ALDER анализ происхождения белорусов и поляков

В качестве одного из метода проверки надежности импутированных снипов для анализа популяционной истории различных этнических групп, я использовал метод ALDER (он представляет собой более продвинутую версию алгоритма ROLOFF, описанного в известной работе Patterson et al. 2012).

Метод ALDER  выявляет нюансы популяционной истории через оценку двух важных параметров: а) рекомбинации — процесса обмена участками между разными молекулами ДНК, который напоминает перемешивание игральных карт в колоде (у человека он обязательно происходит при образовании половых клеток) и б) неравновесия по сцеплению — явления, при котором несколько участков ДНК передаются вместе блоками, которые формируются несколько по-разному в разных популяциях из-за того, что в разных популяциях наследуются разные комбинации сегментов ДНК. Таким образом, метод основан на выявлении специфических для каждой популяции сцепленных участков ДНК и на оценке доли общих сегментов в выборках сравниваемых популяций. При этом метод ALDER на основе оценки неравновесия по сцеплению определяет правдоподобность того, что две выбранные группы являются предковыми по отношению к анализируемым популяциям. Кроме того, метод позволяет также установить время смешения через оценку доли рекомбинаций на поколение.
Как было сказано выше, метод ALDER представляет собой расширенный вариант алгоритма ROLLOFF.Этот метод позволяет производить математическую оценку как времени, так как и уровня адмикса. Оценка производится на основании анализа неравновесия по сцеплению между SNP-ами. Тут необходимо вспомнить стандартное определение неравновесия по сцеплению.Неравновесием по сцеплению (часто используется английская аббревиатура LD) называется неслучайная связь между двумя аллелями, в силу которой определенные комбинации аллелей встречаются наиболее часть. В теории,  чем дальше друг от друга находятся SNP-ы ,тем меньше будет уровень LD. Темп угасания снижения  LD в адмиксе напрямую связана с числом поколений, прошедших с момента адмикса,  так как c возрастанием числа поколений увлечивается число рекомбинаций произошедших между  двумя отдельными SNP-ами. Проще говоря: Rolloff соответствует экспоненциальной кривой угасания уровня LD от расстояния, и эта скорость экспоненциального снижения как раз и используется  для оценки числа поколений, так и уровня адмикса в анализируемой популяии. Учитывая, что одно поколение примерно равно 29 лет, можно преобразовать число поколений в года.В качестве двух тестовых популяций я использовал две группы — выборку белорусов (данные публичной коллекции эстонского биоцентра, вошедшие позднее в стандартный набор популяций лаборатории Райха, а также данные белорусов, собранные мной в проекте MDLP) и выборку поляков (из публичной коллекции эстонского биоцентра, а также данные поляков из выборки моего проекта MDLP).   В 2012 году я уже проводил анализ ROLLOFF белорусов, поэтому было интересно посмотреть, как изменится картина после добавления новых палеогеномов и импутированных (негенотипированных) снипов. Для полноты эксперимента, я также включил данные поляков, чтобы посмотреть, работает ли метод на данных, полученных с помощью других платформ генотипирования (NB:когда я проводил анализ, у меня еще не было данных поляков из кураторской базы данных лаборатории Reich).

В качественных референсных популяций (кандидатов в предковые популяции) я использовал набор из 400 популяций в моей расширенной выборки.  Программа работает в три этапа:

  • На первом этапе определяется статистическая значимость сравнения амплитуд угасания 2-референсной LD(в случае наличия такой значимость программа пишет success)

Cледующие комбинации дали положительный результат

Belarusian Andronovo.SG Chukchis
Belarusian Andronovo.SG Koryaks
Belarusian Armenian_Martuni Karelia_HG
Belarusian Bashkir Turkish_Jewish
Belarusian Nordic_LN.SG Villabruna
Belarusian Turkish_Jewish Uzbek
Belarusian Anatolia_Neolithic Brahui
Belarusian Anatolia_Neolithic Burusho
Belarusian Anatolia_Neolithic Itelmen
Belarusian Anatolia_Neolithic Koryak
Belarusian Anatolia_Neolithic Mixtec
Belarusian Anatolia_Neolithic Pathan
Belarusian Anatolia_Neolithic Mala
Belarusian Anatolia_Neolithic Turkmen
Belarusian Anatolia_Neolithic Uygur
Belarusian Druze Selkup
Belarusian Mala Syrian
Belarusian Mixtec Spain_EN
Belarusian Anatolia_Neolithic Brahui
Belarusian Anatolia_Neolithic Burusho
Belarusian Anatolia_Neolithic Chukchi
Belarusian Anatolia_Neolithic Selkup
Belarusian Anatolia_Neolithic Sindhi
Belarusian Anatolia_Neolithic Uygur
Belarusian British-Roman Koryak
Belarusian British-Roman Mixtec
Belarusian Chukchi Mala
Belarusian Itelmen Uzbek_WGA
Belarusian LBK_EN Selkup
Belarusian Selkup Turkish_Trabzon
Belarusian Abhkasian Lahu
Belarusian Ami_Coriell Uzbek_WGA
Belarusian Anatolia_Neolithic Chukchi
Belarusian Anatolia_Neolithic Daur
Anatolia_Neolithic Han
Anatolia_Neolithic Han_NChina
Anatolia_Neolithic Miao
Anatolia_Neolithic Turkmen
Belarusian Atayal_Coriell Uzbek_WGA
Belarusian British-Roman Mixtec
Belarusian Chukchi Mala
Belarusian Dai Greek_Islands
Belarusian Dai Uzbek_WGA
Belarusian Daur North_Ossetian
Belarusian Daur Uzbek_WGA
Belarusian Eskimo_Chaplin LBK_EN
Belarusian Georgian Lahu
Belarusian Georgian Yi
Belarusian Greek_Islands Han
Belarusian Greek_Islands Miao
Belarusian Greek_Islands Mixtec
Belarusian Greek_Islands Nganasan
Belarusian Greek_Islands Ulchi
Belarusian Greek_Islands Xibo
Belarusian Han Uzbek_WGA
Belarusian Han Yemenite_Jew
Belarusian Han_NChina Uzbek_WGA
Belarusian Han_NChina Yemenite_Jew
Belarusian Japanese Uzbek_WGA
Belarusian Korean Uzbek_WGA
Belarusian Lahu Turkish_Jew
Belarusian Lahu Uzbek_WGA
Belarusian Lahu Yemenite_Jew
Belarusian LBK_EN Selkup
Belarusian Miao Uzbek_WGA
Belarusian Miao Yemenite_Jew
Belarusian Naxi Uzbek_WGA
Belarusian Oroqen Uzbek_WGA
Belarusian She Uzbek_WGA
Belarusian Tu Uzbek_WGA
Belarusian Tujia Uzbek_WGA
Belarusian Tujia Yemenite_Jew
Belarusian Ulchi Uzbek_WGA
Belarusian Uzbek_WGA Xibo
Belarusian Uzbek_WGA Yi
Belarusian Uzbek_WGA Yukagir_Tundra
Belarusian Yemenite_Jew Yi
  • На втором — cоответствие скоростей угасания LD в попарном сравнении с референсными популяциями (программа выдает предупреждение, если амплитуды угасания LD несовместимы).  Как видно, большинство триплетов (таргетная популяция + 2 референса) имеет несовместимые амплитуды угасания LD.

