Демография миграций в эпоху неолита и бронзового века

C ресурса Генофонд.ру (автор: Надежда Маркина)

 

Статья американских и шведских исследователей (Goldberg  et al.),опубликованная на сайте препринтов, вновь обращается к дискуссионной проблеме миграций в эпоху неолита и бронзового века.  В работе исследуется вопрос о доле мужского и женского населения  в составе мигрирующих групп, которые сформировали  генофонд  Центральной Европы. Авторы проверяют исходную гипотезу, что миграции из Анатолии в раннем неолите и миграции из понто-каспийских степей в течение позднего неолита и бронзового века были преимущественно мужскими.

Для ответа на это т вопрос авторы опираются не на Y-хромосому, передающуюся по отцовской линии,  и не на митохондриальную ДНК, передающуюся по материнской, как традиционно поступают генетики, а  Х-хромосому. Они вычисляют отношение эффективного размера популяции по Х-хромосоме к эффективному размеру популяции по аутосомам (неполовым хромосомам). Поскольку мужчины имеют одну Х-хромосому, а женщины – две, то в популяции с одинаковым соотношением мужчин и женщин отношение Х-хромосомы к аутосомам должно быть ¾. Отклонение от этой цифры говорит о разной демографической истории по мужской и женской линиям. Такова логика, лежащая в основе метода исследования, подробнее с ним можно познакомиться в тексте статьи.

Авторы изучили опубликованные образцы древней ДНК раннего и позднего неолита и бронзового века, проанализировав более 1,2 млн SNP, в том числе без малого 50 тысяч SNP на Х-хромосоме. Исследуемые образцы относились к популяциям охотников-собирателей, земледельцев Анатолии и понто-каспийских степей.

 

new-1

Схематическая демографическая история земледельцев Центральной Европы в течение неолита и бронзового века.

 

В противоположность существующему мнению, результаты не подтвердили, что миграции в неолите из Анатолии в Европу были преимущественно мужскими. Анализ  показал примерно одинаковое соотношение мужского и женского населения среди мигрантов. А вот миграция из понто-каспийских степей в Центральную Европу в  течение позднего неолита и бронзового века , действительно, была преимущественно мужской: по подсчетам  среди мигрантов на 5-14 мужчин приходилась одна женщина. Авторы показали, что эта миграция была растянута по времени на несколько поколений. В соответствии со своим мужским характером, именно она принесла в Европу технологические инновации.

 

new-2

Доли мужского (синие стрелки) и женского (розовые стрелки) населения в составе неолитической и степной миграций.

 

SNPweights: использование модели калькулятора K16 для анализа главных компонентов происхождения

Ранее я уже отрапортовал о создании двух новых моделей для стандартного этно-популяционного калькулятора, в разработке которых использовались геномы людей, cамостоятельно указавшими свое происхождение (self-reported ancestry).
К сожалению, очень часто субъективная оценка собственного происхождения (указываемого респондентами в опросниках) недостаточно надежна для статистических методов анализа происхождения, поскольку некоторые люди либо сообщают ложные сведения о своей родословной или же просто не знают о своем истинном происхождении. Что еще хуже, — во многих публичных популяционных выборках мы не находим никаких  сведений о точном этническом составе людей в выборке . Как многие из вас знают,  существует множество способов достаточно точной оценки происхождения индивида на основе данных SNP генотипирования.

Самый простой способ сводится к следующему: сначала исследователь объединяет генотипы из своего исследования с генотипами образцов в референсной панели (например: HapMap или 1000 геномов),  затем находит пересечение SNP-ов в каждом наборе данных, а затем запускает программу кластеризации, чтобы увидеть, каким образом образцы исследования группируются с популяциями референсных панелей.  В принципе,  сам процесс несложный, но требует немало времени

К счастью, в 2014 году лабораторией Alkes была предложена программа которая, по сути, значительно облегчает процесс, выполняя большую часть работу за вас. Программа называется SNPWEIGHTS и можно скачать здесь.  Говоря простым языком, программа принимает  в качестве входных данных генотипы SNP-ов, самостоятельно находит пересечение генотипов SNP с генотипами в эталонной выборке , рассчитывает веса SNP-ов на основе предварительно настроенных параметров, чтобы построить первую пару главных компонентов (иначе говоря,  cобственных векторов), а затем вычисляет процентное значение происхождения индивидуума из каждой предковой популяции (кластера).

Для того, чтобы запустить программу, необходимо убедится в том, что в вашей системе установлен Python, и что ваши данные генотипирования приведены в формате EIGENSTRAT. Краткую инструкции по преобразованию в формат EIGENSTRAT с помощью инструмента convertf можно почитать здесь.  Данные аутосомного генотипирования FTDNA или 23andme можно напрямую преобразовать в формат EIGENSTRAT с помощью утилиты aconv от Феликса Чандракумара (либо любого самописного софта).

Затем необходимо загрузить сам пакет SNPWEIGHTS и референтную панель с весами снипов.

  • Панель весов SNP для популяций Европы и Западной Африки можно скачать здесь.
  • SNP веса для населения Европы, Западной Африки и  Восточной Азии можно скачать здесь.
  • SNP веса для населения Европы, Западной Африки, Восточной Азии и популяций американских индейцев можно скачать здесь.
  • SNP веса для популяций северо-западной, юго-восточной части Европы, ашкеназских евреев и можно скачать здесь.

Затем необходимо создать файл параметров par.SNPWEIGHTS с названиями входных файлов EIGENSTRAT, референтной панели, и файл c результатами. Например:

input_geno: data.geno
input_snp: data.snp
input_ind: data.ind
input_pop: CO
output: ancestry.txt

И, наконец, нужно запустиь программу с помощью команды inferancestry.py —par par.SNPWEIGHTS. Для того чтобы программа работала, убедитесь, что inferancestry.info и  файл референтной панели  находятся в том же каталоге, что и файл inferancestry.py.

Полученные результаты можно использовать для разных целей. Например,  можно сгенерировать два информативные графика.

Первый график — обычный график PCA c двумя первыми компонентами (собственными векторами) и наложенный на график процентный расклад компонентов происхождения:

Второй треугольный график, на каждом отрезке которого , представлен процентный вклад одной из трех исконных групп популяции (например: Европы, Африки и Азии, в случае с нашими данными этот пример можно заменить на европейских охотников-собирателей, земледельцев неолита и степных скотоводов эпохи бронзы).

