Две новые модели для калькулятора DIYDodecad

Закончил на 99% подготовку 2 моделей этно-популяционных калькуляторов ДНК — заточенную под deep ancestry (анализ современных геномов с использование древних геномов) K11 и модель для анализа популяционного происхождения современных популяций K16.

 

В число 16 «предполагаемых предковых» популяций в K16 входят следующие выделенные группы:

Австрало-веддоидная
Палеолитические охотники-собиратели Кавказа
Американские аборигены
Охотники-собиратели скандинавского мезолита
Австронезийцы
Ближневосточные неолитические земледельцы
Сибирские аборигены
Ближне-восточные популяции
Североафриканские популяции
Популяции западной Африки
Северные популяции Индостана
Юго-восточноазиатские популяции
Восточные охотники-собиратели
Неолитическое население Европы
Восточно-африканские популяции
Западноевропейские охотники-собиратели

 

Таблица FST между компонентами K11 (FST — Индекс фиксации Райта Fst, отражающий меру дифференциации популяций)

Кластеризация компонентов модели K11 по степени дифференциации

Таблица FST между компонентами K16

Кластеризация компонентов модели K16 по степени дифференциации

 

На следующем PCA графике отображены 2 группы компонентов — предковые компоненты K16 (полученные в программе ADMIXTURE в ходе анализа современных популяций) и предковые компоненты K11 (они вычислены в той же программе, но на другой выборке аутентичных палеогеномов). Поскольку у пользователей подобных калькуляторов часто возникает вопрос о соотношении компонентов разных моделей калькуляторов, я решил разместить их на одном графике. Методология довольно проста. Сначала я сгенерировал в программе PLINK 220 «синтетических» геномов (20 индивидов в 11 группах). В основу положен предложенный Понтикосом метод популяционных «zombies», в котором используется частоты аллелей снипов, полученных в программе ADMIXTURE. Каждая из 11 групп состоит из 20 «индивидов», геном которых на 100% состоит из одного компонента.
То же самое я сделал с компонентами K16. Затем в целях изучения соотношения компонентов этих двух разных моделей, я пропустил «геномы синтетических индивидов» K16 через калькулятор K11. В итоге выяснилось, что только несколько компонентов K16 полностью совпадают с компонентами K11 (например, Amerindian и African). Остальные компоненты K16 разложились на комбинации компонентов K11. Этот простой эксперимент еще раз подтвердил очевидный факт: предковые компоненты ADMIXTURE, выявленные в ходе анализа современных популяций только в редких случаях соответствуют настоящим предковым компонентам. Большинство подобных компонентов возникают в результате сложного процесса фиксации аллельных частот, например в тех случаях, когда непосредственно после смешивания предковых групп разного происхождения происходит процесс генетического дрейфа. Закон Харди—Вайнберга утверждает, что в теоретической идеальной популяции распределение генов будет оставаться постоянным из поколения в поколение. Так, в популяции растений количество «внуков» с генами высокорослости будет ровно таким же, сколько было родителей с этим геном. Но в реальных популяциях дело обстоит иначе. Из-за случайных событий частота распределения генов из поколения в поколение несколько варьирует — это явление называется дрейфом генов. Рассмотрим крупную размножающуюся популяцию со строго определенным распределением аллелей. Представим, что по той или иной причине часть этой популяции отделяется и начинает формировать собственное сообщество. Распределение генов в субпопуляции может быть нехарактерным для более широкой группы, но с этого момента и впредь в субпопуляции будет наблюдаться именно такое, нехарактерное для нее распределение. Это явление называется эффектом основателя.Дрейф генов сходного типа можно наблюдать и на примере явления с запоминающимся названием эффект бутылочного горлышка. Если по какой-либо причине численность популяции резко уменьшится — под воздействием сил, не связанных с естественным отбором (например, в случае необычной засухи или непродолжительного увеличения численности хищников), быстро появившихся и затем исчезнувших, — то результатом будет случайное устранение большого числа индивидуумов. Как и в случае эффекта основателя, к тому времени, когда популяция вновь будет переживать расцвет, в ней будут гены, характерные для случайно выживших индивидуумов, а вовсе не для исходной популяции.

PCA correlation between K11 and K16 components Вот эта таблица с усредненными значениями «симулянтов» компонентов K16 в калькуляторе K11 (колонки — компоненты K16, столбцы — компоненты K11, их пересечения — проекция компонентов K16 в компоненты K11).

Для облегчения понимания сказанного, приведу немного теории. Начну с основ.