DATA: success (warning: decay rates inconsistent) 0.028 Belarusian Andronovo.SG Chukchis 4.64 2.80 2.11 85% 244.96 +/- 44.45 0.00055485 +/- 0.00011964 262.22 +/- 50.30 0.00029724 +/- 0.00010632 105.99 +/- 50.22 0.00013405 +/- 0.00003707
DATA: success (warning: decay rates inconsistent) 3.8e-05 Belarusian Andronovo.SG Koryaks 5.86 2.80 2.36 85% 241.36 +/- 36.30 0.00059837 +/- 0.00010219 262.22 +/- 50.30 0.00029724 +/- 0.00010632 105.75 +/- 44.80 0.00011083 +/- 0.00002791
DATA: success (warning: decay rates inconsistent) 0.037 Belarusian Armenian_Martuni Karelia_HG 4.58 2.20 3.48 53% 206.14 +/- 39.11 0.00072944 +/- 0.00015918 324.91 +/- 90.64 0.00018302 +/- 0.00008311 189.01 +/- 42.42 0.00043186 +/- 0.00012423
DATA: success (warning: decay rates inconsistent) 0.044 Belarusian Bashkir Turkish_Jewish 4.55 2.70 2.53 83% 121.78 +/- 24.93 0.00009384 +/- 0.00002064 153.64 +/- 48.19 0.00006384 +/- 0.00002366 296.25 +/- 73.05 0.00014988 +/- 0.00005929
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Nordic_LN.SG Villabruna 4.54 2.19 5.01 30% 160.01 +/- 35.24 0.00086280 +/- 0.00018037 139.86 +/- 63.88 0.00033916 +/- 0.00014340 117.88 +/- 23.51 0.00043952 +/- 0.00008295
DATA: success (warning: decay rates inconsistent) 0.0032 Belarusian Turkish_Jewish Uzbek 5.07 2.53 2.35 112% 116.58 +/- 23.00 0.00008493 +/- 0.00001382 296.25 +/- 73.05 0.00014988 +/- 0.00005929 83.46 +/- 35.51 0.00004275 +/- 0.00001721
DATA: success (warning: decay rates inconsistent) 0.0066 Belarusian Anatolia_Neolithic Brahui 4.18 4.42 2.87 37% 63.78 +/- 15.17 0.00000803 +/- 0.00000192 92.46 +/- 19.49 0.00001427 +/- 0.00000323 88.94 +/- 27.82 0.00000775 +/- 0.00000270
DATA: success (warning: decay rates inconsistent) 0.019 Belarusian Anatolia_Neolithic Burusho 3.93 4.42 2.19 47% 93.43 +/- 9.05 0.00001536 +/- 0.00000390 92.46 +/- 19.49 0.00001427 +/- 0.00000323 149.25 +/- 37.02 0.00001357 +/- 0.00000621
DATA: success (warning: decay rates inconsistent) 0.035 Belarusian Anatolia_Neolithic Itelmen 3.79 4.42 2.15 64% 69.11 +/- 15.92 0.00002889 +/- 0.00000762 92.46 +/- 19.49 0.00001427 +/- 0.00000323 134.23 +/- 58.31 0.00003278 +/- 0.00001523
DATA: success (warning: decay rates inconsistent) 0.023 Belarusian Anatolia_Neolithic Koryak 3.90 4.42 2.30 30% 82.94 +/- 21.28 0.00003363 +/- 0.00000828 92.46 +/- 19.49 0.00001427 +/- 0.00000323 111.83 +/- 48.56 0.00002562 +/- 0.00000985
DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.90 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Mixtec 3.87 4.42 2.73 71% 71.36 +/- 14.69 0.00003027 +/- 0.00000782 92.46 +/- 19.49 0.00001427 +/- 0.00000323 149.36 +/- 43.83 0.00002944 +/- 0.00001080
DATA: success (warning: decay rates inconsistent) 0.019 Belarusian Anatolia_Neolithic Pathan 3.93 4.42 2.02 42% 104.78 +/- 14.08 0.00001497 +/- 0.00000380 92.46 +/- 19.49 0.00001427 +/- 0.00000323 141.03 +/- 36.42 0.00001165 +/- 0.00000577
DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success (warning: decay rates inconsistent) 0.026 Belarusian Anatolia_Neolithic Uygur 3.87 4.42 2.54 56% 71.95 +/- 14.95 0.00001528 +/- 0.00000395 92.46 +/- 19.49 0.00001427 +/- 0.00000323 127.39 +/- 37.67 0.00001541 +/- 0.00000606
DATA: success (warning: decay rates inconsistent) 0.02 Belarusian Druze Selkup 3.93 2.02 3.14 73% 51.53 +/- 13.06 0.00001224 +/- 0.00000311 110.46 +/- 43.38 0.00001040 +/- 0.00000516 59.53 +/- 18.98 0.00000945 +/- 0.00000299
DATA: success (warning: decay rates inconsistent) 0.044 Belarusian Mala Syrian 3.73 3.87 2.84 28% 72.39 +/- 19.33 0.00000805 +/- 0.00000216 87.55 +/- 18.75 0.00001071 +/- 0.00000277 96.31 +/- 27.52 0.00000993 +/- 0.00000350
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Mixtec Spain_EN 3.85 2.73 2.67 26% 114.65 +/- 21.37 0.00005462 +/- 0.00001417 149.36 +/- 43.83 0.00002944 +/- 0.00001080 117.07 +/- 30.31 0.00002193 +/- 0.00000820
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Anatolia_Neolithic Brahui 3.70 3.45 2.55 32% 63.07 +/- 15.18 0.00000871 +/- 0.00000235 81.39 +/- 21.48 0.00001207 +/- 0.00000349 87.19 +/- 27.66 0.00000771 +/- 0.00000303
DATA: success (warning: decay rates inconsistent) 0.039 Belarusian Anatolia_Neolithic Burusho 3.74 3.45 2.00 61% 89.47 +/- 10.12 0.00001582 +/- 0.00000423 81.39 +/- 21.48 0.00001207 +/- 0.00000349 152.62 +/- 45.80 0.00001482 +/- 0.00000742
DATA: success (warning: decay rates inconsistent) 0.0013 Belarusian Anatolia_Neolithic Chukchi 4.52 3.45 2.79 35% 77.64 +/- 16.37 0.00003602 +/- 0.00000797 81.39 +/- 21.48 0.00001207 +/- 0.00000349 110.36 +/- 39.54 0.00002861 +/- 0.00000981
DATA: success (warning: decay rates inconsistent) 0.038 Belarusian Anatolia_Neolithic Selkup 3.74 3.45 2.41 38% 55.27 +/- 13.63 0.00002155 +/- 0.00000576 81.39 +/- 21.48 0.00001207 +/- 0.00000349 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Anatolia_Neolithic Sindhi 3.83 3.45 2.68 61% 65.40 +/- 9.12 0.00001072 +/- 0.00000280 81.39 +/- 21.48 0.00001207 +/- 0.00000349 122.70 +/- 32.60 0.00001132 +/- 0.00000423
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.00000250 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Uygur 3.85 3.45 2.16 37% 70.37 +/- 13.51 0.00001582 +/- 0.00000411 81.39 +/- 21.48 0.00001207 +/- 0.00000349 102.34 +/- 33.39 0.00001107 +/- 0.00000512
DATA: success (warning: decay rates inconsistent) 0.021 Belarusian British-Roman Koryak 3.89 2.37 2.28 74% 62.36 +/- 16.01 0.00003903 +/- 0.00000934 52.03 +/- 19.63 0.00002305 +/- 0.00000974 113.23 +/- 49.75 0.00002665 +/- 0.00001027
DATA: success (warning: decay rates inconsistent) 0.0084 Belarusian British-Roman Mixtec 4.11 2.37 2.50 80% 64.78 +/- 15.52 0.00004703 +/- 0.00001145 52.03 +/- 19.63 0.00002305 +/- 0.00000974 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success (warning: decay rates inconsistent) 0.01 Belarusian Chukchi Mala 4.06 2.79 4.06 60% 172.83 +/- 30.55 0.00002691 +/- 0.00000663 110.36 +/- 39.54 0.00002861 +/- 0.00000981 93.18 +/- 21.71 0.00001222 +/- 0.00000301
DATA: success (warning: decay rates inconsistent) 0.047 Belarusian Itelmen Uzbek_WGA 3.69 2.36 2.20 54% 142.22 +/- 27.73 0.00006725 +/- 0.00001821 129.35 +/- 53.29 0.00003152 +/- 0.00001338 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.009 Belarusian LBK_EN Selkup 4.09 2.18 2.41 67% 67.83 +/- 16.58 0.00002655 +/- 0.00000641 115.11 +/- 38.65 0.00001960 +/- 0.00000899 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 0.05 Belarusian Selkup Turkish_Trabzon 3.68 2.41 2.11 32% 56.53 +/- 15.37 0.00001451 +/- 0.00000330 57.06 +/- 20.02 0.00000933 +/- 0.00000386 77.83 +/- 33.34 0.00000751 +/- 0.00000355
DATA: success (warning: decay rates inconsistent) 0.017 Belarusian Abhkasian Lahu 4.21 2.47 2.97 174% 32.04 +/- 6.68 0.00001002 +/- 0.00000238 3.95 +/- 1.60 0.00000098 +/- 0.00000024 57.34 +/- 19.33 0.00001384 +/- 0.00000369
DATA: success (warning: decay rates inconsistent) 0.00018 Belarusian Ami_Coriell Uzbek_WGA 5.15 2.09 2.20 63% 162.32 +/- 22.43 0.00007649 +/- 0.00001486 118.09 +/- 56.57 0.00002688 +/- 0.00001279 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0041 Belarusian Anatolia_Neolithic Chukchi 4.52 3.45 2.79 35% 77.64 +/- 16.37 0.00003602 +/- 0.00000797 81.39 +/- 21.48 0.00001207 +/- 0.00000349 110.36 +/- 39.54 0.00002861 +/- 0.00000981
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Daur 4.12 3.45 2.63 47% 73.39 +/- 17.81 0.00002378 +/- 0.00000569 81.39 +/- 21.48 0.00001207 +/- 0.00000349 118.84 +/- 40.98 0.00002486 +/- 0.00000947
DATA: success 0.05 Belarusian Anatolia_Neolithic Han 3.96 3.45 3.00 17% 79.39 +/- 18.74 0.00002687 +/- 0.00000678 81.39 +/- 21.48 0.00001207 +/- 0.00000349 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.00002310 +/- 0.00000644
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.20 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.00000250 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success (warning: decay rates inconsistent) 0.00046 Belarusian Atayal_Coriell Uzbek_WGA 4.97 2.02 2.20 53% 179.16 +/- 31.95 0.00008213 +/- 0.00001654 130.82 +/- 54.40 0.00002576 +/- 0.00001275 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian British-Roman Mixtec 4.11 2.37 2.50 80% 64.78 +/- 15.52 0.00004703 +/- 0.00001145 52.03 +/- 19.63 0.00002305 +/- 0.00000974 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success (warning: decay rates inconsistent) 0.033 Belarusian Chukchi Mala 4.06 2.79 4.06 60% 172.83 +/- 30.55 0.00002691 +/- 0.00000663 110.36 +/- 39.54 0.00002861 +/- 0.00000981 93.18 +/- 21.71 0.00001222 +/- 0.00000301
DATA: success (warning: decay rates inconsistent) 0.009 Belarusian Dai Greek_Islands 4.35 3.05 2.28 32% 122.32 +/- 24.18 0.00004797 +/- 0.00001103 88.71 +/- 29.04 0.00001846 +/- 0.00000511 102.11 +/- 26.83 0.00001569 +/- 0.00000687
DATA: success (warning: decay rates inconsistent) 0.049 Belarusian Dai Uzbek_WGA 3.97 3.05 2.20 87% 160.47 +/- 30.16 0.00006276 +/- 0.00001582 88.71 +/- 29.04 0.00001846 +/- 0.00000511 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0015 Belarusian Daur North_Ossetian 4.73 2.63 2.09 122% 42.94 +/- 8.92 0.00000724 +/- 0.00000153 118.84 +/- 40.98 0.00002486 +/- 0.00000947 178.58 +/- 51.90 0.00001887 +/- 0.00000901
DATA: success (warning: decay rates inconsistent) 0.047 Belarusian Daur Uzbek_WGA 3.97 2.63 2.20 62% 164.70 +/- 29.83 0.00008292 +/- 0.00002087 118.84 +/- 40.98 0.00002486 +/- 0.00000947 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.00086 Belarusian Eskimo_Chaplin LBK_EN 4.84 2.29 2.18 73% 53.65 +/- 11.08 0.00002657 +/- 0.00000479 63.81 +/- 27.89 0.00001618 +/- 0.00000586 115.11 +/- 38.65 0.00001960 +/- 0.00000899
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Georgian Lahu 4.10 2.89 2.97 166% 43.55 +/- 10.61 0.00001537 +/- 0.00000311 5.27 +/- 1.82 0.00000079 +/- 0.00000023 57.34 +/- 19.33 0.00001384 +/- 0.00000369
DATA: success (warning: decay rates inconsistent) 0.05 Belarusian Georgian Yi 3.96 2.89 3.26 179% 35.28 +/- 8.91 0.00000897 +/- 0.00000226 5.27 +/- 1.82 0.00000079 +/- 0.00000023 93.65 +/- 25.60 0.00002033 +/- 0.00000624
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3.00 15% 108.92 +/- 26.70 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.50 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.20 2.28 3.37 15% 118.40 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.90 0.00002845 +/- 0.00000805
DATA: success (warning: decay rates inconsistent) 0.042 Belarusian Greek_Islands Xibo 4.00 2.28 2.59 37% 101.05 +/- 22.65 0.00003689 +/- 0.00000922 102.11 +/- 26.83 0.00001569 +/- 0.00000687 70.25 +/- 27.10 0.00001649 +/- 0.00000507
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success (warning: decay rates inconsistent) 1.8e-05 Belarusian Han Uzbek_WGA 5.56 3.00 2.20 83% 145.83 +/- 21.23 0.00006518 +/- 0.00001171 93.68 +/- 31.25 0.00002137 +/- 0.00000623 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.023 Belarusian Han Yemenite_Jew 4.14 3.00 2.19 41% 101.08 +/- 19.78 0.00002665 +/- 0.00000644 93.68 +/- 31.25 0.00002137 +/- 0.00000623 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.00017 Belarusian Han_NChina Uzbek_WGA 5.15 3.58 2.20 76% 147.58 +/- 21.48 0.00006493 +/- 0.00001261 101.71 +/- 28.43 0.00002310 +/- 0.00000644 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.021 Belarusian Han_NChina Yemenite_Jew 4.16 3.58 2.19 47% 88.25 +/- 14.91 0.00002464 +/- 0.00000593 101.71 +/- 28.43 0.00002310 +/- 0.00000644 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Japanese Uzbek_WGA 3.99 2.51 2.20 76% 158.76 +/- 32.98 0.00007182 +/- 0.00001802 101.02 +/- 40.27 0.00002259 +/- 0.00000766 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.034 Belarusian Korean Uzbek_WGA 4.05 3.28 2.20 72% 147.50 +/- 22.94 0.00006552 +/- 0.00001618 106.54 +/- 29.46 0.00002451 +/- 0.00000748 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0022 Belarusian Lahu Turkish_Jew 4.65 2.97 3.22 53% 53.69 +/- 9.97 0.00001763 +/- 0.00000379 57.34 +/- 19.33 0.00001384 +/- 0.00000369 92.56 +/- 21.52 0.00000780 +/- 0.00000242
DATA: success (warning: decay rates inconsistent) 7.8e-06 Belarusian Lahu Uzbek_WGA 5.70 2.97 2.20 119% 125.65 +/- 17.75 0.00006183 +/- 0.00001084 57.34 +/- 19.33 0.00001384 +/- 0.00000369 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.028 Belarusian Lahu Yemenite_Jew 4.10 2.97 2.19 85% 73.51 +/- 17.32 0.00002186 +/- 0.00000534 57.34 +/- 19.33 0.00001384 +/- 0.00000369 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.029 Belarusian LBK_EN Selkup 4.09 2.18 2.41 67% 67.83 +/- 16.58 0.00002655 +/- 0.00000641 115.11 +/- 38.65 0.00001960 +/- 0.00000899 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 3e-05 Belarusian Miao Uzbek_WGA 5.47 3.63 2.20 89% 141.79 +/- 17.01 0.00005964 +/- 0.00001090 86.31 +/- 23.79 0.00001726 +/- 0.00000411 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.012 Belarusian Miao Yemenite_Jew 4.29 3.63 2.19 49% 96.51 +/- 17.73 0.00002466 +/- 0.00000575 86.31 +/- 23.79 0.00001726 +/- 0.00000411 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.036 Belarusian Naxi Uzbek_WGA 4.04 2.35 2.20 87% 150.57 +/- 27.26 0.00006598 +/- 0.00001633 88.34 +/- 37.62 0.00001891 +/- 0.00000714 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0037 Belarusian Oroqen Uzbek_WGA 4.54 2.50 2.20 75% 159.87 +/- 26.32 0.00007776 +/- 0.00001713 102.18 +/- 40.85 0.00002369 +/- 0.00000834 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.043 Belarusian She Uzbek_WGA 3.99 3.16 2.20 70% 177.32 +/- 34.01 0.00008208 +/- 0.00002055 108.68 +/- 31.62 0.00002238 +/- 0.00000708 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.029 Belarusian Tu Uzbek_WGA 4.09 2.28 2.20 85% 150.44 +/- 31.12 0.00006074 +/- 0.00001485 91.29 +/- 40.04 0.00001929 +/- 0.00000802 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.001 Belarusian Tujia Uzbek_WGA 4.80 2.09 2.20 61% 164.13 +/- 25.59 0.00008133 +/- 0.00001693 120.48 +/- 57.69 0.00002290 +/- 0.00001057 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.00002290 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.0053 Belarusian Ulchi Uzbek_WGA 4.47 3.37 2.20 65% 153.49 +/- 25.35 0.00007000 +/- 0.00001567 114.38 +/- 33.90 0.00002845 +/- 0.00000805 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.00055 Belarusian Uzbek_WGA Xibo 4.93 2.20 2.59 105% 129.90 +/- 24.58 0.00005579 +/- 0.00001132 225.56 +/- 61.89 0.00007507 +/- 0.00003406 70.25 +/- 27.10 0.00001649 +/- 0.00000507
DATA: success (warning: decay rates inconsistent) 0.00062 Belarusian Uzbek_WGA Yi 4.91 2.20 3.26 83% 156.22 +/- 22.94 0.00007252 +/- 0.00001478 225.56 +/- 61.89 0.00007507 +/- 0.00003406 93.65 +/- 25.60 0.00002033 +/- 0.00000624
DATA: success (warning: decay rates inconsistent) 0.011 Belarusian Uzbek_WGA Yukagir_Tundra 4.31 2.20 2.55 61% 182.09 +/- 32.35 0.00008497 +/- 0.00001970 225.56 +/- 61.89 0.00007507 +/- 0.00003406 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success (warning: decay rates inconsistent) 0.048 Belarusian Yemenite_Jew Yi 3.97 2.19 3.26 41% 130.87 +/- 22.50 0.00003478 +/- 0.00000876 142.22 +/- 61.15 0.00001902 +/- 0.00000870 93.65 +/- 25.60 0.00002033 +/- 0.00000624

После отсеивания не очень пригодных для дальнейшего анализа триплетов  у нас осталась следующие комбинации:

DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.9 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.05 Belarusian Anatolia_Neolithic Han 3.96 3.45 3 17% 79.39 +/- 18.74 0.00002687 +/- 0.00000678 81.39 +/- 21.48 0.00001207 +/- 0.00000349 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.0000231 +/- 0.00000644
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.2 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3 15% 108.92 +/- 26.7 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.5 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.2 2.28 3.37 15% 118.4 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.9 0.00002845 +/- 0.00000805
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.0000229 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.0000087

На третьем этапе программа определяет статистическая значимость комбинации (p-статистику):

P-значение (англ. P-value) — величина, используемая при тестировании статистических гипотез. Фактически это вероятность ошибки при отклонении нулевой гипотезы (ошибки первого рода). Проверка гипотез с помощью P-значения является альтернативой классической процедуре проверки через критическое значение распределения.

Обычно P-значение равно вероятности того, что случайная величина с данным распределением (распределением тестовой статистики при нулевой гипотезе) примет значение, не меньшее, чем фактическое значение тестовой статистики.