Вот простой код генерирования этих графиков в R. В программе R нет базовых пакетов для построения триангулярных графиков, поэтому  нужно будет сначала установить пакет plotrix. Ancestry.txt  — это файл полученный на выходе из SNPWEIGHTS:

# EV Plot with Percent Ancestry Overlay
data=read.table("ancestry.txt", as.is=T, header=F)
names(data)
plot(data$EV1, data$EV2, pch=20, col="gray", xlab="EV1", ylab="EV2")
text(data$EV1, data$EV2,labels=round(data$EUR,2)100, cex=0.4, offset=0.1, pos=3)
text(data$EV1, data$EV2,labels=round(data$AFR,2)
100, cex=0.4, offset=0.1, pos=2)
text(data$EV1, data$EV2,labels=round(data$ASN,2)*100, cex=0.4, offset=0.1, pos=1)
#Triangle Plot
data$total=data$EUR+data$AFR+data$ASN # Need to account
data$European=data$EUR/data$total # for slight rounding
data$African=data$AFR/data$total # in the ancestry
data$Asian=data$ASN/data$total # estimation file for
data_p=data[c("European","Asian","African")] # triax.plot to work
library(plotrix)
triax.plot(data_p, pch=20, cc.axes=T, show.grid=T)

 

Разумеется, размещенные на сайте разработчика референтные панели носят ограниченный характер. Поэтому я решил заполнить пробелы, преобразовав аллельные частоты SNP-ов в 16 предковых компонентах в 16 синтетических «чистых» предковых популяций, каждая из которых состояла из 200 синтетических индивидов («симулянтов») состоящих на 100 процентов из одного компонента происхождения в модели K16). Файл с генотипами 3200 «симулянтов» я использовал для вычисления весов снипов в каждом компоненте. Продвинутые пользователи, желающие протестировать модель K16 до ее публичного релизма, могут скачать полученный файл с весами снипов  здесь, а затем, cледуя приведенным выше инструкциям, использовать его в качестве референтной панели (а затем сравнить свои результаты с усредненными результатами разных этнических популяций).

Я протестировал веса снипов в модели K16 (выражаю признательность автору программу Чену за помощь), и обнаружил, что между данными калькулятора и данными SNPWEIGHTS расхождения носят незначительный характер, хотя похоже, что SNPWEIGHTS не так сглаживает минорные компоненты происхождения (что позволяет легче выделить в пространстве главных компонент кластеры):

test (1)

Вторая фаза нового проекта

Две недели назад я сообщил об окончании первой фазы своего нового проекта (на первом этапе работы удалось собрать надежную выборку из более чем 5000 образцов более чем 250 различных этно-популяционных групп людей по всему миру.

Как я уже рапортовал ранее, самой сложной из запланированных на втором этапе задач являлась импутирование (импутация) отсутствующих генотипов.  Читатели моего блога помнят, что две предыдущие экспериментальные попытки импутирования больших выборок     — в 2013  и в 2015  — закончились неудачно (или, если говорить точнее, качество импутированных генотипов не оправдало моих завышенных ожиданий). В предыдущих опытах я задействовал мощную комбинацию программ ShapeIT и IMPUTE и  метод импутирования снипов за счет использования большой референсной панели аутосомных гаплотипов (из 1000 genomes),  гарантирующей более аккуратное определение генотипов.

На этот раз, я решил не повторять ошибок, и обратился к использованию других программ — в частности , к  Minimac3, хорошо зарекомендовавшую себя в работе с геномами 1000G.  К моему счастью, я набрел на недавно появившиеся публичные сервера, работающие с «облачным» сервисом импутирования Cloudgene. геномов.
Серверы импутирования геномов позволяют использовать полную референсную панель гаплотипов для точного определения недостающих генотипов в анализируемых данных. Пользователи подобных серверов могут загружать (предварительно фазированные или несфазированные) данные генотипов на сервер. Процедура импутирования  будет осуществляться на удаленном сервере, и по окончанию этого процесса рассчитанные данные доступны пользователю для скачивания. Наряду с импутированием, подобные сервисы позволяют провести процедуру контроля качества (QC) и фазировки данных в качестве предварительного этапа процесса импутирования генотипов.

Прототипы серверов импутирования уже доступны в институте Сангера и Мичиганского университета. В дополнение к вышеназванным серверам, можно упомянуть прототип сервера поэтапной полномасштабной  фазировки генотипов анализируемых образцов (прототип создан биоинформатиками Оксфордского университета). На мой взгляд, самое простое и доступное решение задачи импутирования на удаленном сервере было разработано сотрудниками   Мичиганского университета. Дополнительное преимущество этому решению дает грамотная документация по использованию сервиса.

Основная рабочая лошадка сервиса — это комбинация двух или трех программ — две програмы для фазирования диплоидных генотипов в гаплоидную фазу  ShapeIT и Hapi-UR , а в качестве основного ПО для самого процесса импутирования (определения) недостающих генотипов — вышеупомянутую программу Minimac3.

Описание эксперимента с импутированием генотипов на удаленном сервере

В самом начале,  я разбил свою выборку на пять когорт (т.к. референсные панели на сервере также разбиты на «этнографические группы»):

  1. европейцы (европейцы + кавказцы) — 1715 образцов -87169 снипа
  2. азиаты (+американские аборигены и аборигены островов Тихого Океана) — 2356 образцов — 87044 снипа
  3. африканцы — 1054 образца — 86754 снипов
  4. палеогеномы древних жителей Евразии, Африки и Америки -340 — 594500 снипов
  5. смешанные группы — преимущественно мозабиты, пуэрто-риканцы и др.
QC-Report
На рисунке показана корреляция между частотами аллелей в изучаемоей выборке (здесь: европейская когорта) и частотами аллелей в референсной панели

К моему вящему неудовльствию,  некоторые образцы в сводной выборке не прошли контроль качества — в первую очередь это касается образцов европейцев из базы данных POPRES, а также выборок статьи  Xing et al. (2010). Скорее всего, их нужно будет импутировать отдельно.

Несмотря на значительную скорость обработки генотипов на удаленном сервере, к настоящему времени эксперимент еще не доведен до конца.  Пока я планирую ограничиться импутированием генотипов в 3 первых когортах (т.к. импутирование палеогеномов с помощью современных референсных панелей гаплотипов вероятнее всего приведет к искажению истинного разнообразия палеогеномов за счет проекции на современные группы населения, хотя авторы статьи Gamba et al. 2014 в сопроводительном материале к своей статье утверждают обратное).

