве дополнительной верификации гипотезы был проведен анализ генетической вариативности популяций Нового Света по методу главных компонент (использовалась та же самая выборка в формате Eigenstrat в программе Eigensoft 4.0). Метод главных компонент дал аналогичную картину:
PCA