Отберем значения P меньше 0.05

DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.0000231 +/- 0.00000644
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.5 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.9 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.2 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.2 2.28 3.37 15% 118.4 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.9 0.00002845 +/- 0.00000805
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.0000229 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.0000087
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3 15% 108.92 +/- 26.7 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623

Получаем следующие пары (с датировкой адмикса в поколениях и годах)

Таргет Референс 1 Референс 2 Поколения Погрешность Года Погрешность
Belarusian Anatolia_Neolithic Turkmen 85.64 +/- 28.96 2483.56 +/- 839.84
Belarusian Anatolia_Neolithic Turkmen 72.89 +/- 23.73 2113.81 +/- 688.17
Belarusian Anatolia_Neolithic Han_NChina 101.71 +/- 28.43 2949.59 +/- 824.47
Belarusian Anatolia_Neolithic Turkmen 72.89 +/- 23.73 2113.81 +/- 688.17
Belarusian Greek_Islands Mixtec 121.19 +/- 40.18 3514.51 +/- 1165.22
Belarusian Greek_Islands Yukagir_Tundra 119.62 +/- 45.23 3468.98 +/- 1311.67
Belarusian Anatolia_Neolithic Mala 87.55 +/- 18.75 2538.95 +/- 543.75
Belarusian Anatolia_Neolithic Miao 86.31 +/- 23.79 2502.99 +/- 689.91
Belarusian Greek_Islands Ulchi 114.38 +/- 33.9 3317.02 +/- 983.1
Belarusian Tujia Yemenite_Jew 142.22 +/- 61.15 4124.38 +/- 1773.35
Belarusian Greek_Islands Miao 86.31 +/- 23.79 2502.99 +/- 689.91
Belarusian Greek_Islands Nganasan 97.92 +/- 45.95 2839.68 +/- 1332.55
Belarusian Greek_Islands Han 93.68 +/- 31.25 2716.72 +/- 906.25
Belarusian Anatolia_Neolithic Han 93.68 +/- 31.25 2716.72 +/- 906.25

О чем свидетельствует результаты? Результаты указывают на наличие сигнала смешивания предковых популяций белорусов с неолитическими земледельцами (ближневосточные популяции и популяции ближнего Востока здесь выступают в качестве суррогата неолитических популяций), и с рядом восточноазиатских, сибирских и америндских популяций (здесь они выступают в качестве суррогата сибирского вклада в генофонд восточной Европы) cо средним интервалом смешения примерно 2850 +- 950 лет назад, т.е в период бронзового века.

Ниже приведены графики угасания LD в комбинации Anatolian-Neolithic + Mala

Затем я уменьшил масштаб подгонки (fitting) кривых угасания LD до 0.5 сантиморганид и взял в качестве референса  палеогеномы с хорошим покрытием

Эксперимент с Loschbour + Stuttgart оказался неудачным.

Более правдоподобна комбинация андроновцев (Andronovo) и чукчей (дата адмикса — 125+-60 поколений тому назад)

Вторая попытка подгонки референсных популяций Loschbour и Stuttgart в качестве предковых групп оказался более удачным (дата адмикса — приблизительно 445 +- 56 поколений тому назад, времена энеолита)

Адмикс с сибирскими палеопопуляциями (MA1) примерно в два раза «моложе» (258 +- 42 поколения, бронзовый век)

Еще один вариант адмикса между палеолитическими жителями Европы и MA1 (датировка — 393 +- 75 поколений)

Теперь о поляках. К сожалению, результаты оказались гораздо более зашумленными, так как использовались данные генотипирования на платформе Illumina, имеющей меньшее пересечение снипов со снипами платформы Affymetrix HumanOrigins. Несмотря на это, программа ALDER нашла три комбинации, пусть и с несовместимой амплитудой угасания LD.

DATA: success (warning: decay rates inconsistent) 0.011 Pole Eskimo_Sireniki Irish-BA 3.87 2.01 2.53 40% 146.66 +/- 27.30 0.00035747 +/- 0.00009228 161.51 +/- 69.51 0.00013202 +/- 0.00006577 107.56 +/- 33.31 0.00015435 +/- 0.00006109
DATA: success (warning: decay rates inconsistent) 0.0068 Pole Eskimo_Sireniki Remedello_BA.SG 3.99 2.01 2.57 49% 110.88 +/- 21.02 0.00024049 +/- 0.00006022 161.51 +/- 69.51 0.00013202 +/- 0.00006577 182.60 +/- 39.99 0.00014922 +/- 0.00005796
DATA: success (warning: decay rates inconsistent) 0.035 Pole Eskimo_Chaplin Remedello_BA.SG 3.59 2.51 2.57 56% 102.38 +/- 21.46 0.00022199 +/- 0.00006181 126.26 +/- 42.96 0.00009643 +/- 0.00003846 182.60 +/- 39.99 0.00014922 +/- 0.00005796

Здесь тоже виден слабый сигнал адмикса популяций бронзового века из Западной Европы (Remedello и ирландского бронзового века) c америндскими популяциями.

Впрочем, дополнительный анализ в программе ROLLOFF (с уменьшенным масштабом подгонки — fitting) выдал правдоподобные (c низким значением P) варианты. Например, вариант Bichon + Georgian_Kakheti: 151.41 +/-38.18, p= 4.7e-06

Очень хорошим вариантом оказался вариант адмикса Esperstedt_MN-Halberstadt_LBA: (дата адмикса — 163.80 +/- 34.11), p=4.8e-07

Реклама

Еще раз о палеогеномах европейцев (к работе Haak et. al. 2015)

Еще когда появились первые анонсы препринта статьи Haak et al. 2015,  можно было сделать интуитивные предположения о том, что использованные в работе образцы палеогеномов будут всесторонне изучены не только авторами статьи, но и многочисленными любителями, причем ожидаемая степень детализации полученной картины генетического разнообразия  будет предположительно выше именно у последних (т.е всевозможных геномнных блоггеров).

Так оно и вышло. Давид Веселовский из Eurogenes провел целый ряд экспериментов с объединенным базовым набром «геномов» современных популяций и так называемых древних геномов.  В частности, в одном из своих анализов он задействовал новую программу qpAdm из последней версии пакета Admixtools,  и в ходе пробного моделирования геномов представителей ямной культуры из самарской культуры был наилучшая аппроксимация (fit, подгонка) была получена в комбинации  51.4% генома  охотников-собирателей Самары и  48.6 современных грузин (STD 0,032, chisq 3,890, р-value 2.20661e-22). Образцы палеогеномов представителей  шнуровой керамики могут быть в свою очередь смоделированы как 73% геномов ямников + 27% палеогеномов Esperstedt_MN (STD 0,060, chisq 2,621, р-value 9.74968e-06).

Это интересный результат, главным образом потому данные лингвистики позволяют предположить, что ранние индоевропейцы — по-видимому, кочевники ямной культуры или их предки — были в тесном контакте с прото-картвельскими популяциями.  Похожий результат был получен авторами статьи (у которых представители ямной культуры выступали как 50% -50% смесь геномов карельских охотников-собирателей и армян), а также в моих экспериментах, в которых геномы современных белорусов были представлены  гибридной моделью  современных геномов армян и палегеномов шведских охотников-собирателей Motala.

Впрочем, я согласен с Веселовским — главная проблема с подобными ретроспективными анализами заключается в том, что про причине отсутствия большого количества достоверных древних палеогеномов, популяционные генетики часто вынуждены моделировать древние популяции посредством комбинаций современных популяций. Как отмечает Веселовский, в генофонде современных грузин присутствует (по его оценке) 20% так называемого ANE-компонента, который, вероятно, прибыл на Кавказ из Евразийской степи. Если это так, то алгоритм qpAdm  может переоценить «кавказский» компонент в геномах ямников, по крайней мере, на 10%.

В другом своем анализе Веселовский уделил особое внимание  проблеме происхождения одного из основных компонентов в геноме древних ямников. Так например, анализ Admixture в Haak et al. 2015 включает в себя ряд интригующих компонентов с К = 16 до К = 20, которые, как правило составляют более 40% от генетической структуры потенциально прото-индо-европейских геномов ямников. Веселовский выделил компонент сигнализирующий этот тип «адмикса» и подробно изучил его. Заслуживает внимание тот факт, что компонент достигает своего пика на Кавказе и в горах Гиндукуша, и в целом показывает сильную корреляцию с регионами относительно высокой частоты связанных с палеогеномом MA1  компонентами происхождения (ANE). С другой стороны, другой компонент ямников достигает пиковых значений у  ранних европейских фермеров (EEF), у которых отсутствует компоент ANE.

Выделенные Веселовским 3 основные компоненты-составляющие геномов ямников были преобразованы в синтетические популяции (центрально-азиатская, европейская и неолитическая европейская), которые в свою очередь использовались в качестве подмножества для вычисления векторов загрузки (loadings) в PCA анализе полного набора современных популяций.

https://drive.google.com/file/d/0B9o3EYTdM8lQak82NFVYSUJfWGc/preview

Очевидно, более детальный расклад и анализ вклада различных компонентов геномов палеоевропейцев в геном современных жителей Европы можно найти в подробном анализе Сергея Козлова  «Палеоевропейцы из работы Haak et al, 2015 в свете анализа на IBD-сегменты«.

Как я уже упоминал ранее, мой опыт с «выведением» предкового аутосомного компонента индоевропейцев (обозначенного в статье Lazaridis et al. 2013 сокращением ANE) полностью удался. Поскольку всем очевидно, что этот компонент родственен «североиндийскому предковому компоненту» (ANI — обозначение из статьи Reich et al. 2009 и Moorjani et al 2011) о структуре генофонда индийских этнических групп), я взял 10 индийских этнических групп, имеющихся в кураторском наборе лаборатории Райха и проанализировал эту выборку в Admixture на пропорции вхождения их геномов в 2 априорно заданные кластеры. Первый кластер ANE был априорно задан 40 синтетическим индивидами, сгенерированными в программе Plink на основании расчитанных ранее частот аллелей «чистого» компонента ANE. В качестве дополнительного контрольного образца я использовал геном Malta1, т.к. он содержит в себе наивысшее содержание компонента ANE. Второй кластер был задан 4 индивидами Onge (одна из аборигенных народностей Андаманских островов). Как неоднократно указывалось в литературе, именно жители Андаманских островов являются самыми «чистыми» носителями т.н «южно-индийского» предкового компонента ASI (на континенте чистых носителей этого «компонента» не осталось, в том числе и среди популяций дравидов, ведда и мунда). После нескольких экспериментов по эвристическому методу проб и ошибок, я получил более или менее приемлимое разделение индивидов на 2 кластера, а затем вычислил частоты аллелей в каждом из этих кластеров. Любопытно, что в ходе опыта, удалось не только выделить компонент ANI, но и добиться неплохого уровня дискримнации между компонентом ANI, ANE, и благодаря этому, оба компонента могут быть включены в мой следующий этно-популяционный калькулятор.

Надежность компонентов я проверил на собственных данных. В рабочей модели калькулятора K14 удельное распределение этно-генографических компонентов моего генома выглядит следующим образом:

68.75% — европейский мезолитический компонент
13.12% — северо-евразийский компонент ANE
10.23% — европейский неолитический компонент
4% — ANI (северо-индийский предковый компонент)
1.6% — кавказский компонент
1.2% — алтайский компонент
0.2% — сибирский компонент

Затем я использовал 120 древних образцов аутосомной ДНК человека (начиная с верхнего палеолита до бронзового и железного веков) из последней работы и проработал их в бета-версии своего этно-популяционного калькулятора K14. Я надеялся выделить компонент ANE из ANI, но из таблицы видно, что это фактически один и тот же компонент

Когда я закончу полномерную импутацию всего набора данных от лаборатории Райха, я займусь проведением аналогичных экспериментов. А пока — примерно месяц назад я сообщил о начале первого этапа своего нового проекта. Согласно первоначальному замыслу, на первый этап — фазирование и импутация данных выборок из статей Haak et al .2015 (preprint) и Lazaridis et al. 2014 — я отводил месяц. Так оно и получилось.

В качестве затравки для импутирования я использовал набор 424329 снипов на 22 аутосомных хромосамх. Набор состоял из снипов, прошедших стандратный геномный контроль качества. Фазирование и импутация снипов я проводил с помощью пайплайна Molgenis.

По окончанию этого вычислительно-емкого процесса, мною был получен набор из примерно 5 миллионов снипов; после отсева не входящих в панели Illumina снипов у меня осталось 913841 снипов.

Ниже приведена похромосомная статистика снипов до и после импутации данных.
Как видно, на всех хромосомах (за исключением 19 и 20) количество снипов увеличилось примерно в два раза.

Для оценки качества импутации я сравнил импутированные генотипы своих данных с известными данными из своих сырых данных (снипы с иллюминовского чипсета 23andme) на предмет конкорданса (соответствия).
Оказалось, что у 6.5% импутированных генотипов оба варианта не совпадали с генотипам в rawdata от 23andme, у 17.33% — не совпадал один из двух вариантов. Таким образом, качество импутации составляет примерно 76.18%, что неплохо, учитывая что среднее значение качества импутации в программе IMPUTE v2 + SHAPEIT составляет примерно 69%.

11071088_10206257613949054_7906454924722989677_nChromosome Pre-imputation Post-imputation Percentage of imputed snps

1 36638 88155 41.56
2 40140 90003 44.60
3 33218 62030 53.55
4 23594 54462 43.32
5 19731 55284 35.69
6 27979 56485 49.53
7 22804 49172 46.38
8 23072 48756 47.32
9 19369 42438 45.64
10 25340 49666 51.02
11 23145 46434 49.84
12 16967 45668 37.15
13 14998 35626 42.10
14 15529 36429 42.63
15 14663 27844 52.66
16 15034 33806 44.47
17 7799 24949 31.26
18 11697 27709 42.21
19 7102 17715 40.09
20 12654 5054 -39.94
21 6495 2572 -39.60
22 6361 13584 46.83
424329 913841 36.74

Для проверки полезности полученного набора (объединенного набора «реальных» и импутированных снипов), я соединил его с 112 образцами человеческих палеогеномов из новой статьи Haak et al. 2015. Полученный таким образом набор я проанализировал методом выделения главных компонент, первые две из которых я впоследствии использовал для построения графика главных компонент. Как мне кажется, получилось красиво и правдоподобно.

Two first principal components

 

Через неделю работы в GoogleCloud, получил результаты второго цикла обработки (импутации и фазировки) палеогеномов. Напомню, задачей ставилось увеличение числа снипов палеогеномов до уровня, позволяющего проводить исследования с привлечением сторонних данных по современным человеческим популяциям (т.е не только по тем популяциям, которые включены в кураторский набор лаборатории Рейха, но и другим наборам, генотипированным на платформе Illumina; и что самое главное — с привлечением данных конкретных пользователей 23andme и FTDNA).