После окончания фазирования и последующей обработки генотипов европейской когорты в программе Plink (были отсеяны все варианты с вероятностью ниже 0.9) ,  я получил выборку из 1715 европейцев с 25 215 169 снипами против изначальных 87169, т.е число снипов в выборке увеличилось в 290 раз!
В азиатской когорте соотношение импутированных генотипов к исходным составило чуть меньшую величину 19 048 308 / 87044 = 219.

Проверка результатов

Разумеется, все полученные результаты нуждались в дополнительной проверке качества генотипирования.
Cначала я объединил импутированную европейскую когорту с когортой палеогеномов (которая не была импутирована) и рассчитал в программе PLINK 1.9 матрицу IBS (т.е. сходства образцов в выборке между собой, эта метрика отдаленно напоминает Global Similarity в клиентских отчетах 23andme), а затем усреднил данные по популяциям и произвел по усредненным значениям иерархическую кластеризацию по признакам сходства (IBS, identity by state). Результат превзошел все мои пессимистические ожидания

 

 

Как становится очевидно из приведенной выше кластерограммы,  в целом взаимное расположение популяций в кластерах соответствует (в общих чертах) взаимному географическому положению. Присутствуют, правда, и некоторые огрехи. Так, например, венгры очутились в одном кластере с русскими из Курска,  норвежцы — с русскими из Смоленска, а усредненные «русские» — с американцами европейского происхождения из штата Юта и французами. Трудно сказать, в чем здесь причина, тем более что матрица была составлена по значениям IBS (идентичности по состоянию), а не IBD (идентичности по происхождению).  Более подробные данные о попарных значениях IBS между популяциями выборки можно посмотреть в этой таблице

Импутированная азиатская когорта (несмотря на расширение географии за счет включения образцов коренного населения Америки и аборигенов бассейна Тихого океана)  тоже  оказалась на удивление надежной. Я пока не буду останавливаться на подробностях изучения этой когорты, вместо этого я размещаю здесь результаты MDS- мультдименсионального шкалирования образцов выборки, образованной в ходе слияния 2 импутированных когорт (европейской и азиатской) с 1 неимпутированной (палеогеномы). Цветовое обозначение точек соответствует определенным кластерам, выявленных в выборке с помощью алгоритма MCLUST (cледуя рекомендациям Диенека Понтикоса). Всего этих кластеров 15 и они обозначены последовательностью чисел от 1 до 15, и каждый из этих кластеров имеет свою четкую географическую привязку:

  • 1 — кластер популяций ближнего Востока и  Анатолии
  • 2 — кластер популяций северного Кавказа
  • 3 — «индоевропейский» кластер древних популяций Синташта, шнуровой культуры, Ямной культуры и т.д.
  •  4 — кластер аборигенных жителей Америки (эскимосов и индейцев)
  • 5 — суперкластер популяций средиземноморского и восточноевропейского региона
  • 6 — сибирский кластер алтайских и самодийских популяций
  • 7 — кластер популяций западной и северной Европы
  • 8 — кластер палеосибирских популяций (таких как чукчи, ительмены и коряки)
  • 9 — кластер аборигенных (австронезийских и тай-кадайских) популяций юго-восточной Азии (даи, атаяла и ами)
  • 10 — кластер неолитических популяций
  • 11 — еще один ближневосточно-средиземноморский кластер (ашкеназим, сардинцы и так далее)
  • 12 — кластер североиндийских популяций
  • 13 — кластер центральноазиатских популяций
  • 14 — поволжские популяции
  • 15 — разные групп индусов

 

Обновление проекта: окончание первой фазы

После нескольких лет практически полного пассивного бездействия в области изучения генетической вариативности популяций населения Восточной Европы, я решил продолжить свои скромные изыскания в этом вопросе. Примерно год ушел на пересборку и соединение различных выборок популяций (выборки разных исследований содержат разное количество частично перекрывающихся снипов, и это обстоятельство существенно влияет на качество и значимость получаемыых в анализе таких выборок результатов). К сожалению, разница в частотах минорных снипов в выборках одних и тех же этнических групп, но генотипированных на разных платформах Illumina и Affy,  приводит к существенному снижению качества импутирования недостающих маркеров. Это очень плохо, так как во многих из разработанных методик анализа генетического разнообразия,  надежность результатов напрямую зависит от полноты генотипирования, т.е. в идеале во всех популяциях должны быть равномерно представлены все снипы, т.е маркеры из полного объединенного набора.  Вопреки моим ожиданиям, у этой проблемы не существует тривиального решения, поэтому я решил отложить задачу импутации отсутствующих генотипов в образцах выборки на дальнейшее (чуть позже я поделюсь своими соображениями о том, как сделать результат импутирования более точным).

Ровно год назад я сообщил о том, что в основу (базу) новой выборки будут положены полный публичный кураторский набор контрольных популяционных групп лаборатории Райха, что и было выполнено частично, хотя запланированную процедуру импутирования так и не удалось завершить в силу огромной компьютерной ресурсозатратности задачи.

Все же, с учетом тяжелых уроков всех предыдущих ошибок (в том числе и при работе с палеогеномами человека), мне все же удалось собрать набор из примерно 6500 сэмплов из более чем 250 этно-популяционных групп со всего земного шара. На этом можно считать первую фазу законченной.

В качестве предварительной иллюстрации надежности результатов можно привести график PCA (анализа главных компонентов генетической вариативности в западноевразийских популяциях из описанной выше сводной выборки, после применения соответствующих фильтров контроля качества снипов).

West-Eurasia (modern and ancient samples)

Как мне кажется, получился неплохой график PC (анализа главных компонент) древних и современных групп народонаселения, причем  хорошо видно на какие современные группы накладываются палеогеномы.
Но теперь другая проблема — я не могу сохранить этот график в формате PDF (видимо, разработчики Plotly отключили эту опцию в бесплатной версии). Можно выгрузить графику в файл png, но в отличие от векторного формата pdf, png — формат растровый, и улучшить качество графики уже не получится.

Поэтому я сделал альтернативные варианты (без использования пакета Plotly) графика с изображением положения популяций в пространстве двух главных компонентов генетического разнообразия Евразии.