Определение базовых терминов

ADMIXTURE (буквально: примесь) – это компьютерная программа (анализ), позволяющая выявлять смешанность состава некоего набора индивидов на основе данных о генотипах и тем самым строить предположения о происхождении популяции.

Принцип работы ADMIXTURE.

Рассмотрим принцип работы ADMIXTURE на примере образцов и популяций из проекта HapMap.

Всего у нас N = 324 образца/индивида, каждый из которых относится к одной из четырех нижеперечисленных популяций:

АФРИКА (ASW) – Африканские предки из Юго-Западной части США
ЮТА (CEU) – жители штата Юта США с корнями из Северной и Западной Европы
МЕКСИКА (MEX) – Мексиканцы, Лонг-Айленд США
ЙОРУБА (URI) – Йоруба, Нигерия
Для удобства дальнейшего изложения будем называть эти популяции «известными».

Также мы предполагаем, что они произошли от К разных предковых популяций (мы не знаем от каких именно). В дальнейшем будем называть эти предковые популяцие «предполагаемыми предковыми». Этих «предполагаемых предковых» популяций на самом деле не существует, у них нет общепризнанных названий и характеристик. И на этом этапе мы даже не знаем какие образцы к какой из этих К популяций могут быть отнесены. Теоретически возможно, что образцы из одной и той же «известной» популяции могут принадлежать к двум разным «предполагаемым предковым» популяциям.

Пример 1.

Предположим, что К = 3.

ADMIXTURE далее работает с образцами (их генотипами) и заданным нами числом К = 3. Имея сведения о генотипах и предположение о количестве «предполагаемых предковых» популяций (К) ADMIXTURE строит свою модель (предположение) того, каков вклад каждой из «предполагаемых предковых» популяций в каждый индивид. В результате мы имеем для каждого индивида 3 цифры: количественный вклад каждой из трех популяций (или образно говоря, на сколько процентов данный индивид состоит из первой «предполагаемой предковой» популяции, на сколько – из второй и на сколько – из третьей). При этом может быть и такая ситуация, что у конкретного индивида в составе отсутствует какая-то из «предполагаемых предковых» популяций, даже возможно, что он принадлежит только к одной из «предполагаемых предковых» поуляций. Предположим, для индивида №1 эти цифры такие: 0.3, 0.5 и 0.2. Что эти цифры означают? Означают они доли каждой из «предполагаемых предковых» популяций (ППП) в индивиде №1, т.е. индивид состоит на 30% из первой ППП, на 50% — из второй и 20% — из третьей. Чем больше вклад каждой ППП в индивида, тем больше индивид является «носителем» данной популяции и ее представителем.
Так называемый этно-популяционный калькулятор ДНК представляет собой инструмент, позволяющий использовать заранее определенные (вычисленные) компоненты этнического происхождения K для определения той комбинация исходных предковых компонентов дает наилучшее соответствие (аппроксимирует) происхождение носителя тестируемой ДНК.

При создании калькулятора ДНК в основу берется определенная модель (например, задается исходное число компонентов или состав референсной выборки), что неизбежно приводит к определенным уступкам в плане точности и проявлению слабых сторон модели. Например, часто люди критикуют подобные модели калькуляторов за излишнюю европоцентричность и недостаточную представленность геномов из других мест, или же используемые для определения компонентов происхождения выборки данных по отдельным популяциям слишком малы для определения сложной субструктуры генофонда референсной популяции. Наконец, более грамотные люди указывают на отсутствие необходимо инструментария (например, формальной статистики) для проверки статистической значимости определенных компонентов в отдельных моделях калькулятора.
Движок обеих калькуляторов — все та же программа DIYDodecad, После того, как ппрограммма ДНКа калькулятора выдаст первичные результаты — процентное распределение компонентов этно-популяционного происхождения в изучаемом геноме, можно будет перейти к вторичному анализу. Суть его проста — зная процентную комбинацию компонентов происхождения в своем геноме, довольно просто смоделировать свой геном в виде смеси нескольких референсных популяций.

Поэтому, в отличие от предыдущих релизов, K11 и K16 будут включать в себя дополнительный контент:

1) классический Oracle, позволяющий смоделировать анализируемый «геном» (точнее, набор из 100-200 тысяч информативный снипов) в виде комбинации двух референсных популяций, а также установить группу генетически ближайших референсных популяций к геному изучаемого индивида. Однако этот инструмент не может быть использован в случае сложного смешанного происхождения (например, когда изучаемый индивид происходит из более чем двух разных этнических популяций). Иногда программа выдает довольно глупые комбинации, cущественным образом понижая достоверность результатов. Впрочем основное преимущество Oracle и состоит в том, что программа предлагает вместо окончательного «простого» решения список альтернативных вариантов.