И если результатами первой части я был вполне доволен, то этого нельзя сказать о второй части. Теперь я понимаю, что ошибка содержалась в самом дизайне цикла второй части, в которой для импутации и фазирования использовались только реальные и «симуляционные» палеогеномы. В результате, хотя импутация и улучшила взаимное позиционирование палеогеномов в пространстве главных компонент генетического разнообразия, однако при слиянии импутированного в автономном режиме набора палеогеномов с набор полученным в первой части проекта, получилась картина. в которой палеогеномы образуют как бы параллельную субструктуру по отношению к современным популяциям.
Данное обстоятельство объясняется тем, что у древних геномов людей больше общего разнообразия между собой, чем с геномами современных людей (у которых в результате многочисленных генетических дрейфов и бутылочных горлышек большая часть разнообразия была потеряна). По этому причине, при независимой импутации древних геномов их сходство между собой только усилилось, а дистанция с современными популяциями увеличилась. Примечательно при этом, что пропорции вилкообразного разделения генетического разнообразия такие же, как и у современных людей.

На графике PCA эта ситуация прослеживается особенно хорошо, где отчетиливо видно наложение этих двух V-вилок друг на друга (см. нижний график)

Это означает одно — работу над проектом надо продолжить

Алгоритм самостоятельного анализа результатов экзомного тестирования

Осенью 2011 года один из флагманов коммерческой персональной геномики, компания 23andme, запустила пилотный проект экзомного тестирования, в котором клиентам предлагался продукт — экзомный тест за 999 американских долларов вместе с интерпретацией результатов.  Тест покрывал примерно 50 млн. базовых пар ДНК, включающих в себя информацию необходмую для синтеза протеинов. К сожалению, пилотный проект быстро закрылся из-за отсутствия интереса и высокой стоимости теста. Тем не менее, некоторые из россиян успели заказать себе этот тест и получить результаты. Но так как авторизированный отчет 23andme с толкованием полученных результатов оказался написанным на сложном для понимания эзотерическом научном языке,  возникла необходимость в дополнительной интерпретации, вернее разжевывании имеющейся интерпретации, то я решил показать, как можно проанализировать экзом самостоятельно с помощью подручных средств.

В качестве примера я использую анонимизированный файл vcf (файл с перечнем геномных вариантов) одного из немногих россиян, заказавших экзомное тестирование в 23andme.

 

Техническое описание исследования.

Для анализа экзома я использовал NGS-библиотеки пакета Bioconductor-R (в среде статистических вычислений R), предназначенного для анализа полногеномных данных. Основной библиотекой, задействованной в анализе была библиотека variantAnnotation.

source(«http://bioconductor.org/biocLite.R»)

library(VariantAnnotation)

Загрузка требуемого пакета: BiocGenerics

Загрузка требуемого пакета: parallel

Присоединяю пакет: ‘BiocGenerics’

Загрузка требуемого пакета: GenomicRanges

Загрузка требуемого пакета: IRanges

Загрузка требуемого пакета: XVector

Загрузка требуемого пакета: Rsamtools

Загрузка требуемого пакета: Biostrings

Присоединяю пакет: ‘VariantAnnotation’

В самом начале я загрузил заархивированный файл x.vcf в память с использованием координат геномного билда hg19 (т.к. VCF был получен из bam-файла, координаты которого были взяты из GRCh37.64, соответствующего hg19):
> vcf <- readVcf(«x.vcf», «hg19»)

> vcf

class: CollapsedVCF

dim: 110651 1

rowData(vcf):

  GRanges with 5 metadata columns: paramRangeID, REF, ALT, QUAL, FILTER

info(vcf):

  DataFrame with 28 columns: AB, AC, AF, AN, BaseQRankSum, DB, DP, DS, Dels,.

geno(header(vcf))

DataFrame with 5 rows and 3 columns

        Number        Type

   <character> <character>

AD           .     Integer

DP           1     Integer

GQ           1       Float

GT           1      String

PL           .     Integer

head(rowData(vcf), 3)

GRanges with 3 ranges and 5 metadata columns:

             seqnames         ranges strand | paramRangeID            REF

                <Rle>      <IRanges>  <Rle> |     <factor> <DNAStringSet>

  rs79585140        1 [14907, 14907]      * |         <NA>              A

  rs75454623        1 [14930, 14930]      * |         <NA>              A

  rs78601809        1 [15211, 15211]      * |         <NA>              T

                            ALT      QUAL      FILTER

             <DNAStringSetList> <numeric> <character>

  rs79585140                  G    494.81  MQFilter40

  rs75454623                  G    718.96  MQFilter40

  rs78601809                  G    125.22  MQFilter40

Затем я определил качество полученных генотипов (эти данные содержаться в колонке GQ секции генотипов vcf). Как видно из приведенных ниже значений, только 52% всех генотипов имеют 99%  степень аккуратности определения, качество остальных 48% вариантов лежит в диапазоне между 0 и 90% процентами. 

> geno(vcf)

List of length 5

names(5): AD DP GQ GT PL

> GQ <-geno(vcf)$GQ

> dim(GQ)

[1] 110651      1

> geno(vcf)

List of length 5

names(5): AD DP GQ GT PL

> GQ <-geno(vcf)$GQ

> dim(GQ)

[1] 110651      1

> fivenum(GQ)

[1]  0.03 33.98 99.00 99.00 99.00

> length(which(GQ==99.00))/length(GQ)

[1] 0.5221552

 hist(GQ[GQ != 0], breaks=seq(0, 100, by=10)

qc

На следующем этапе я опредилил число ранее неизвестных (новельных, то есть отствующих в базе dbSNP) вариантов в файле VCF. Всего вариантов 110651, из них известных 106076 и новельных 4575 (в отчете 23andme 4137). В целях определения качества новельных снипов я создал метрику для оценки качества снипов на основе сопоставления двух параметров – качества глубины покрытия генома и качества генотипирования. Из приведенного ниже графика видно, что примерно 25 % новельных снипов находятся в зоне низкого качества глубины покрытия, и это означает что примерно четверть новельных снипов могут представлять собой артефакт генотипирования:

info(vcf)$DB -> dbsnpsnp

metrics <- data.frame(QUAL=qual(vcf), inDbSNP=dbsnpsnp, RSQ=info(vcf)$QD)

 

qdПосле предварительных статистических тестов, я приступил к определению генов, в которых были обнаружены варианты. В зависимости от своего расположения, варианты могут оказаться в одном из 7 участков: интрон,  кодирующий участок, 5’UTR, 3’UTR, интергенный регион, сплайс-сайт и промоутер.   Для обнаружения положения вариантов, я задействовал библиотеку TxDb.Hsapiens.UCSC.hg19.knownGene.  Сначала я определил положение всех вариантов (cм.  Excel файл exomevariants.xlsx), однако поскольку нас интересует в первую очередь frameshift мутации, то гораздо более информативным является нахождение вариантов в кодирующих участках. Всего таких вариантов в кодирующих участка обнаружено 56035 в 23140 генах, причем 989 из 23140 генов имеет больше одного обнаруженного варианта в кодирующем участке

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

loc <- locateVariants(rd, txdb, CodingVariants())

table(sapply(splt, function(x) length(unique(x)) > 1))

FALSE  TRUE

22151   989

Далее, я использовал функцию predictCoding, она вычисляет изменения кодирования аминокислот в несинонимичных вариантах. В запросе к базе данных рассматрываются только те участки , которые перекрываются с кодирующей областью. Референсные последовательности извлекаются из BSgenome. Вариант последовательности определяется путем замены, вставки или удаления значения в колонке varAllele в референсной последовательности.  Код аминокислот вычисляются для последовательности кодонов  в тех вариантах, когда длина кратна 3.

library(BSgenome.Hsapiens.UCSC.hg19)

coding <- predictCoding(vcf, txdb, seqSource=Hsapiens)


Затем из полученных 56035 вариантов в кодирующей области я выбрал только те, которые привели к сдвигу рамки чтения (таковых оказалось 412).

coding[mcols(coding)$CONSEQUENCE == «frameshift»]

Благодаря запуску функции predictCoding я отождествил код измененных аминокислот для не-синонимичных вариантов.  Анализируя это подмножество, я задался целью установить, какой физиологический ущерб эти изменения кодируемых аминокислот могут нанести при экспресии в фенотип.  Для этих целей я использовал методы PolyPhen, которые предсказывают последствия замены аминокислот в человеческих протеинах.  PolyPhen использует информарцию о функции последовательностей и структурную информацию, характеризующую замену аминокислоты для прогнозах о структуре и функции белка.

nms <- names(coding)

idx <- mcols(coding)$CONSEQUENCE == «nonsynonymous

nonsyn <- coding[idx]

rsids <- unique(names(nonsyn)[grep(«rs», names(nonsyn), fixed=TRUE)])

library(PolyPhen.Hsapiens.dbSNP131)

pp <- select(PolyPhen.Hsapiens.dbSNP131, keys=rsids,cols=c(«TRAININGSET», «PREDICTION», «PPH2PROB»))

head(pp[!is.na(pp$PREDICTION), ])

Полученные файлы сохранены в Excel файл x.xlsx, и затем подсчитано в каких протеинах наблюдается наибольшое число потенциально вредных frameshift мутаций

Название гена  Число frameshift мутаций

 