После несколько лет практически полного отсутствия активности в области изучения генетической вариативности популяций населения Восточной Европы, я решил продолжить свои скромные изыскания в этом вопросе. Примерно год ушел на пересборку и соединение различных выборок популяций (выборки разных исследований содержат разное количество частично перекрывающихся снипов, и это обстоятельство существенно влияет на статистическое качество). К сожалению, разница в частотах минорных снипов в выборках одних и тех же этнических групп, но генотипированных на разных платформах Illumina и Affy,  приводит к существенному снижению импутирования недостающих маркеров. Это очень плохо, так как во многих из предложенных методик анализа генетического разнообразия,  надежность результатов напрямую зависит от полноты генотипирования, т.е. в идеале во всех популяциях должны быть равномерно представлены все снипы, т.е маркеры из полного объединенного набора.  Вопреки моим ожиданиям, у этой проблемы не существует тривиального решения, поэтому я решил отложить задачу импутации отсутствующих генотипов в образцах выборки на дальнейшее (чуть позже я поделюсь своими соображениями о том, как сделать результат импутирования более точным).

Ровно год назад я сообщил о том, что в основу (базу) новой выборки будут положены полный публичный кураторский набор контрольных популяционных групп лаборатории Райха, что и было выполнено частично, хотя запланированную процедуру импутирования так и не удалось завершить в силу огромной компьютерной ресурсозатратности задачи.

Все же, с учетом тяжелых уроков всех предыдущих ошибок (в том числе и при работе с палеогеномами человека), мне все же удалось собрать набор из примерно 6500 сэмплов из более чем 250 этно-популяционных групп со всего земного шара. На этом можно считать первую фазу законченной.

В качестве предварительной иллюстрации надежности результатов можно привести график PCA (анализа главных компонентов генетической вариативности в западноевразийских популяциях из описанной выше сводной выборки, после применения соответствующих фильтров контроля качества снипов).

West-Eurasia (modern and ancient samples)

Как мне кажется, получился неплохой график PC (анализа главных компонент) древних и современных групп народонаселения, причем  хорошо видно на какие современные группы накладываются палеогеномы.
Но теперь другая проблема — я не могу сохранить этот график в формате PDF (видимо, разработчики Plotly отключили эту опцию в бесплатной версии). Можно выгрузить графику в файл png, но в отличие от векторного формата pdf, png — формат растровый, и улучшить качество графики уже не получится.

Поэтому я сделал альтернативные варианты (без использования пакета Plotly) графика с изображением положения популяций в пространстве двух главных компонентов генетического разнообразия Евразии.

Реконструкция миграций по палеоДНК

Сергей Козлов

Реконструкция миграций по палеоДНК

Накопившийся за последние годы объем информации по аутосомной палеоДНК стал уже слишком велик, а потому начал требовать систематизации. Для этой цели я нанес взаимоотношения между собой ряда образцов из Евразии на нижеследующую схему:

ВзаимоотношенияПалеообразцовv3

Стрелки отображают вероятные влияния, однако источником их не обязательно является культура, указанная в ячейке, из которой выходит стрелка. Здесь больше привязка к географии — если влиял и не этот конкретный источник, то какой-то близкий и схожий. Многие ячейки попросту оставлены пустыми. В противоположность этому, остриё каждой стрелки указывает на конкретные образцы из определенной культуры, проанализированные учёными.

Чтобы не загромождать схему, для Европы я не стал создавать множество колонок, поскольку они были бы структурно схожи между собой. Кроме отображенной в таблице Центральной Европы (в основном это образцы из Германии), неплохой временной срез существует по северной Испании, где пещеры хорошо сохранили древние образцы. Совершенно аналогично предыдущему случаю, в мезолите местность населяют охотники-собиратели WHG, далее появляются неолитические земледельцы (аутосомно близкие по всей Европе), после чего в их генофонде понемножку начинает расти доля WHG, вплоть до халколита. Более поздние палеообразцы оттуда мне пока неизвестны.

Охотники-собиратели юго-западной Скандинавии (SHG) по аутосомам находились между WHG и EHG (похоже, что мезолитические охотники-собиратели северо-западной Евразии формировали континуум с плавным переходом от WHG на западе к ANE на востоке). Впоследствии мы видим появление все тех же неолитических земледельцев, а еще позже в регион попадают «ямноподобные» носители CHG, как и в Германии. Среди археологов нередко принято выделять этих пришельцев в отдельную от их аналогов с южного берега Балтики (культура шнуровой керамики) культуру боевых топоров, или ладьевидных топоров. И генетика дает для этого некоторые основания — в отличие от германских шнуровиков, у образца из Швеции вклад CHG заметно ниже, а влияние северных охотников-собирателей — выше. Однако и здесь носители CHG явно свежие пришельцы, ранее этот компонент в регионе не находили.

Третьим регионом, по которому имеется временной срез, является Венгрия. Можно было бы включить ее в центральноевропейскую колонку, однако у венгерских образцов имеется своя специфика. Если на протяжении мезолита-неолита ситуация развивается по привычной схеме, то в эпоху бронзы новоприбывшее население заметно отличается от тех, кто мигрировал в более северные районы. Да, растет доля «кавказского» компонента, но он более «анатолийский», чем «степной-ямный» (казалось бы, именно в степной Венгрии можно в первую очередь ожидать «ямный» компонент). При этом доля «охотничьего» компонента у них также заметно повышена по сравнению с неолитчиками. Возможно, эти люди и ответственны за аутосомный сдвиг у представителей ККК и Унетицкой культуры, отображенный в таблице. С этого момента в Центральной Европе наличествуют все основные имеющиеся в ней в наши дни аутосомные компоненты и население становится достаточно схожим с нашими современниками.

К сожалению, между Волгой и Карпатами до сих пор не проанализировано ни одного образца из обсуждаемого периода (единственный удостоившийся подобной чести — палеолитический образец с Маркиной Горы (Костёнки-14), для нашей цели бесполезен). Поэтому остается лишь строить предположения, какие изменения происходили в генофонде населения Восточноевропейской равнины в это время. Когда будет закрыта эта дыра, на данный момент мне совершенно непонятно. Что касается Средней Азии и Кавказа, то мы можем ожидать появления новых результатов оттуда в обозримом будущем.

 

 

Охотники-собиратели Кавказа и южный генетический полюс ямников

Сергей Козлов

Охотники-собиратели Кавказа и южный генетический полюс ямников.

За прошедший год в научный оборот было введено множество палеогеномов из Европы и евразийской степи. Было доказано, что в западной части Европы произошло как минимум два резких смещения аутосомного ландшафта — сначала на палеоевропейские охотники-собиратели были замещены пришедшими из Анатолии неолитическими земледельцами (впрочем, часть их генофонда все же сохранилась), а впоследствии уже земледельцы оказались сильно потеснены новыми пришельцами, генетически схожими с представителями ямной КИО. Их след хорошо выделяется в современной Европе — во-первых, это относительно недавно обнаруженный, но ставший широко известным среди интересующихся геногеографией компонент ANE, во-вторых же, «загадочный» южный компонент ямников.