Пример: в качестве примера я буду использовать собственные данные.
Исходя из полученных в модели K16 значений компонентов, мой условный наиболее близок к восточнославянским популяциям
«Ukrainian-Center» «2.5884»
«Pole» «3.0962»
«Sorb» «3.1733»
«Polish_West» «3.5992»
«Russian-North-West» «3.7265»
«Russian_Smolensk» «3.834»
«Polish» «4.0348»
«Belarusian_EastBelarus» «4.0852»
«Belarusian_WestBelarus» «4.1216»
«DonKuban_cossack» «4.7769»

В комбинированном варианте двух смешанных популяций распределение предковых компонентов происхождения может быть аппроксимировано следующими комбинациями:

«65.8% Belarusian_EastBelarus + 34.2% Norwegian» «1.1023»
«66.4% Belarusian_EastBelarus + 33.6% Icelandic» «1.1118»
«80.9% Latvian + 19.1% Spanish_Baleares_IBS» «1.1154»
«30% French + 70% Lithuanian» «1.1206»
«29% French + 71% Latvian» «1.1215»
«55% French_West + 45% Lithuanian_Zemajitia» «1.1302»
«28.9% French_East + 71.1% Latvian» «1.1402»
«29% French_Northwest + 71% Latvian» «1.1563»
«72.3% Belarusian_EastBelarus + 27.7% Orcadian» «1.1766»
«57.2% European_Utah + 42.8% Lithuanian_Zemajitia» «1.1825»

Основная часть генома — условно славяно-балтийская (что ожидаемо), но с существенным сдвигом в сторону Скандинавии и западной Европы(примерно 20-30%). Скорее всего, это наследие готов, или контактов балтийских племен с викингами. Интересно, что модель K11 (c использованием современных референсных популяций) дает примерно такой же расклад — разве что древний скандинавско-германский пласт выражен чуть резче чем в модели K16

«Belarusian_West» «2.3841»
«Belarusian» «2.4187»
«Pole_Poland» «2.5278»
«Belarusian_East» «3.7288»
«Russian_Central» «3.7635»
«Swede» «3.9724»
«Russian_cossack» «4.1139»
«Ukrainian» «4.2647»
«Russian_Southern» «4.5204»
«Ukrainian_East» «4.8635»
«66.6% Icelandic + 33.4% Latvian» «1.586»
«41.1% Latvian + 58.9% Orcadian» «1.5898»
«47.9% Lithuanian + 52.1% Orcadian» «1.6007»
«60.2% Icelandic + 39.8% Lithuanian» «1.6082»
«5.7% Basque_Spanish + 94.3% Belarusian» «1.6386»
«5.8% Basque_French + 94.2% Belarusian» «1.6406»
«67.2% Belarusian + 32.8% Swede» «1.659»
«40.2% Lithuanian + 59.8% Norwegian» «1.6876»
«33.7% Latvian + 66.3% Norwegian» «1.689»
«94.1% Belarusian + 5.9% Spanish_Pais_Vasco_IBS» «1.7359

В палеокалькуляторе K11 (т.е. с древними геномами) картинка кажется более убедительной

«Unetice_EBA» «2.7065»
«Bell_Beaker_Czech» «5.0633»
«British_AngloSaxon» «5.1998»
«Nordic_LN» «5.6157»
«Corded_Ware_Proto_Unetice_Poland» «6.3751»
«Nordic_MN_B» «6.3865»
«Halberstadt_LBA» «6.4422»
«BenzigerodeHeimburg_LN» «7.4695»
«Nordic_IA» «7.5404»
«Corded_Ware_Estonia» «7.7635»