NA 2288
uc001lsw.2 44
P20930 34
P22105-3 21
P25940 13
O60732 12
Q5SSG8 10
Q86YZ3 10
Q9NYF8 9
P46013 9
Q5VU43 9
Q14500 9
Q9UMD9 8
O14513 8
A6NKC6 8
uc003ssj.2 7
O95678 7
O15360 7
Q86VF7 7
uc001mdw.3 6
Q9Y289 6
Q8NEZ4 6
Q96C45 6
Q9HD43 6
Q01955 6
Q2KHM9 6
Q701N2 6
P38570 6
P24821 6
P46734 6
Q9Y2K3 5
uc002vwl.2 5
uc002nfb.2 5
uc003nsm.1 5
Q9UNS1 5
Q9NZH6 5
D3DSV6 5
C9IYD7 5
P20853 5
Q14676 5
P38159 5
P35125 5
P35670 5
Q8N6F8 4
Q96Q06 4
uc001bvt.2 4
uc011dxu.1 4
uc004csb.2 4
Q8TE73 4
Q9H2D6 4
uc002yfm.2 4
Q96J66 4
uc002zag.1 4
Q8TB24 4
Q96RN1 4
Q99572 4
Q9C0D2 4
uc002zwe.2 4
Q9ULD2 4
Q8WXH0-2 4
uc003uhx.2 4
O95050 4
O75128 4
P02533 4
A3KMH1 4
Q5HYK9 4
P48634 4
O15069 4
Q8IUA7 4
Q16600 4
P60331 4
Q5D862 4
B7ZBR5 4
Q5KU26 4
Q12802-2 4
A8MTL4 4
P23327 4
Q7Z3S9 4
O75096 4
A1A5D9 4
Q15149 4
P54257-2 4
uc001saw.2 3
Q96PX6 3
Q9BWT7 3
Q9H0J4 3
uc001kgr.1 3
Q9H0U9 3
uc002uln.2 3
Q8TD33 3
Q9BYR5 3
Q9H339 3
Q9Y6R7 3
Q8N808 3
Q96RW7 3
uc003wcz.2 3
uc002fmv.2 3
Q8N865 3
uc002ycq.2 3
Q92954 3
uc003eee.3 3
Q9NQN1 3
Q9UQ84 3
Q9NQT5 3
Q96PX9 3
Q8NC74 3
Q8NGH7 3
uc011lix.1 3
Q8NH40 3
Q9NWH7 3
uc001rks.2 3
Q96EZ4 3
uc001wit.3 3
Q8N436 3
Q8TAX7 3
Q9P126 3
Q99954 3
Q9UI47 3
Q9BRB3 3
Q9UIU6 3
Q9BYQ6 3
Q96JF6 3
uc003kju.2 3
Q96L96 3
Q8N1N5 3
Q96PQ1 3
Q9H4A3 3
uc003zfz.2 3
Q9HCE0 3
uc010ebn.2 3
Q9HCS5 3
Q9NQG7-3 3
Q5JU00 3
Q6ZW33 3
Q6E0U4 3
O60500 3
O94900 3
P56945 3
Q5VIY5 3
P57679 3
Q6PFW2 3
A2I2N5 3
O60269 3
P60369 3
O15016 3
P60371 3
Q5QNZ9 3
P78334 3
Q5VY09 3
O75056 3
Q6NTE8 3
Q02386 3
Q6XYB7-2 3
Q07092 3
Q75N90 3
Q07157 3
P51689 3
Q08170 3
Q4G0N8 3
Q12789 3
P35908 3
C9JIP1 3
C9JLR2 3
Q12889 3
B9EIK7 3
Q13033 3
P11473 3
Q13635 3
Q685J3 3
Q14246 3
Q6H9L7 3
O14617 3
Q6PEW0 3
P27816 3
Q6UWM9 3
Q15051 3
Q6ZS72 3
Q15084 3
P13645 3
P27987 3
P47881 3
Q15345 3
P49747 3
P30926 3
Q17RW2 3
Q02447 3
uc002ckw.2 2
Q9BYQ4 2
uc002xvf.2 2
Q9H1I8 2
uc009zoy.1 2
Q9H1M4 2
uc002npq.1 2
Q92764 2
uc003cbl.3 2
Q92766-2 2
Q8NDY8 2
Q8N568 2
uc001say.2 2
Q9HBR0 2
uc002hwr.2 2
Q9HC10 2
uc002qoi.1 2
Q9HCC9 2
uc002yxk.1 2
Q92956 2
Q9BX84 2
Q9HCH5-8 2
uc003tcj.1 2
Q969J2 2
uc003xza.2 2
Q8NG08 2
uc010neg.1 2
Q9NP71 2
Q96SK3 2
Q9NPR9 2
Q99518 2
Q9NQ92 2
uc002mdk.2 2
uc010ooe.1 2
uc002oyh.1 2
Q96DS6 2
Q8N531 2
Q8NGF6 2
Q9BS92 2
Q9NQW5 2
uc002zwc.1 2
uc010sxc.1 2
uc003cwg.3 2
Q96GX9 2
Q9BYD2 2
Q8N146 2
uc003qtl.2 2
Q9NU22 2
Q8WXA2 2
Q9NV39 2
uc003xio.3 2
Q96JA4 2
Q8WXU2 2
Q9NY99 2
uc010cov.2 2
Q8NGV6 2
uc001sax.2 2
Q9NYQ6 2
uc001sck.2 2
Q96JM2 2
uc001zrt.2 2
Q9NZM3 2
uc002cyd.1 2
Q96KT7 2
uc002frs.1 2
Q9P2F8 2
uc002jjm.3 2
Q9UBK8 2
Q8TD19 2
Q9UGC7 2
uc002oxx.2 2
Q96KV7 2
uc002pdw.2 2
Q8NH01 2
uc002shl.3 2
Q9UK85 2
Q9BQ66 2
Q96LB9 2
Q8TE60 2
Q96LP6 2
uc002yip.1 2
Q96MC2 2
Q9BW66 2
Q9UPR6 2
Q8ND61 2
Q96NY9 2
uc003cpb.3 2
Q9Y237-2 2
uc003dnv.2 2
Q8N3K9 2
uc003gix.2 2
Q8N1A6 2
uc003lwz.2 2
Q8TAX9-3 2
uc003pgu.3 2
uc001aru.2 2
Q8WWF5 2
Q96PY6 2
uc003tpz.2 2
uc001dpq.2 2
uc003vuk.3 2
uc001drv.2 2
uc003wsh.3 2
uc001jrr.3 2
uc003xkm.1 2
Q8NA69 2
Q9GZP7 2
Q96QA5 2
uc009vzo.2 2
Q96RD9 2
uc010azk.1 2
uc001qnn.1 2
Q9H0R5 2
Q8TBZ5 2
Q8WZ92 2
Q8TCU5 2
Q9NRD8 2
Q5T9A4 2
Q6ZRI6 2
B9EGI0 2
O75830 2
Q86VW1 2
C9J2Y8 2
Q658L1 2
C9JF86 2
Q6PEY2 2
P60412 2
Q7RTR8 2
O95153 2
Q8IYM2 2
O95255 2
O60391 2
O95425 2
Q6DT37 2
Q8IZ20-2 2
Q6NXP2-2 2
O95460-2 2
P50226 2
A6NMZ7 2
P54253 2
O95786 2
Q86TB3 2
Q0P670 2
P59827 2
Q0VAR9 2
Q5T6X5 2
Q0VDD8-4 2
O60336 2
O95817 2
O60423-2 2
A6PVS8 2
Q68DN1 2
P04439 2
O60602 2
A8MSH3 2
Q6NV75 2
Q13427 2
Q6P6B7 2
A8MSQ1 2
Q6PXP3 2
Q14028 2
Q6ZMY3 2
Q14031-2 2
Q6ZTY8 2
P15822 2
B9ZVK6 2
P15848 2
Q7Z570 2
P17931 2
Q86UQ0 2
Q14929 2
Q86XA9 2
P20742 2
Q8IYG6 2
A8MT70 2
P60014 2
A8MT77 2
Q5T8R8 2
O14830 2
Q5TZA2 2
Q15643 2
Q5VTH9 2
P23141-2 2
Q5VV43 2
P23280 2
Q5W0A0 2
Q24JP5-2 2
O60443 2
A6ND91 2
Q6BDS2 2
Q2M243 2
A6NE01 2
Q32MH5 2
Q6IMN6 2
Q32P51 2
Q6NUI1 2
Q3L8U1-2 2
Q6NWU0 2
Q499Z3 2
Q6P3X3 2
O15018 2
A6NEL2 2
Q4G0P3 2
O75081 2
Q4LDE5 2
Q6U949 2
Q58DX5 2
P50238 2
Q58EX7 2
Q6ZN79 2
Q5D0E6 2
O75095 2
P25391 2
P54108 2
A9UL12 2
Q70EL2 2
Q5JTH9 2
Q76I76 2
B4E1X0 2
P56545-2 2
Q5JUB6 2
Q7Z6J9 2
O15389 2
Q86TY3 2
O43164 2
A5PLN7 2
B5MDQ5 2
Q86W24 2
Q5T035 2
O75376 2
Q5T036 2
Q8IUX4 2
Q5T0J7 2
Q8IYK2 2
Q5T124 2
Q8IYS4 2
Q5T1M5 2
Q5T6F2 2
Q12955 2
uc003xax.3 1
uc002eax.2 1
uc001dwa.2 1
Q96JL9 1
uc003aka.2 1
Q8N9L9 1
Q9Y2Y8 1
Q96JQ0 1
uc001rig.1 1
Q96KD3 1
Q92889 1
Q8N9R8-2 1
uc003mtg.2 1
Q8N9T8 1
Q96HJ3 1
Q96L50 1
Q9Y623 1
Q8N386 1
uc001law.2 1
Q8NA82 1
uc001whc.2 1
Q96LI9 1
uc002lvh.2 1
Q8NAT2 1
Q93075 1
Q96LW7-2 1
uc003fpa.2 1
Q96LW9 1
uc003sys.2 1
Q96M29 1
uc004bmg.1 1
Q96M89 1
Q9Y2G2 1
Q96M91 1
Q9Y566 1
Q8NC38 1
uc001abz.3 1
Q96MG8 1
uc001hfx.2 1
Q96MK3 1
uc001mty.2 1
Q96MY7 1
uc001stk.2 1
Q96N77 1
uc002aon.2 1
Q8N3D4 1
Q92583 1
Q96P69 1
Q8N323 1
Q96PC2 1
uc002sfp.2 1
Q96PD4 1
Q969T7 1
Q96PE6 1
Q96AQ6 1
Q96PH1 1
uc003hti.2 1
Q96PL5 1
uc003ntp.1 1
Q96PN7 1
uc003vsp.2 1
Q8NCW5 1
uc003yyy.2 1
Q96PQ7 1
uc009wcm.2 1
Q8N196 1
uc010jzk.1 1
Q8NDN9 1
Q8WUP2 1
Q8NDX1 1
Q9Y442 1
Q8NDX9 1
Q9Y5P1 1
Q8N3Y1 1
Q9Y6J0 1
Q96QD9 1
uc001cqe.3 1
Q96QE3 1
uc001fgr.1 1
Q96QI5 1
Q8WW52 1
Q8NDZ6 1
uc001mgt.2 1
Q96RG2 1
uc001qyz.3 1
Q96RL6 1
Q8WXD5 1
Q8NE62 1
uc001urv.2 1
Q96RP7 1
uc001zhi.2 1
Q8NEG0 1
uc002cmq.1 1
Q96S42 1
Q92543 1
Q96SB8 1
uc002iob.2 1
Q8NEQ5 1
uc002mkl.2 1
Q96SN8 1
uc002oqh.1 1
Q96ST8 1
Q92935 1
Q96SZ5 1
uc002unu.2 1
Q96T17 1
Q8N8C0 1
Q99456 1
Q969X1 1
Q8NEV8 1
uc003cna.3 1
Q8N412 1
Q96AY2 1
Q99595 1
Q96BF3 1
Q99678 1
uc003knc.2 1
Q99705 1
uc003nif.3 1
Q99707 1
Q8N910 1
Q99856 1
Q96E39 1
Q8NFD2 1
Q8N960 1
Q8NFT2 1
Q96FX8 1
Q9BQI5 1
uc003zsj.2 1
Q9BR39 1
uc009vnn.1 1
Q9BR77 1
Q96HD9 1
Q8NFV5 1
Q96HP8 1
Q9BRQ8 1
Q8N9H6 1
Q8NFZ6 1
Q9Y2I6 1
Q9BSA9 1
Q9Y2R9 1
Q9BT25 1
Q9Y3N9 1
Q9BU76 1
Q9Y4K0 1
Q9BUV0 1
Q9Y5E3 1
Q9BVL2 1
Q9Y5T5 1
Q9BVP2 1
Q9Y6C9 1
Q8NG04 1
Q9Y6S9-2 1
Q9BWD1 1
uc001bfk.2 1
Q9BWH6 1
Q8WW01 1
Q9BWN1 1
uc001epm.3 1
Q8N434 1
uc001ggg.1 1
Q9BWW9 1
uc001ikw.3 1
Q9BX26 1
Q8N715 1
Q8NG31-2 1
uc001lvm.2 1
Q9BXA9 1
uc001mjv.2 1
Q9BXI2 1
Q8WWU7 1
Q9BXI9-2 1
uc001rdt.2 1
Q9BXL6 1
uc001sah.1 1
Q9BXR5 1
uc001saz.2 1
Q9BXT6 1
uc001ugs.3 1
Q9BXT8 1
uc001vmt.2 1
Q9BXW6 1
uc001wja.2 1
Q9BY07 1
Q8WYQ9 1
Q8NGD2 1
uc002axo.2 1
Q9BYH1 1
uc002dai.3 1
Q9BYJ0 1
uc002flb.2 1
Q8NGD4 1
uc002hjn.2 1
Q8N123 1
uc002hzw.2 1
Q9BYR3 1
Q92610 1
Q8N475 1
uc002mdo.3 1
Q9BZE2 1
uc002nhl.1 1
Q9BZJ0 1
uc002oek.2 1
Q9BZJ3 1
Q92794 1
Q9BZY9 1
uc002pgj.1 1
Q9C000 1
uc002rxt.1 1
Q8NGI3 1
uc002spl.1 1
Q9C0D6 1
uc002vfa.2 1
Q9C0G6 1
uc002wtp.2 1
Q9C0J9 1
Q969S8 1
Q8NGJ0 1
uc002zji.3 1
Q9GZS9 1
uc002zxx.2 1
Q9GZU2 1
uc003cfi.1 1
Q9H063 1
Q96AP0 1
Q9H094 1
uc003dar.2 1
Q8NGK0 1
uc003eny.2 1
Q9H0M4 1
uc003fts.2 1
Q8NGV0 1
uc003gxu.2 1
Q9H0U6 1
uc003jig.2 1
Q8N4B4 1
Q96BJ8-3 1
Q9H190 1
uc003mwv.2 1
Q8NGX0 1
Q96BT3 1
Q9H1L0 1
uc003nzw.2 1
Q8NGY9 1
Q96CB5 1
Q9H1V8 1
Q8N957 1
Q9H201 1
Q96E52 1
Q9H205 1
uc003vvi.2 1
Q9H208 1
Q96F05 1
Q9H222 1
uc003xda.2 1
Q9H2B4 1
Q96GQ7 1
Q8N4T4 1
uc003zjw.2 1
Q9H306 1
uc004aid.2 1
Q8N4W9 1
Q8N9B5 1
Q9H347 1
uc009vxy.2 1
Q9H3S1 1
uc009yor.2 1
Q8NHC8 1
uc009zxk.2 1
Q9H4I0 1
Q96HP0 1
Q9H4M7 1
uc010fxm.1 1
Q9H583 1
uc010lpr.1 1
Q9H5L6 1
Q9Y2F5 1
Q9H6S0 1
Q9Y2H0-1 1
Q9H6Y2 1
Q9Y2K1 1
Q9H720 1
Q9Y2K9 1
Q9H816 1
Q9Y2T7 1
Q9H8X2 1
Q9Y345 1
Q9H9Y2 1
Q9Y3T6 1
Q9HAT1 1
Q9Y485 1
Q9HBF5 1
Q9Y508 1
Q9HBJ7 1
Q9Y585 1
Q9HBL0 1
Q9Y5E6 1
Q9HBM0 1
Q9Y5P3 1
Q8NHL6-3 1
Q9Y5W3 1
Q9HBW9 1
Q9Y644 1
Q8NHY0 1
Q9Y6G9 1
Q8NHY3 1
Q8WV93 1
Q8NI17-2 1
Q9Y6X5 1
Q9HCG8 1
Q8WVE6 1
Q8NI35 1
Q8WVT3 1
Q8N4X5 1
uc001doh.2 1
Q9HCX3 1
Q8WW43 1
Q8N1N2 1
uc001dzr.2 1
Q9NNX1 1
uc001ffh.2 1
Q9NP70 1
uc001fst.1 1
Q8TAZ6 1
uc001hdj.2 1
Q9NPB3 1
uc001hob.3 1
Q9NPB6 1
uc001ioo.2 1
Q9NPG4 1
uc001kal.3 1
Q8TB03 1
uc001koi.2 1
Q8N1N4 1
Q8WWK9 1
Q9NQC3 1
Q8WWQ8 1
Q8TB52 1
uc001mhb.3 1
Q8N5C6 1
uc001mqw.2 1
Q9NQS7 1
uc001nps.2 1
Q8TC84 1
uc001qvk.1 1
Q9NQW1 1
uc001qzt.2 1
Q8TCG1 1
uc001rgh.2 1
Q9NR11-2 1
Q8N7M2 1
Q9NR20 1
Q8WXB1 1
Q9NRC9 1
Q8WXG8 1
uc010otd.1 1
Q8N7Q3 1
Q8TCU4 1
uc001swc.3 1
uc010xwr.1 1
uc001uom.2 1
Q8N5H7 1
uc001usl.3 1
Q8TCY9 1
uc001vwo.1 1
Q9NRY5 1
Q8N7U7 1
Q9NU02 1
uc001wph.3 1
Q8TD07 1
uc001zif.2 1
Q9NV12 1
uc002adi.2 1
Q8N5W8 1
uc002ari.2 1
Q9NVI1 1
Q8N7X4 1
Q9NVL8 1
Q92485 1
Q9NVR5 1
uc002eab.2 1
Q9NVV2 1
uc002elh.2 1
Q8TD31-2 1
Q92535 1
Q9NWN3 1
uc002gov.3 1
Q9NWS6 1
uc002hwb.2 1
Q9NWS9 1
uc002hzv.2 1
Q9NX76 1
uc002ile.3 1
Q8N628 1
uc002jad.2 1
Q9NYA4 1
uc002knr.2 1
Q8TDM6 1
Q92614 1
Q9NYG8 1
uc002mkc.2 1
Q9NYK6 1
Q8N309 1
Q8TDR0-2 1
uc002niv.2 1
Q9NYQ8 1
uc002nrk.3 1
Q9NYR8 1
uc002onr.2 1
Q9NYW5 1
uc002owt.2 1
Q9NZ56 1
uc002oyf.1 1
Q9NZC7 1
Q92932 1
Q8TDV0 1
uc002pjn.2 1
Q8TDX9 1
uc002red.2 1
Q9NZM4 1
uc002sen.3 1
Q9NZP2 1
Q8N884 1
Q9NZP6 1
Q8N8A6 1
Q9NZQ3 1
uc002vcz.2 1
Q9NZQ8 1
uc002vml.2 1
Q9P0L9 1
uc002wgf.1 1
Q9P0W8 1
Q969H9 1
Q8TDY8 1
Q969Q4 1
Q9P1Z2 1
Q969T3 1
Q9P212 1
uc002zcm.2 1
Q9P266 1
uc002zsk.1 1
Q9P272 1
Q96A59-2 1
Q9P275-2 1
uc003afo.2 1
Q9P2A4 1
Q96A84-3 1
Q9P2E9-3 1
uc003cib.2 1
Q8TE59 1
uc003com.2 1
Q9P2X7 1
uc003cqx.2 1
Q9UBC7 1
uc003cxg.2 1
Q8N183 1
Q96AQ9 1
Q9UBS4 1
uc003eev.3 1
Q9UBU2 1
uc003fli.1 1
Q9UDX4 1
uc003frm.2 1
Q9UFP1 1
uc003gco.3 1
Q8TE68 1
uc003gkv.3 1
Q9UGP5 1
uc003hqx.3 1
Q9UH36 1
uc003ian.3 1
Q9UH92 1
Q96BH3 1
Q9UHF4 1
uc003lnj.2 1
Q9UHN6 1
uc003mlz.3 1
Q8N6I1 1
uc003mwa.3 1
Q9UIS9 1
uc003nef.2 1
Q8TEC5 1
uc003nkt.2 1
Q9UJ78 1
uc003ntn.3 1
Q9UJA3 1
uc003nvm.1 1
Q9UJL9 1
uc003ods.2 1
Q9UJW7 1
uc003qtf.2 1
Q8TER0 1
Q96DA0 1
Q9UKB5 1
uc003tbm.2 1
Q9UKP4 1
uc003toq.2 1
Q9UL01 1
uc003tzn.2 1
Q9UL49 1
uc003vrz.2 1
Q9UL52 1
Q96EK5 1
Q8TER5 1
uc003wcr.1 1
Q9ULE4 1
uc003wkp.2 1
Q9ULE6 1
uc003wwm.2 1
Q9ULI1 1
uc003xcu.2 1
Q9ULI3 1
uc003xep.1 1
Q9ULM0 1
Q96G42 1
Q8TEV9 1
uc003yyd.2 1
Q9UMR7 1
Q96GU1 1
Q9UMS0 1
uc003zlr.1 1
Q9UMX9 1
uc004aay.2 1
Q9UNI1 1
uc004atg.3 1
Q9UNK9 1
uc004can.3 1
Q9UNQ0 1
uc004ded.1 1
Q8TEX9 1
uc009vvi.2 1
Q9UPA5 1
Q96HA7 1
Q9UPN6 1
uc009ynk.2 1
Q9UPP2-2 1
uc009zhj.2 1
Q8TF21 1
uc009zwi.2 1
Q9UPV0 1
uc010awk.1 1
Q9UQ35 1
uc010boe.2 1
Q9UQ74 1
uc010eas.2 1
Q8TF76 1
uc010fvs.1 1
Q9UQ90 1
uc010inb.2 1
Q9UQP3 1
uc010ljy.1 1
Q8WTP8 1
Q8N9F8 1
Q8WTV0-2 1
Q8N9H9 1
Q9Y2A4 1
uc010wmr.1 1
Q9NRH2 1
uc010yvx.1 1
Q9NRP7 1
uc011jvp.1 1
Q9NRR1 1
Q8N0W5 1
Q9NRR4 1
Q8IX07 1
Q6P461 1
Q5TCM9 1
P19075 1
P10515 1
P19484 1
Q5JZ73 1
P19878 1
Q66K79 1
P19971 1
Q6W5P4 1
P20138 1
Q86V20 1
P20702 1
O95202 1
C9JN24 1
A6NGG8 1
C9JN71 1
Q5VVP1 1
D3DQK9 1
Q6IQ23 1
P21462 1
P08123 1
A6NMK8 1
Q6ZR62 1
A6NMR0 1
Q7Z5M8-2 1
O00182 1
Q86YD7 1
O00192 1
Q8IYW5 1
P23490 1
Q5JRA6 1
P24071 1
O95521 1
O00253 1
Q5T5J6 1
P24928 1
P02452 1
O00292 1
Q5XUX1-3 1
P25440 1
Q6AZY7 1
P25774 1
P05362 1
O00330 1
Q6PHR2 1
P26378 1
Q6UWT4 1
P26640 1
Q6ZMZ3 1
O00418 1
Q6ZU80 1
O00421 1
A2RUB6 1
P28070 1
Q86T20 1
P28330 1
P13646 1
P30042 1
Q8IVF2 1
P30154-2 1
A6NM10-2 1
O00451 1
Q8IZJ4 1
P31391 1
O95229 1
P31930 1
O95359 1
P32519 1
Q5QGT7 1
P34741 1
Q5SXM8 1
P34820 1
Q5T197 1
P34947 1
Q5T7V8 1
O00566 1
Q5TZ20 1
P35346 1
Q5VUJ5 1
P35372-3 1
P02462 1
P35452 1
Q63HK3 1
P35542 1
Q68DQ2 1
P35556 1
P04264 1
A2RUE3 1
P05107 1
P35789 1
P06133 1
O14610 1
P07197 1
P35968 1
Q6Q4G3 1
P36888 1
Q6UQ28 1
P37108 1
Q6V0I7 1
P37231 1
P08572 1
P38117-2 1
Q6ZNH5 1
A6NNB3 1
P09172 1
O14641 1
P0C0P6 1
P40145 1
P10643 1
P40394 1
Q7Z4N2 1
P42694 1
Q7Z736 1
P42898 1
P12643 1
P43360 1
Q86VI3 1
O14656 1
P14060 1
O14777 1
Q8IUC4 1
O14798 1
Q8IWC1 1
P48357 1
Q8IXT1 1
A2RUQ5 1
Q8IYN0 1
P48681 1
P17693 1
P48736 1
Q587J8 1
O14944 1
Q5CZA4 1
P49917 1
O95236 1
A7MBM2 1
B9A029 1
A8K1K9 1
Q5JVX7 1
P50748 1
Q5M775 1
P50995 1
A6NFJ4 1
P51172-2 1
Q5SXH7-4 1
P51636 1
Q5SYB0 1
P51659 1
A6NII6 1
O15021-3 1
O95900 1
P51801 1
O95988 1
P51858 1
P01011 1
P51957 1
Q5TEA6 1
P51993 1
Q5U5R9 1
P52569-2 1
Q5VTT5 1
O15031 1
P02461 1
A8K8G6 1
Q5VXM1 1
O15205 1
Q5VZR2-2 1
P55103 1
Q5Y7D6 1
P55198 1
Q659C4 1
P56159 1
Q68D06 1
A8K979 1
Q68EA5 1
P56696 1
P04004 1
P56715 1
P04626 1
A8MQT4 1
Q6MZQ0 1
P57071 1
Q6NUQ4 1
O15534 1
Q6NVY1 1
P57727 1
Q6P0N0 1
P57737 1
P06734 1
P58182 1
P07919 1
P59046 1
P07996 1
P59282 1
Q6S9Z5 1
P59533 1
Q6UDR6 1
P59826 1
Q6UWB4 1
O15553 1
Q6UXN2 1
P59910 1
Q6VVB1 1
O43151 1
Q6X4T0 1
A2VDJ0-5 1
Q6ZMT4 1
P60368 1
P08949-2 1
O43187 1
Q6ZQQ6 1
P60370 1
Q6ZRQ5 1
O43314-2 1
Q6ZS82 1
P60411 1
Q6ZUX3 1
O43493-2 1
Q70CQ4 1
P63211 1
Q7KYR7 1
P68363 1
Q7RTV2 1
P78329 1
Q7Z3Y9 1
O43555 1
Q7Z5L4 1
P78364 1
P12109 1
P78396 1
Q7Z7A1 1
P80075 1
Q86TC9 1
P98164 1
P12645 1
Q00056 1
Q86V71 1
Q008S8 1
Q86VY4 1
Q01459 1
Q86WB0 1
Q01658 1
Q86XM0 1
Q01664 1
P15169 1
O43731-2 1
C9JG81 1
O60225 1
Q8IVF5 1
O60243 1
Q8IWE2 1
Q02742 1
Q8IXI1 1
Q02880-2 1
Q8IYD8 1
Q03188 1
P15924 1
Q03405 1
P17036 1
Q03468 1
Q8IYX7 1
Q04671 1
Q8IZF2 1
Q04844 1
A6NM11 1
Q05952 1
O95185 1
Q07075 1
Q58F21 1
A1A4T8-2 1
O95206 1
O60285 1
Q5H9F3 1
Q07283 1
Q5IJ48 1
O60292 1
Q5JSS6 1
Q08397 1
Q5JTV8 1
Q08426 1
O95394 1
Q08999 1
Q5JWR5 1
Q08AF3 1
A1A519 1
Q08AG7 1
Q5M9N0 1
Q09MP3 1
Q5QJE6 1
O60312 1
Q5SQ64 1
Q0P6D6 1
Q5SW96 1
A4D1E9 1
Q5SXM2 1
A4D263 1
Q5SY16 1
Q0ZGT2 1
Q5SZD4 1
Q0ZLH3 1
A6NHR9 1
O60403 1
O95897 1
A4Z6T7 1
Q5T1B0 1
Q12887 1
Q5T2N8 1
A8MV65 1
O95944 1
Q8IZU2 1
Q5T7B8 1
Q8IZY2 1
O95995 1
A0PJX4 1
Q5TAA0 1
A1IGU5 1
Q5TD97 1
Q13084 1
Q5THR3 1
Q13127 1
P01031 1
Q13137 1
P01833 1
Q13233 1
Q5VTJ3 1
Q13316-2 1
P02458 1
O60548 1
Q5VV41 1
Q13470-2 1
Q5VVB8 1
Q13487 1
Q5VW36 1
Q13601 1
Q5VXT5 1
Q13615 1
Q5VYM1 1
B1AH88 1
C9JBG3 1
Q13748 1
Q5XX13-4 1
Q13753 1
Q60I27 1
Q13797 1
P02538 1
Q13946-2 1
Q66K74 1
O60603 1
P02730 1
O60721 1
P02788 1
Q14032 1
Q68DV7 1
Q14112 1
Q6A555-2 1
Q14126 1
Q6B9Z1 1
Q14160-3 1
P04259 1
Q14209 1
C9JDV5 1
Q14210 1
Q6IPM2 1
Q14244 1
Q6L8Q7 1
B1ANC0 1
P04731 1
Q14331 1
Q6NUN0 1
O75023-3 1
Q6NUS8 1
B1APY0 1
Q6NVV3 1
Q14679 1
P05787 1
Q14690 1
Q6NY19-2 1
Q14774 1
P06732 1
B2R6C3 1
Q6P4A8 1
Q14934-3 1
Q6PDB4 1
Q14980 1
P07900-2 1
Q14990 1
Q6PGQ1 1
Q15032 1
Q6PJF5-2 1
B4DQM4 1
Q6Q0C1 1
A6ND48 1
Q6Q759 1
B5B2M5 1
Q6T423 1
O75161 1
Q6UB98 1
O75185 1
Q6UE05 1
Q15652 1
Q6UW78 1
Q16204 1
P08151 1
Q16348 1
Q6UXC1-2 1
B5MDD1 1
Q6UXY1 1
Q16610 1
Q6V1P9 1
Q16762 1
Q6W3E5-2 1
Q16787 1
Q6WQI6 1
Q16790 1
Q6X784 1
Q16828 1
Q6XZB0-2 1
Q17R60 1
P08922 1
O75635 1
Q6ZN28 1
Q18PE1 1
Q6ZNB6 1
Q1EHB4 1
Q6ZP82 1
Q1X8D7 1
Q6ZR52-2 1
O75717 1
P08F94 1
Q2HXU8 1
Q6ZRV2 1
Q2I0M4 1
Q6ZS81 1
A1L443 1
P09871 1
Q2L4Q9 1
Q6ZUB1 1
O75952 1
Q6ZV73 1
Q2M2I5 1
P10321 1
Q2M329 1
P10412 1
Q2M3C7 1
P10523 1
Q2NL98 1
Q7RTR0 1
Q2TAA8 1
Q7RTS3 1
Q2TAL5 1
Q7Z2W4 1
Q2TBF2 1
Q7Z3Y8 1
Q2VIQ3 1
Q7Z407 1
Q2VPA4 1
P12107-2 1
Q2VPK5 1
Q7Z5L7-3 1
Q30201 1
Q7Z5Y6 1
Q32M84 1
Q7Z6L1 1
Q32M92 1
Q7Z745 1
O76014 1
Q86SH2 1
Q32MK0 1
P12270 1
O94769 1
Q86TJ5 1
Q3KPI0 1
Q86U06 1
O94823 1
Q86US8 1
Q3LHN0 1
Q86V48 1
Q3LI76 1
P13284 1
Q3LIE5 1
C9JFW9 1
Q3MJ13 1
Q86VZ4 1
Q3SY84 1
Q86W28 1
Q3YEC7 1
Q86X19 1
Q3ZCM7 1
Q86XL3 1
Q3ZCV2 1
Q86YB8 1
Q3ZCX4 1
Q86YE8-3 1
Q495D7 1
P15313 1
Q495Z4 1
Q8IUN9-2 1
O94850 1
Q8IUX7 1
Q49A88-6 1
Q8IVF4 1
Q49MG5 1
Q8IWA6 1
A1Z1Q3-2 1
Q8IWD5 1
B7ZLS8 1
Q8IWT3 1
Q4G0Z9 1
Q8IX12 1
B8A4U7 1
Q8IXS2 1
Q4VX76-2 1
Q8IY37 1
Q4W5C3 1
Q8IYE1 1
Q4W5G0 1
Q8IYI8 1
Q4ZJI4 1
P17022 1
Q53EZ4 1
Q8IYR2 1
Q53GL7 1
Q8IYU4 1
Q53HC0 1
Q8IYX0 1
Q53QW1 1
Q8IYY4 1
Q53RT3 1
Q8IZC4 1
Q53S99 1
Q8IZF3 1
Q53SF7 1
Q8IZT6 1
Q53T94 1
Q56UN5 1
Q8N0U7 1
Q13007 1
Q13018 1