Авторы первой из опубликованных работ по аутосомам ямников смоделировали их, как смесь ~50 на 50 мезолитических восточноевропейских охотников-собирателей (EHG) и современных армян (впрочем, еще лучше на эту роль подошли иракские евреи, но их решили пропустить). Эта модель сразу вызвала во мне отрицательное отношение, поскольку у армян хорошо представлен аутосомный компонент неолитических земледельцев, а у ямников он не обнаружен в сколь-нибудь значимых количествах. Таким образом, модель изначально была неверна, но, к сожалению, была растиражирована еще до выхода статьи в свет (благодаря «утечкам» от авторов) и завладела многими умами. Постепенно вокруг слова «армянский» даже перестали ставить кавычки ))

К счастью, над палеогеномами работает целый ряд команд ученых и одна из них решила обратить внимание не только на северные палеообразцы, но и на остававшиеся долгое время в пренебрежении южные. Первой ласточкой стали два охотника-собирателя, жившие (согласно радиоуглеродной оценке) 9 и 13 тысяч лет назад на территории нынешней Грузии. В запаснике у этой команды еще немало могущих представлять интерес образцов древней ДНК, поэтому ждем дальнейших работ.

В качестве основного был использован более поздний из двух образцов, найденный в пещере Kotias. Он прочитан с весьма хорошим для палеогенома качеством (что позволило мне использовать его для подсчета IBD-сегментов). Моделирование показало, что в качестве «южного полюса» генофонда ямников кавказские охотники-собиратели (для них авторы статьи ввели новое сокращенное название — CHG) подходят намного лучше, чем любая из современных выборок:

CHGF3Stat

Это и неудивительно — ведь доминирующим аутосомным компонентом в предпочитаемом мной калькуляторе MDLP K27 у Kotias является Gedrosia-Caucasian, о котором я уже писал:

Однако с точки зрения предковых компонентов Admixture такая модель — далеко не лучший вариант, «южный» ямный компонент скорее связывается с чем-то в промежутке между Восточным Кавказом и Средней Азией. Как и предполагалось, он коррелирует с бимодальным компонентом, условно называемым Gedrosia. Исходя из современных максимумов, его исторический центр находится где-то в южном Прикаспии, возможно, восточнее. Судя по всему, он представляет собой результат смешения «ближневосточного» компонента ENF и ANE, поэтому теоретически исторического центра может и вообще не быть.

Как выяснилось, девять тысячелетий назад этот компонент преобладал и в более западных районах. Что ж, это делает его только еще более подходящим.

Результаты Kotias в K27:

0.42%   Nilotic-Omotic
  2.22% Ancestral-South-Ind.
  3.66% North-European-Balt.
  0.00% Uralic
  0.01% Australo-Melanesian
  1.79% East-Siberian
  0.00% Ancestral-Yayoi
30.28%   Caucasian-Near-East.
  0.00% Tibeto-Burman
  0.00% Austronesian
  0.00% Central-African-Pygm
  1.05% Central-African-HG
  3.66% Nilo-Saharian
  0.00% North-African
52.04%   Gedrosia-Caucasian
  0.00% Cushitic
  0.00% Congo-Pygmean
  1.73% Bushmen
  0.00% South-Meso-Amerind.
  0.00% South-West-European
  0.00% North-Amerindian
  0.00% Arabic
  0.01% North-Circumpolar
  3.13% Kalash
  0.00% Papuan-Australian
  0.00% Baltic-Finnic
  0.00% Bantu

Карта сумм IBD-сегментов Kotias с образцами из современных выборок:

KotiasSnpc-100IBDext

Лидерами по сумме сегментов оказались грузины (приведен список первых 25 результатов):

Georgian 71,79
Abkhazian 70,75
Lezgin 68,27
Greek_Azov 67,15
Balkarian 65,02
Kurd 64,38
Ossetian 62,66
Armenian 61,98
Nogay 60,38
Bosnian 60,23
Slovenian 60,02
Chechen 59,07
Adygei 58,39
Cypriot 58,28
Turkish 55,86
Kosovar 54,64
Ukrainian-West-and-Center 54,17
Bulgarian 53,21
Slovak 53,01
Cornish 52,46
Croatian 52,21
Kumyk 51,96
Makrani 51,91
Syrian 51,78
Greek 51,68

Что ж, можно их поздравить с генетической преемственностью на протяжении десятка тысячелетий. Однако по пропорциям компонентов Admixture грузины и абхазы довольно заметно отличаются от Kotias:

Abkhasian_S3 Georgian_Kaheti_R2 Georgian_West_R4 Svan_R3
Nilotic-Omotic 0,24 0,00 0,52 0,06
Ancestral-South-Indian 0,75 0,92 0,44 0,31
North-European-Baltic 8,58 5,60 6,87 6,93
Uralic 2,17 1,69 0,72 2,34
Australo-Melanesian 0,27 0,07 0,59 0,42
East-Siberean 1,20 0,00 0,20 0,42
Ancestral-Yayoi 0,72 0,00 0,00 0,44
Caucasian-Near-Eastern 40,79 41,08 45,61 42,85
Tibeto-Burman 0,00 1,09 0,12 0,38
Austronesian 0,72 0,20 0,00 0,23
Central-African-Pygmean 0,05 0,06 0,20 0,00
Central-African-Hunter-Gatherers 0,22 0,15 0,29 0,18
Nilo-Saharian 0,55 0,01 0,02 0,15
North-African 0,50 1,17 0,90 0,31
Gedrosia-Caucasian 32,01 31,65 33,18 35,31
Cushitic 1,17 1,56 0,31 0,42
Congo-Pygmean 0,00 0,25 0,18 0,35
Bushmen 0,04 0,00 0,00 0,00
South-Meso-Amerindian 0,27 0,04 0,14 0,12
South-West-European 2,68 5,06 2,73 1,91
North-Amerindian 0,13 0,04 0,13 0,23
Arabic 2,42 6,83 3,56 3,72
North-Circumpolar 0,47 0,09 0,99 0,41
Kalash 2,38 2,33 1,66 1,77
Papuan-Australian 0,42 0,11 0,33 0,32
Baltic-Finnic 1,25 0,00 0,20 0,14
Bantu 0,00 0,00 0,11 0,28

Как видно, компонент Gedrosia-Caucasian у них стал заметно ниже, а более западные и южные Caucasian-Near-Eastern, Arabic, South-West-European — выросли. Вырос и «северный» North-European Baltic. Думаю, что это связано с миграциями в регион новых групп, что несколько размыло изначальный генофонд. Поэтому современные грузины подошли на роль «южного компонента» в меньшей степени по сравнению с Kotias, и древние CHG выглядят на генетической карте более «восточными» (почему я и помещал этот компонент где-то в Прикаспии).

Кроме Кавказа, вызывает интерес явная связь CHG с рядом балканских популяций (и примыкающей к ним правобережной украинской выборке) — вероятно, это неспроста. Причем направление миграций здесь, очевидно, именно от CHG либо их родственников к балканцам.

Думаю, что сами CHG могут быть смоделированы, как смесь ближневосточников и носителей ANE откуда-то с родины компонента Gedrosia. Например, в калькуляторе ANE K7 Kotias получается таким (как обычно, «Африка» отображает архаику палеогеномов):

31.10%   ANE
  5.36% ASE
  0.01% WHG-UHG
  0.00% East_Eurasian
  2.47% West_African
  1.50% East_African
59.56%   ENF

Однако же никаких связей с Сибирью на карте IBD-сегментов он не проявляет. Таким образом, вновь встает вопрос о «южном» и «северном» вариантах ANE. Методами Admixture разделить его пока не удалось (если говорить о «чистом» ANE а не более новых компонентах, куда он входит составной частью). Возможно, он сам по себе является композитом — результатом смеси охотников северной Евразии и пришельцев с юга? Тогда у Kotias проявляется лишь его южная часть. Во всяком случае, мы можем выделить этот «восточный» компонент Kotias  в том числе и методом IBD-анализа, рассмотрев его разность с европейскими неолитическими земледельцами (EEF), выступающими здесь «прокси» ближневосточного компонента:

CHGMinusEEFIBDext

Результат прекрасно совпадает с распределением компонента Gedrosia-Caucasian — один из пиков оказался в Дагестане (лезгины), второй — рядом с исторической Гедрозией. Можно поздравить Вадима Веренича с удачным калькулятором. Любопытно, что соседи лезгинов по Восточному Кавказу — чеченцы и кумыки не оказались ярко выделенными, несмотря на немногим уступающую лезгинам долю ANE. Зато они выделяются у ямников и оленеостровца EHG. Возникает предположение, что либо эти народы в наибольшей степени испытали «ямное» влияние, либо «южный компонент» ямников наиболее связан с ними, либо их ANE относится к чуть другой веточке по сравнению с Kotias, более близкой к ямной. Во всяком случае. здесь есть, над чем подумать.

Теперь сравним Kotias с самими ямными геномами:

CHGMinusYamnayaIBDext

Как видите, связь с ямниками у выборок из Северной Европы и Поволжья-Урала очень сильна по сравнению со связью с CHG. Думаю, что основное объяснение этому — отсутствие у Kotias компонентов WHG и «северного» ANE. Они занимают основную часть как генофонда европейцев, так и ямников. Более интересна ситуация в Азии — в Средней Азии сильнее связь с ямниками, далее при движении на юг, к Индийскому океану, постепенно идет выравнивание в пользу CHG (возможно, это говорит о том, что ямное влияние сокращается и мы видим более «фоновое» родство) и на самом дальнем юге возвращается равновесие (эти популяции уже мало связаны как с ямниками, так и с CHG). «Ямный язык», вдающийся в Китай через алтайцев, уйгуров и Ту — не след ли это тоже индоевропейской миграции? Хотя это может быть и совпадением.

Что касается родного для Kotias Кавказа, то если на западе связь с ним очень сильна, к северо-востоку, как уже писалось, «ямное» влияние нарастает.

Некоторый интерес представляет и сравнение охотников-собирателей Кавказа с уже не раз упоминавшимися в этой заметке западноевразийскими охотниками-собирателями (WHG):

CHGMinusWHGIBDext

Поскольку WHG входит составной частью в генофонд неолитических земледельцев Европы (EEF), то «ближневосточное» влияние в Южной Европе, связанное с их миграциями, частично отфильтруется. Например, считающиеся наиболее схожими с EEF среди наших современников жители острова Сардиния здесь ярко-зеленые. Можно сделать вывод, что на Балканах и в южной Италии влияние CHG довольно серьезно (что мы и видели на первой карте). Хотя из-за влияния «чистого» WHG повсюду в Европе делать точные оценки сложно.

В заключение можно подытожить, что расшифровка геномов охотников-собирателей Кавказа является очередным, и достаточно заметным, шагом в деле восстановления доисторических миграций и формирования современной генетической картины в Евразии.

 

Подготовка к анализу новых образцов палеогеномов

Несколькими постами ранее ув. Сергей Козлов подготовил замечательный по своей глубине русскоязычный обозор новой статьи Allentoft et al. 2015 (еще раз выражаю свою благодарность). В этом обзоре были затронуты преимущественно технические вопросы, в то время как в аналогичном разборе на сайте генофонд.ру было пересказано общее содержание статьи:  » Cтатья большого международного коллектива, опубликованная 11 июня в журнале Nature, посвящена исследованию геномов популяций Евразии в бронзовом веке (изучен период от 3000 до 1000 лет до н.э.). Первый автор Мортен Aллентофт (Morten E. Allentoft) и ведущий автор Эске Виллерслев (Eske Willerslev) представляют Центр географической генетики Музея естественной истории Университета Копенгагена, Дания. Эта статья вызвала огромный интерес у специалистов по истории популяций человека — ведь в ней представлен анализ самого большого массива древних геномов из разных археологических культур эпохи бронзы. На основании анализа древних геномов авторы пробуют реконструировать древние миграции и распространение археологических культур во времени и пространстве. В бронзовом веке, начало которого датируют временем 3500-3300 лет до н.э., в производстве орудий и оружия камень все больше уступает место металлу. Это сопровождается   радикальными культурными и социальными изменениями в жизни людей. Они касаются не только хозяйственного уклада – возникает новое понимание имущественных отношений, семьи и личности. Основной вопрос, на который попытались ответить авторы статьи — были ли эти изменения результатом передачи культурных навыков или результатом миграций населения. Иными словами, «была ли это циркуляция людей или идей». Важнейший вопрос — связаны ли эти события с распространением индоевропейских языков, на которых сейчас говорит большая часть человечества.»