 

На следующем этапе возникает вопрос — что делать с полученным списком генов с наибольшим числом frameshift мутаций? Можно ли определить характер и уровень функциональных изменений в организме человека? Оказывается, можно. Как упоминалась выше, полученные потенциальные генетические варианты, приведшие к замене кода аминокислот, были сохранены в таблице. Затем я подсчитал, в каких именно протеинах наблюдается наибольшое число потенциально вредных frameshift мутаций, и выделил их в отдельный список. Поскольку это самые интересные (с точки зрения возможных изменений в фенотипе) мутации, то далее я работал только с теми протеинами, в которых наблюдается повышенное количество вредоносных мутаций. Из общего числа я отобрал 35 протеинов с наибольшим количеством мутаций. Отмечу, что ни один из обнаруженных протеинов сам по себе не имеет значимой связи с риском развития заболеваний  интересующего нас спектра. Поэтому вышеприведенный список протеинов был обработан в программе Cytoscape, так как нас интересуют в первую очередь обнаружение функциональных связей с теми протеинами, которые ранее были описаны в литературе как потенциальные факторы развития отдельных расстройств и заболеваний.  Я не буду приводить полученные сетевые графы взаимодействия протеинов, так как они содержат деликатную информацию медицинского характера, поэтому помещенный ниже образец графического отображения в программе Cytoscape взаимодействия протеинов носит сугубо иллюстрирующий характер и взят с сайта програмыы Cytoscape

visualMapping1

Этногеномика беларусов — часть V

Обсуждение результатов и выводы

 

Как отмечалось в введении к нашей статье, главной задачей нашего исследования являлась проверка двух рабочих гипотез, озвученных в предыдущих исследованиях профессиональных попгенетиков. Во-первых, это гипотеза о присутствии трех основных древних компонентов , которая указывает на возможность общего происхождения славян и балтов. Во-вторых, это утверждение о том, что своеобразие аутосомного генофонда беларусов может быть связанно с вкладом балтского субстрата.