Лавина публикаций древних геномов (кроме вышеупомянутых статей Allentoft et al. 2015, Haak et al. 2015, летом опубликовались статьи Pinhasi et al. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone,  и Fu et al.  An early modern human from Romania with a recent Neanderthal ancestor, однако к сожалению, количество снипов в большинстве образцов палеогеномов недостаточно для проведения развернутых анализов вместе с палеогеномами из других статей) заставила меня ускорить подготовку своей сводной выборки референсных образцов популяций (об этом я писал в предыдущих записях).

Я решил отказаться от полного импутирования древних геномов (очевидно бессмысленного занятия, так как у нас нет надежной референсной панели для импутирования выборочно секвенированных палеогеномв), и вместо этого ограничился импутированным (с помощью панели 1000 Genomes) набором снипов в контрольном наборе популяций лаборатории Райха (Affymetrix Human Origins Fully Public Dataset), этот набор использовался в статье Lazaridis et al. 2014.  

Разумеется, ни одна процедура «импутирования генома» (imputation of genome -сложнопереводимый на русский язык термин) не обходится без ошибок. Поэтому перед тем как приступить к самому анализу, я провел проверку качества выборки. На этот раз, я использовал  инструментарий Python — PyGenClean. Этот инструментий существенно облегчает стандартизацию генетических данных и  контроль качества выходных данных платформы генотипирования. Он минимизирует ошибки манипулирования данными, и ускоряет процесс очистки данных от потенциальных ошибок генотипирования,  а также позволяет составлять информативные графики и автоматически оценивать предварительные параметры последующего статистического анализа.

После отсеивания снипов c низким качеством и индивидов с низкой степенью генотипирования, а также снипов с существенным отклонением от равновесия Харди-Вайнберга, я посмотрел оставшиеся образцы на предмет наличия в выборке «оutliers» (так называемых «статистических выбросов»). До процедуры нахождения выбросов график главных компонент выглядел следующим образом:

И после нахождения выбросов (т.е образцов со стандартным отклонением больше 5 сигм)

Первоначально я планировал анализировать древние геномы вместе с геномами современных людей, однако (как видно из нижеприведенных графиков) палеогеномы гораздо в большей степени отклоняются от реперных точек, бессистемно разбиваясь на группы:

 

Поэтому такую очистку данных лучше проводить в два захода, один — для современных образцов, а другой — для палеогеномов. А затем полученные «качественные» выборки соединять в общую контрольную выборку.
В нашем случае, я так и поступил, получив выборку из 2250 этнопопуляционных образцов и 155 000 снипов.

Вот так выглядит взаимное расположение образцов геномов на PCA графике.

 

Caucasian, North-African, Afro-American, AG2, South-European, Alberstedt-LN, Native-American, Siberian, African, East-Asian, Near-Eastern, Atayal-Coriell, Native-Australian, Australian, Australian-ECCAC, East-European, Baalberge-MN, South-Asian, Volga-Ural, West-European, Bell-Beaker-LN, North-Indian, BenzigerodeHeimburg-LN, South-Indian, Ancient-African, American, Oceanian, South-East-Asian, Arctic, Corded-Ware, Near-East, Denisovan, Denmark-Carlstrup, Denmark-Falshoy, Denmark-Marbjerg, Denmark-Sebberskole, Esperstedt-MN, EuropeanIronAge, North-European, Halberstadt-LBA, Central-Asian, Hixton, Href, HungaryGamba-BA, HungaryGamba-CA, HungaryGamba-EN, HungaryGamba-HG, HungaryGamba-IA, Iceman, Karelia-HG, Karsdorf-LN, Kostenki14, LaBrana1, LateDorset, LBK-EN, WHG, MA1, Mezmaiskaya, MiddleDorset, North-Greek, South-Italian, Piramalai-Kallars, Poland-Polwice, Poland-Szczepankowice, Poland-Unetice, Poland-Chociwiel, Samara-HG, Saqqaq, East-Aasian, Spain-EN, Spain-EN-relative-of-I0410, Spain-MN, Starcevo-EN, Stuttgart, Sweden-Abekas, Sweden-Angamollan, Sweden-Visby, SwedenSkoglund-MHG, SwedenSkoglund-MN, SwedenSkoglund-NHG, Thule, Unetice-EBA, Ust-Ishim, Vindija, Yamnaya

Именно эту выборку я положил в основу своего нового тестового калькулятора K13 (о его создании я расскажу позже) — предназначенный для анализа «глубокого» происхождения популяций. Как всегда, модель нового калькулятора основана на базовой модели известного DIYDodecad калькулятора. Впервые я остался более или менее удовлетворен полученными результатами. Думаю, что от этой модели можно плясать дальше. И хотя модельная кластеризация с помощью алгоритма Mclust дает основание полагать, что используемая мной выборка из 2230 геномов наилучшим образом (т.е без неизбежного при больших значениях K вырождения компонентов) описывается моделью из 8 кластеров, я остановился на K=13 т.е 13 кластерах:

  1. Amerindian — модальный компонент американских индейцев

 

 

  • ANE — модальный компонент северных евразийцев, изолирован из общего с WHG кластера — наивысшие значения в древнесибирских образцах MA1, AG2, а также у андроновцев, синаштинцев, представителей ямной культуры, шнуровиков и т.д. Из ныне живущих популяций самый высокий процент у калашей. Практически совпадает с ANE в статье Lazaridis et al. 2014

 

 

  • Arctic — модальный компонент с пиком в популяциях коряков, чукчей, ительменов и эскимосов

 

 

  • ASI — модальный компонент южноиндийских популяций, у современных популяций наивысший процент у онге, идентичен ASI в работе Reich et al. 2009.

 

 

  • Caucas(us)-Gedrosia — идентичен кластеру, открытому в 2011 году Диенеком Понтикосом

 

 

  • EastAsian — модальный компонент жителей восточной Азии

 

 

  • ENF — компонент древних европейских земледельцев неолита, пик в образцах палеогеномов культуры линейно-ленточной керамики. Тождественен аналогичному компоненту в работах популяционных генетиков (Lazaridis et al. 2014, Haak et al. 2015). В современных этнопулах — наивысшие значения у сардинцев, корсиканцев и басков.