После внимательного изучения результатов нашего исследования,можно сказать, что оба из приведенных выше заключений представляют собой крайне упрощеные варианты сложного процесса формирования аутосомного генофонда беларусов. Хотя мы и не можем предоставить окончательных аргументов в пользу или опровержение каждой из этих версий, мы может предоставить более полное и подробное обозрение структуры аутосомного генофонда. В отличие от трех основых компонентов, упомянутых выше, в нашем исследовании мы выделили шесть основных компонентов, типичных для европейцев в целом. Основу генофонда составляет компонент, который мы обозначили как северо-восточно-европейский компонент. Именно этот компонент выделяет беларусов среди других восточных славян, приближая их к современным балтийским популяциям (у литовцев процент компонента составляет 81,9, у латышей — 79,5%, у беларусов -76,4%, у эстонцев — 75,2%). Примечательно, по мере удаления от территории Беларуси на север в с торону Латвии и Эстонии, увеличивается процент северо-европейского генетического компонента (как мы полагаем, этот компонент доминировал в генофонде доисторических жителей Скандинавии в эпоху до распространения финно-угоров и индо-европейцев). С другой стороны, беларусов и других восточных славян отдаляет от балтов и сближает друг к другу более высокий процент так называемого западно-азиатского или кавказского компонента (любопытно, что в этом случае эта закономерность может свидетельствовать в пользу западно-азиатской теории происхождения индо-европейцев).

Далее, как показывает анализ в программе fineStructure, генофонд беларусов характеризируется высокой степенью генетических контактов как с балтами, так и остальными славянами, а также с рядом финно-угорских популяций (например, c эрзя и мокша). О симметричном характере межпопуляционного обмена свидетельствует симметричное расположение популяции беларусов относительно этих трех групп.

Исходяизвышенаписанного,представляетсялогичнымсделатьвыводотом,чтоосновнойкритическийэтапстановленияаутосомногогенофондапришелсянапериодсмешиванияносителейсеверо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента,послечегопредковыйаутосомныйгенофондбеларусовприобрелотносительнуюстабильность.Разумеется,даннаямодельнеисключаетпозднейшиеэпизодысмешиванияпопуляций,ноониоставилименьшийследвструктуреаутосомногогенофондабеларусов.Вэтойсвязивозникаеточевидныйвопрос–вкакойименноисторическийпериодпроизошлосмешениеносителейсеверо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента,иктобылиихносителями?
В начале сентября 2012 года известная американская лаборатория популяционной генетики доктора Райха опубликовала альфа-версию программного продуктаADMIXTOOOLS1.0. Альфа-версия была разработана для внутреннего использования, поэтому modusoperandiэтого продукта вряд ли является кристально понятным для стороннего пользователя. Положительным аспектом на мой взгляд является то, что ADMIXTOOLSпакет обеспечивает полную совместимость с форматом другой очень популярной программыEIGENSOFT, которая была разработана в той же лаборатории. Это немаловажное обстоятельство намного упрощает процесс обучения в ADMIXTOOLS.

Вышеупомянутый пакет включает в себя 6 приложений, среди которых я считаю наиболее полезнойqp3Popи утилиты для вычисления частотной характеристики аллелей. Впрочем, я не собираюсь обсуждатьqp3popво всех деталях и в контексте данной заметки достаточно отметить, что эта программа реализует тест three_pop(F_3), подробно описанный в известной статье Рейха и соавт. 2009.

Однако другой имплементированный в пакете метод, – метод rolloff– нуждается в более пристальном внимании. Этот метод позволяет производить математическую оценку как времени, так как и уровня адмикса. Оценка производится на основании анализа неравновесия по сцеплению между SNP-ами. Тут необходимо вспомнить стандартное определение неравновесия по сцеплению.Неравновесием по сцеплению (часто используется английская аббревиатураLD) называется неслучайная связь между двумя аллелями, в силу которой определенные комбинации аллелей встречаются наиболее часть. В теории, чем дальше друг от друга находятся SNP-ы ,тем меньше будет уровень LD. Темп угасания снижения LDв адмиксе напрямую связана с числом поколений, прошедших с момента адмикса, так как cвозрастанием числа поколений увлечивается число рекомбинаций произошедших между двумя отдельными SNP-ами. Проще говоря: Rolloffсоответствует экспоненциальной кривой угасания уровня LDот расстояния, и эта скорость экспоненциального снижения как раз и используется для оценки числа поколений, так и уровня адмикса в анализируемой популяии. Учитывая, что одно поколение примерно равно 29 лет, можно преобразовать число поколений в года.

Этот метод открывает интересные перспективы. Для целей этого анализа, я создал специальный набор SNP-данных, который включает в себя около 750 000 cнипов, частично или полностью в 250 различных популяциях человека. Далее, я разбил популяции 3 * 62 000 трио в следующем виде (X, Y, Z), где X и Y – пара рефренсных групп, а Z – белорусы из коллекцииBehar et al.2010. После этого я провел q3Pop анализ этих трио.

Результаты изложены в нижеприведенной таблице

Indian Polish Belarusian -0.000736 0.000251 -2.935
Polish Indian Belarusian -0.000736 0.000251 -2.935
Karitiana Sardinian Belarusian -0.001278 0.000517 -2.471
Sardinian Karitiana Belarusian -0.001278 0.000517 -2.471
Otzi North_Amerind Belarusian -0.002556 0.001126 -2.271
Cirkassian Polish Belarusian -0.000488 0.000231 -2.113
Polish Cirkassian Belarusian -0.000488 0.000231 -2.113
Pima Otzi Belarusian -0.002727 0.00137 -1.99
Pima Sardinian Belarusian -0.000794 0.000431 -1.843
Sardinian Pima Belarusian -0.000794 0.000431 -1.843
Otzi Surui Belarusian -0.002938 0.001931 -1.522
Surui Otzi Belarusian -0.002938 0.001931 -1.522

 

На первый взгляд, результаты нашего эксперимента с 3qPop, кажется, неплохо согласуются с выводами, содержащимися в работеПаттерсон и др. 2012: “Самый поразительный вывод состоит в обнаружени четкого сигнала адмикса в северной Европе, один из элементов которого связан с предками населения наиболее близкого по своей генетике к баскам и жителям Сардинии, а другой – с предками современного населения северо-восточной Азии и Америки. Этот явный сигнал, вероятно, отражает историю смешивания неолитических мигрантов с коренным населением Европы, что подтверждается недавним генетическим анализом древних костей Швеция и секвенированием полного генома Отци Тирольца”. Что касается собственно белорусов, то источники сигнала смешивания с посторонними популяцими менее ясны и расплывчаты. Как было показано ранее, с точки зрения формального анализа примесей (f3 статистики), белорусы могут быть представлены в виде популяционного микса поляков и индусов / черкессов. Первый компонент смеси может быть связан с носителями культуры шнуровой керамики/боевых топоров и культуры колоковидных кубков; второй, в соответствии с результатами, должен быть общим для индусов и черкесов.

 

Белорусы = ((неолитические культуры Европы) + “носители культуры колоковидных кубков”) + (мезолитическое население Европы) + компонент носителей культуры шнуровой керамики)) + скифо-сарматский тип

 

Для оценки дата события базового адмикса в белорусской популяции, мы использовали в качестве референсных популяций поляков и индусов (Примечание: мы снизили порог генетических дистанции в параметрах Rolloff для снижения уровня шума от более поздних адмиксов).

 

rolloff

Как вы можете видеть, сигнал присутствия адмикса обнаруживается гораздо хуже, и в силу этого, погрешности в оценке временного промежутка высоки:

154,158 + -87,024 поколений назад (или, 4470 + -2523 года до настоящего времени / 2510 – +2523 лет до н.э.).

 

Исходя из этого, мы решили модифицировать Rolloff-анализ генофонда белорусов, используя на этот раз в качестве референсов литовцев и пуштунов. Следуя этому совету, я решил предпринять вторую попытку формального анализа адмикса в двух имеющихся у нас выборках беларусов ( выборка беларусов из статьи Behar et al. 2011), и выборка беларусов, собранная в нашем проекте.Ниже приведены результаты эксперимента с двумя этими группам (в отличие результатов нашей предыдущей попытки, результаты данного эксперимента менее “зашумленные”):

rolloff2

 

Интервал числа поколений, прошедших со времен анализируемого адмикса (105.086+-52.59) или 3069 +- 1525 лет до настоящего времени, что соответствует временном интервалу 2 тыс. до нашей эры – 6 век нашей эры. Принимая во внимание эти выводы, мы можем предположить, что основной аутосомный эпизод смешивания предковых популяций беларусов произошел в течении довольно таки продолжительного времени, охватывающего несколько тысяч лет. В этой связи, вопрос о том, кто именно был носителями северо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента, остается открытым.

Этногеномика беларусов — часть II

Анализ структуры аутосомного генофонда популяции беларусов: методы, технические параметры и предварительные замечания.

 

В целях сопоставимости выводов данных анализа с приведенными выше выводами профессиональных популяционных генетиков, мы использовали в своем исследовании референтную выборку беларусовиз ДНК-банка Института Генетики Беларуси в том же объеме, в котором она была задействована в исследовании группы ученных под руководством Бехара (модифицированная выборка Генбанка с кодом доступа:GSE21478)[1]. Наряду с референтной группой беларусов (обозначена как Belarusian), мы использовали данные лиц беларуского происхождения из нашего собственного проекта этно-популяционного анализа лиц, предки которых проживали на территории Беларуси минимум 100-150 лет(обозначено как Belarusian_V).

Для проведения сравнительного анализа генофонда популяций нам понадобился референтный набор популяций. Референтный набор популяций в этом калькуляторе был собран в программе PLINK  методом “intersection&thinning” ( дословно “пересечением и истончением”) образцов из различных источников данных:HapMap 3(отфильтрованный набор данных КЕС, YRI, JPT, CHB),1000genomes, Rasmussen et al. (2010), HGDP (кураторская база данных Стэнфордского университета), Metspalu et al. (2011), Yunusbayev et al (2011),Chaubey et al. (2010)и т.д. Кроме того, мыотобралипроизвольным образом по 10 сэмплов (или максимальное количество доступных сэмплов в тех случаях, когда общее число сэмплов в популяции было меньше 10) от каждой европейской страны, представленной в панеле базе данныхPOPRES.Наконец, для того чтобы оценить степень корреляции между современным и древним генетическим разнообразием населения Европы, мытакже включилив выборку образцы древней ДНКЭци(Keller et al. (2012)) , образцы жителей шведского неолита Gök4, Ajv52, Ajv70, Ire8, STE7 (Skoglund et al. (2012))и 2 образца La Braña – останков мезолитических жителей Пиренейского полуострова (Sánchez-Quinto et al.(2012)).

Затем мыдобавили90 образцов – анонимизированных данных — участников моего проекта. После слияния вышеупомянутых наборов данных и истончения набора SNP с помощью особой команды PLINK, мыисключилиSNP-ы с менеечем 0.5% минорных аллелей. Послечего мыотфильтровал дубликаты, лиц с высоким уровнем общих по происхождению идентичных сегментов (IBD). В качестве критерия фильтрации были использованы расчеты IBD в Plink, где IBD представлена как средняя доля аллелей общих между двумя людьми по всем анализируемым локусам. Затем мыудалилииз выборки лиц с высоким коэффициентом предпологаемого родства, коэффициенты родства были вычислены в программном обеспеченииKing).

Для получения более стабильных результатов, мытакже отфильтровалисэмплы с более чем 3 стандартными отклонениями от средних данных по популяции. Поскольку коэффициент родства может быть надежно определен с помощью оценки HWE (ожидания, вытекающего из законаХарди-Вайнберга) между SNP-ами с той же базовой частотой аллелей, то SNP-ы с существенным отклонением (p < 5.5 x10−8) от ожидания Харди-Вайнберга были удалены из объединенного набора данных. После этого мывыделилите SNP-ы, которые присутствовали в чипах Illumina / Affymetrix, и затем произвелифильтрацию снипов на основе расчетов степени неравновесного сцепления (в этом эксперименте мыиспользовалтхромосомное ‘окно’ размером в 50 базовых пар, с шагом 5 базовых пар и пороговым значением уровня сцепления R ^ 2, равным 0,3).

По окончанию этой сложной последовательности операций, мыполучил окончательноый набора данных, который включал в себя 80 751 снипов, 2516 человек и 225 референсных популяций.