 

 

  • NearEast — модальный компонент жителей ближнего Востока

 

 

  • Oceanian — модальный компонент аборигенных жителей Океании, Австронезии, Меланезии и Микронезии — пик у современных папуасов и австралийских аборигенов

 

 

  • Paleo-African — модальный компонент африканских пигмеев и бушменов

 

 

  • Siberian — модальный компонент народностей юго-восточной Сибири

 

 

  • Subsaharian — второй африканских компонент — пик в популяциях мандинка, йоруба и ишан

 

 

  • WHG-UHG — компонент древних европейских мезолитических охотников-собирателей, пик в образцах палеогеномов мезолитических популяций европейских охотников-собирателей. Тождественен аналогичному компоненту в работах популяционных генетиков (Lazaridis et al. 2014, Haak et al. 2015). Из современных популяций — наивысший процент в популяциях эстонцев, литовцев, финнов и др.

 

 

MDS plot - K13 ancestral population

Как я и предполагал, модель калькулятора оказалась особенно хороша в применении к анализу древних геномов. И на самом деле, на нижеприведенном графике PCA (пространстве 2 главных компонент результатов анализа древних геномов в моем бета-калькуляторе K13) видны замечательные вещи. Расположение геномов хорошо вписывается в треугольник, один из углов которого образуют геномы древних «ямников» (из работы Haak et al. 2015), причем геномы «русских»ямники из работы Allentoft at al.2015 чуть-чуть сдвинуты в сторону древних мезолитических геномов древних европейских охотников-собирателей. За ними (в направлении «неолитического» угла) следуют представители шнуровой культуры, еще дальше — геномы представителей геномов унетицкой культуры и т.д. Второй угол треугольника образован неолитическим геномами, причем если более поздние неолитические геномы сдвигаются ближе к представителям линейно-ленточной культуры (англ. Linear Pottery culture, фр. Culture rubanée, нем. Linearbandkeramische Kultur, LBK — наиболее распространенная неолитическая культура Центральной Европы 5500—4500 гг. до н. э.), то более ранние геномы — геном представительницы более ранней фазы этой культуры (Stuttgart-LBK), а также геномы представителей балканских неолитических культур — Старчево и Винча — очень близки к палеогеному из Barcin (культура Чатал-Хююк, cамые ранние найденные культурные слои относятся к 7400 г. до н. э.). Таким образом генетика подтверждает утверждения археологов о близости неолитических культур Балкан и Анатолии. Более того — данные генетики свидетельствуют о том, что во времена т.н «неолитической революции» происходила не только и не столько миграция технологий (как считали некоторые археологи), но и миграция населения (из Анатолии на Балканы). Причем, судя по моему графику PCA, миграция происходила в несколько, хронологически удаленных, этапов, и — скорее всего — из разных мест. Крайную точку в этому угле треугольника я обозначил как «анатолийские земледельцы» (ближайший к этой точки геном — геном «земледельца» из культуры Старчево — взят из работ Haak et al. 2015).

Для людей, интересующихся вопросами происхождения индоевропейцев, разумеется будет более интересна другая сторона треугольника, которая скорее всего отражает градиент увеличения градиента частот так называемого ANE — «компонента древних северных евразийцев».

Образно говоря, вектор градиента начинается в геномах ямников (больше половины генома которых состояла из этого компонента) и затем идет к геномам представителей синташтинской, афанасьевской, андроновской, окуневской и карасукской культур.
Пару слов об этих культурах (положение геномов представителей которых можно посмотреть на графике).
1) Синташтинская культура формировалась из древнеямных и катакомбных племён и местного населения. Синташтинцев связывают с индоиранскими племенами.
2) Андроновская культура также развивается на базе ямной. На западе она доходила до района Урала и Волги, где контактировала со срубной культурой. На востоке андроновская культура распространилась до Минусинской котловины, частично включив в себя территорию ранней афанасьевской культуры. Андроновцев (также как и синаштинцев) относят к индоиранской сообщности.
3) Афанасьевская культура была создана мигрантами из Восточной Европы, в частности, носителями древнеямной культуры, ассимилировавшими местное население. Сменилась карасукской и окуневской культурами.Наследниками афанасьевцев были племена тагарской культуры, дожившей до III в. до н. э., по другой версии, тагарцы были скифами, а потомки афанасьевцев — тохарами, которых именно скифы-тагарцы вытеснили в Синьцзян.Большинство исследователей ассоциируют афанасьевскую культуру с (прото-)тохарами.
4) Окуневская культура — фнтропологический тип населения этой эпохи был смешанного европеоидно-монголоидного происхождения, с преобладанием монголоидного. Как отмечает А. В. Громов, бросается в глаза их морфологическая разнородность — встречаются как чисто монголоидные черепа, так и типично европеоидные, не обнаруживающими никаких следов монголоидной примеси. Проведя обстоятельный анализ антропологических особенностей населения неолита и ранней бронзы, А. А. Громов пришел к выводу, что физический тип окуневцев сложился в результате смешения местного неолитического населения с выходцами из территории Средней Азии и Казахстана (афанасьевцами)
5) Карасукская культура — развилась на основе окуневской культуры под влиянием андроновской культуры.

Интересно, что геном мальчика с южносибирской палеолитической стоянки MA-1 как раз проецируется между центроидами геномов представителей синташтинской, афанасьевской, андроновской, окуневской и карасукской культур. Эти геномы (вернее их центроиды) занимают на графике значительное место. Самый дальний из них — геном алтайца из эпохи железного века (примерно 50 год до нашей эры). Сразу за ним идут все из имеющихся у меня палеогеномов жителей Америков (палеоэскимосы — в том числе и Saqqaq; и «палеоиндейцы» — Clovis, древние жители Перу и палеогеномы Botocudo). Любопытно что последние — геномы Botocudo — хотя и являются самыми современными (1600 год нашей эры), однако в них хорошо заметен «океанский компонент», именно поэтому они смыкаются на графике с палеогеномом австралийского аборигена. В этой связи я вспоминаю оригинальную теорию Тура Хейердала о наличии доисторических контактов между жителями островов Тихого океана и жителями Южной Америки.

Особое место на графики занимают «живые реликты» — онге, один из коренных андаманских народов (адиваси), геномы так называемого «усть-ишимца» (возраст 45000 лет), костенковца (Kostenki-14, возраст 38 700 -36 200 лет), и недавно опубликованный палеогеном Oase из Румынии (возрастом 37000-42000 лет). Они образуют отдельную группу (особенно близки друг к другу румынский палеогеном Oase и усть-ишимец), однако я терясь в догадках о том, что именно означает столь заметная близость этих геномов.

 

 

Eurasian and American paleogenomes