 

[1] http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21478

Три предковые группы европейцев

Получивший широкой резонанс в среде профильных профессиональных популяционных генетиков и простых любителей препринт статьи Lazaridis et al. 2013 содержит огромное количество важных наблюдений и заключений насчет происхождения и эволюции структуры генофонда современных европейцев. Объективности ради стоит отметить, что наверное не менее половины выводов вышеупомянутой статьи были озвучены ранее персональными геномными блоггерами в ходе более ранних самостоятельных экспериментов и анализов древней ДНК.  Но важность статьи Lazaridis et al. 2013, конечно же, в другом. В ней приводятся новые данные ( результаты изучения древнего ДНК) ряда доисторических популяций групп людей Европы. В частности, были приведены результаты изучения древнего ДНК мезолитических европейских охотников-собирателей из Люксембурга, чьи мтДНК были опубликована несколько лет назад; результаты генотипирования неолитического образца ДНК неолитического земледельца из Германии: наконец, препринт статьи содержал данные сразу по  нескольким мезолитическим охотникам-собирателей из Швеции.

По раскладу своих предковых компонентов, люксембургский образец похож на образцы  La Brana (иберийский палеолит). В свою очередь,  ДНК шведов периода мезолита похожа на ДНК шведских неолитических охотников-собирателей. Аналогично, структура предковых компонентов у неолитического земледельца напоминает распределение компонентов у тирольского ледового человека Этци, шведского неолитического земледельца культуры воронковидных кубков и современного населения Сардинии. Недавно опубликованный  верхнепалеолитический образец жителя стоянки Мальта (Прибайкалья), авторы относят к  отдельному генетическому супер-компоненту, который  в статье именуется  «компонентом древнего северо-евразийского населения», Согласно наиболее вероятной из обсуждаемых в статье моделей, носители этого компонента смешались с западными евразийцами  еще до того, как носители мезолитического европейского компонента смешались с неолитическими земледельцами с ближнего Востока.

Как я отмечал ранее, очевидность результатов вряд ли нуждается в отдельных комментариях.  Положение индивидов по степени их сходства (выраженного посредством параметра z D-статистики)  относительно условной оси на одном конце которых находятся южные европейцы, на другом — северные европейцы. Шведские сэмплы древнего ДНК времен мезолита и пост-мезолитической (переходной к неолиту) культуры ямочной керамики Готланда сдвигаются в сторону северных европейцев (представлены референсной популяцией литовцев).  Примечательно, что в ту же стороны сдвигаются и представители иберийско-испанского мезолита (образцы La Brana 1 и La Brana 2).
Образцы древнего ДНК представителей культуры воронковидных кубков, Эци Тирольца закономерно смещаются к другому полюса спектра — южным европейцам (которые представлены сардинцами).

PCA график дает отличное представление о соотношении различных компонентов:

europe

 

 

 

model

Таким образом, костяк европейского генофонда образован за счет сочетания трех компонентов:

мезолитические охотники-собирателей Европы (WHG) + древние северо-евразийские популяции между Уралом, Центральной Азией и Сибирью (AHE) + неолитический компонент (генетически связанный с ближневосточными земледельцами EEF).

 

Поскольку в нашем случае мы имеем три исходных компонента, то любая европейская популяция может быть представлена в виде тримодального распределения этих компонентов. Визуализация этого распределения достигается путем отображения популяций внутри треугольника (каждый из углов которого представляет собой отдельный чистый предковый компонент). Таким образом мы можем отображать не только группы людей (т.е популяции), но и отдельных современных индивидов с генотипированными снипами. При визуальном изучении расположения популяций внутри треугольника, мы можем отметить cмещение спектра разнообразия в сторону предкового компонента неолитических земледельцев (EEF). Это наблюдение еще раз подтверждает насколько важным событием для эволюции и развития европейского генофонда являлась  неолитическая революция. Она принесла с собой не только технологические изменения, но и перемены в генофонде тогдашних европейцев. Однако если быть более точным, то нет никаких сомнений в том что компонент EEF аккумулирует в себя не только генофонд первых европейских земледельцев, но и остаточный момент от смешения этого компонента с представителями четвертого компонента («базальных евразийцев»).

admixture

Выявленные предковые компоненты отличаются значительной дискретностью, и в своем чистом виде практически не перекрываются. Именно по этой причине именно эти компоненты (а не общепринятые ныне в аутосомных исследованиях попгенетиков  этногеографические компоненты) могут использоваться в качестве неколлинеарных факторов в анализе эволюции генофонда отдельных народов.

  1. Компонент западноевропейских охотников-собирателей мезолита ( WHG ): метапопуляция этого компонента включает в себя образец Loschbour (мезолитический Люксембург, 8000 лет до настоящего времени) и два мезолитических образца древнего ДНК людей из пещеры La Brana в Испании. Тем не менее, в настоящий момент своего пика WHG (почти 50%) достигает среди эстонцев и литовцев , на востоке Балтийского региона. В этом смысле эти популяции являются наследниками древнейших жителей мезолита Европы. К этой группе примыкает группа шведских неолитических популяций  (скандинавские охотники-собиратели (SHG ) : эта мета- субпопуляция состоиь из шведских мезолитических и неолитических образцов ДНК из Моталы и Готланда , соответственно. Судя по всему, здесь мы имеем дело с  более восточным вариантом WHG , с небольшой примесью генов от древних северо-евразийских популяций.

Удельная доля компонента WHG в генофонде популяций по мере убывания  (градиент убывания в направлении с северо-запада на юго-восток Европы).

Эстонцы 0,495
Литовцы 0,464
Исландцы 0.456
Беларусы 0,431
Норвежцы 0,428
Испанцы 0,068
Греки 0,058

Мальтийцы 0
Ашкенази 0
Сицилийцы 0

  1. Компонент ранних европейских земледельцев (EEF) : по всей видимости, это гибридный компонент являющийся  результатом смешивания части загадочных «базальных евразийцев» и носителей компонента WHG где-то в Европе, возможно, на Балканах. Метапопуляция EEF в чистом виде представлена у представителя линейно-ленточной керамики  (Штутгарт, Германия), Этци Тирольского человека, и неолитического земледельца культуры воронковидных кубков. В наше время пик это компонента  приходится на Сардинию, Сицилийцев, ашкеназов и жителей Мальты (примерно 80-90%).

Удельная доля компонента EEF в генофонде популяций по мере убывания  (градиент убывания частоты направлен в сторону обратную WHG, т.е с юго-востока Европы на северо-запад, однако градиент выражен гораздо менее четко).

Мальтийцы 0,932
Ашкеназим 0,931
Сицилийцы 0,903
Сардинцы 0,817
Испанцы 0,809
Норвежцы 0,411
Исландцы 0,394
Шотландцы 0,39
Литовцы 0,364
Эстонцы 0,322
3. Компонент древних северо-евразийцев ( ANE ): метапопуляция компонента включает в себя   24000 летний верхне-палеолитический образец охотника-собирателя из южно-центральной Сибири, принадлежащий к Y- ДНК гаплогруппе R *, (MA -1), а также  верхнепалеолитический образец из центральной Сибири (Афонтова Гора -2) ( AG2 ). Этот компонент мог вероятно присутствовать в Южной Скандинавии по крайней мере со времен мезолита, но Западной Европы  достиг уже в конце эпохи неолита. В современной Европе самый высокий процент это компонента наблюдается у эстонцев (на уровне чуть более 18%), и  достигает такого же уровня среди шотландцев.

Эстонцы 0,183
Шотландцы 0,182
Венгры 0,179
Литовцы 0,172
Чехи 0,167
Итальянцы из Бергамо 0,108
Сицилийцы 0,097
Ашкеназим 0,069
Мальтийцы 0,068
Сардинцы 0,008

Сводная таблица по раскладу компонент у отдельных популяций  и их формальной статистической значимости (f3-статистика):

q1is

Эпилог

В апреле и мае 2012 года (задолго до появления статьи Lazaridis et al. 2013), в ходе изучения структуры кластеров компонентов в древних ДНК (чьи SNP-данные были тогда у меня в наличии). В ходе анализа Admixture  K=3 программа дала интересное распределение по современным популяциям и древним образцам. Как видно из географического распространения, кластер-метопапуляции готландских охотников-собирателей/ мезолита и современных саамов в значительной части перекрывается с ареалом современного пика компонентов мезолитических охотников-собирателей. Неолитический (средиземноморский) компонент совпадает с ареалом компонента EEF. Наконец, контуры ареал компонента который я ошибочно обозначил как Corded Ware Indo-European, практически перекрываются контурами ареала ANE (пик которого, как отмечалось выше, приходится на популяции шотландцев и эстонцев).

admixture-3

K3-Admixture

 

.

Графоаналитический метод анализа родословных

Это сообщение и тема, хотя напрямую и не связаны с генетикой, все же показывают перспективность применения графоаналитического метода в изучении родственных связей.

test-reductionДля начала немного теории и литературы по этому вопросу. Также рекомендуется изучить программу Pajek.
A. Mrvar and V. Batagelj: Analysis of Genealogies with Pajek

In the article, two general approaches to analysis of large sparse networks are presented: fragment searching and matrix multiplication. These two approaches are applied to analysis of large genealogies. Genealogies can be represented as graphs in different ways: as Ore graphs, p-graphs, or bipartite p-graphs. We show that p-graphs are more suitable for searching for relinking patterns, whereas Ore graphs are better for computing kinship relations using matrix multiplication. Algorithms described in this article are implemented in the program Pajek.

Andrej Mrvar and Vladimir Batagelj.Relinking Marriages in Genealogies.Metodolo?ski zvezki, Vol. 1, No. 2, 2004, 407-418.

Genealogies can be represented as graphs in different ways: as Ore graphs,
as p-graphs, or as bipartite p-graphs. p-graphs are usually more suitable for
analyses. Some approaches to analysis of large genealogies implemented in
program Pajek are presented and illustrated with analysis of some large ge-
nealogies.

Klaus HAMBERGER, Michael HOUSEMAN, Isabelle DAILLANT,
Douglas R. WHITE and Laurent BARRY.

«MATRIMONIAL RING STRUCTURES»

The paper deals with matrimonial rings, a particular kind of cycles in kinshipnetworks which result when spouses are linked to each other by ties of consanguinity or affinity. Bytaking a network-analytic perspective, the paper endeavours to put this classical issue of structuralkinship theory on a general basis, such as to allow conclusions which go beyond isolated discussions ofparticular ring types (like “cross-cousin marriage”, “sister exchange”, and so forth). The paper providesa definition and formal analysis of matrimonial rings, a method of enumerating all isomorphism classesof matrimonial rings within given genealogical bounds, a series of network-analytic tools – such as thecensus graph – to analyse ring structures in empirical kinship networks, and techniques to effectuatethese analyses with the computer program PAJEK. A program package containing the required macroscan be downloaded from the WWWeb. The working of the method is illustrated at the example of kinshipnetworks from four different parts of the world (South-America, Africa, Australia and Europe).

Pajek workshop at XXVIII Sunbelt Conference, St. Pete Beach, Florida, USA, January 22-27, 2008

POLONA DREMELJ, ANDREJ MRVAR
AND VLADIMIR BATAGELJ

GENEALOGICAL ANALYSIS OF THE RAGUSAN PATRICIATE
WITH THE ASSISTANCE OF THE PAJEK
COMPUTER PROGRAM

Using the Pajek computer program, the authors analyse IrmgardMahnken’s genealogies of the Ragusan patriciate in the fourteenth and fifteenthcenturies, including 5999 individuals. The authors focus on marriagesup to the third degree of consanguinity according to the canonical law, marriageswith a considerable age difference between partners, and cross-siblingmarriages which were most likely the result of arranged marriages,most prevalent among the largest and most powerful patrician houses. Amarriage involving first cousins has been traced as the closest consanguineouslink between spouses in the period investigated. The findings pointto a very high index of in-marriage among the Ragusan patriciate, the reasonsfor which could be found in the isolated position of Dubrovnik and arelatively restricted marriage pool.

Практический пример

Вот например мои визуализации родословной  в виде сетей
1) граф с изображением матримониального ядра
2) граф с редуцированной структурой матримониального ядра
3) кластеры и их пересечения (обозначены розовато-белыми элементами).

На самом деле все просто.
После загрузки Вашей родословной, он…а была представлена в виде двудольного p-графа (двудо?льный граф или бигра?ф — это математический термин теории графов, обозначающий граф, множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет какую-то вершину из одной части с какой-то вершиной другой части, то есть не существует ребра, соединяющего две вершины из одной и той же части).
Генеалогические отношения в p-графе представлены следущим образом — треугольником обозначены лица мужского пола, кругом -лица женского рода, квадратом брачные пары.  Направление стрелок -от детей к родителям и от брачных пар (квадратов) к  брачующимся.

Отношения кровного родства (когнатические отношения) представлены в виде сплошной линии.
Отношения свойства (агнатические отношения) пунктирной линией.
bi-componenttest-cluster (1)
Ваш генеалогический файл содержит в себе 347 индивидов, 276 браков, из которых 35 повторные.
Генеалогические отношения между элементами генеалогии и были отображены в виде сети.
Был произведен анализ сильных, сильных-*периодических, слабых компонентов сети и компонентов дважды соединенных друг с другом (biconnected components).

Последние особенно полезны с точки зрения анализа генеалогией, т.к отражают браки между далекими родственниками и т.н. перекрестные браки  или браки «обмена» между двумя или более генеалогическими группами -кланами.  Группировка подобных браков позволяет выявит генеалогическое ядро, которое, метафорически выражаясь, скрепляет всех остальных членов как узами кровного родства, так и брачными узами свойства.

В вашей генеалогии таким крупнейшим кластером является кластер из 71 человека, отображенный на втором графе.

К вопросу о матримониальных кольцах, или, говоря проще, кластеров, объединяющих семьи как по принципу родства, так и по брачным связям.

Я произвел анализ типов кластеров, встречающихся в Вашей генеалогии и сохранил результаты в графический файл. В оригинале кластеры содержат имена лиц, входящих в них. Однако из за большой плотности наслоения имен и фамилий на изображения структуры кластеров, от поименования пришлось отказаться, оставив только «графический скелет кластера». Впрочем, если Вы умеете корректно отображать кириллические шрифты в EPS, то я прилагаю к сообщению файл EPS, где показаны имена лиц, входящих в кластер.

Вот типы «матримониальных» кластеров в Вашей родословной.
test-clusters
Обратите внимание, что первым слева в первом ряду показан то самое «ядро» из примерно 71 элементов, которое выделено на первом графе из предыдущего сообщения красной линией.