Из всех палеогеномов наиболее близок к моему геном представителя унетицкой культуры. Происхождение унетицкой культуры до сих пор не выяснено. Между позднейшими энеолитическими культурами и унетицкой культурой существует типологический и хронологический разрыв. Наибольшее признание в результате последних исследований получило предположение, согласно которому в ее возникновении главную роль сыграли культура колоколовидных кубков и надиревская культура, распространенная в Венгрии (см. ниже). У культуры колоколовидных кубков и унетицкой имеется сходство в керамике, в погребальном обряде и в орудиях труда. Небольшую роль могла сыграть культура шнуровой керамики, хотя в целом они очень различаются. Закономерно, что следующими — хотя и с большим отрывом — близкими к моему геному группами палеогеномов являются геномы древних англосаксов (которые близки к древним скандинавам) и представителей чешского ареала культуры колоковидных кубков).
Аналогично, в режиме смешенных популяций хорошо заметны две тенденции. Во-первых, мой геном может быть представлен в виде комбинации палеогенома представителя позднебронзового века (Хальберштадт) и палеогеномов восточных охотников-собирателей эпохи энеолита, во-вторых как смесь 23.4% генома представителей балтийской позднебронзовой эпохи и все того же позднебронзового палеогенома из Хальберштадта

«86.4% Halberstadt_LBA + 13.6% Karelia_HG» «2.139»
«74.1% Bell_Beaker + 25.9% LesCloseaux13_Mesolithic» «2.1574» «35.9% Hungary_BA + 64.1% Poltavka_MBA_outlier» «2.319»
«65.7% Halberstadt_LBA + 34.3% Poltavka_MBA_outlier» «2.4387»
«83.2% Alberstedt_LN + 16.8% Karelia_HG» «2.443»
«23.4% Baltic_LBA + 76.6% Halberstadt_LBA» «2.4846»
«16.7% Europe_MN + 83.3% Poltavka_MBA_outlier» «2.4897»
«83.4% Halberstadt_LBA + 16.6% Samara_Eneolithic» «2.536»
«12.9% Halberstadt_LBA + 87.1% Unetice_EBA» «2.5603»
«16.1% Bell_Beaker_Czech + 83.9% Unetice_EBA» «2.5747»

2) файлы модели K11 и K16 для более сложной программы 4Admix (разработанной Александром Бурнашевом). Вторым инструментом вторичного анализа является 4Mix. Он работает по методу brute-force, шаг за шагом перебирая все возможные комбинации, а по окончанию цикла программа возвращает результат с наименьшим евклидовым расстоянием (по выбору можно использовать гауссово сглаживание, снижающее случайный статистический шум результатов). Как и в классическом Oracle, комбинация cмешиваемых этнических групп не может содержать более 4 популяций, хотя в отличие от классического Oracle, программа может моделировать комбинации из 3 и 4 этнических групп.

Пример. Приведу пример этих 3- и 4-членных аппроксимаций. В принципе, все то же самое, c той лишь разницей что теперь программа выделяет в комбинациях балтийскую и славянскую составляющую. Интересно, что скандинавская составляющая никуда не исчезла, оставаясь в пределах 20-25%
Using 3 populations approximation:
1 50% Belarusian_EastBelarus +25% English_Kent_GBR +25% Latvian @ 0.973956
2 50% Belarusian_EastBelarus +25% English_Kent_GBR +25% Lithuanian @ 0.988467
3 50% Latvian +25% French +25% Balt @ 1.036492
4 50% Lithuanian_Zemajitia +25% French +25% Irish_Connacht @ 1.05259
5 50% Lithuanian +25% Sorb +25% French_West @ 1.059638
6 50% Belarusian +25% Icelandic +25% French_West @ 1.06158
7 50% Lithuanian_Zemajitia +25% French +25% Irish_Cork_Kerry @ 1.074796
8 50% Lithuanian_Aukstajtia +25% French_East +25% Irish_Connacht @ 1.076771
9 50% Lithuanian_Zemajitia +25% French +25% Irish_Ireland @ 1.078576
10 50% Belarusian +25% Norwegian +25% French_West @ 1.079741
11 50% European_Utah +25% Lithuanian_Zemajitia +25% Balt @ 1.084317
12 50% Dane +25% Belarusian_EastBelarus +25% Lithuanian_Aukstajtia @ 1.090086
13 50% Lithuanian_Zemajitia +25% French +25% Scottish_Highlands @ 1.093951
14 50% Lithuanian +25% North_European +25% Sorb @ 1.103744
15 50% Lithuanian_Aukstajtia +25% English_GBR +25% French_Northwest @ 1.105369
16 50% Lithuanian_Zemajitia +25% French +25% Scottish_Grampian @ 1.106616
17 50% Lithuanian_Aukstajtia +25% French_Northwest +25% Irish_Connacht @ 1.106771
18 50% Lithuanian_Aukstajtia +25% French_Northwest +25% Scottish_Dumfries_Galloway @ 1.108261
19 50% Lithuanian +25% French_West +25% Polish_West @ 1.113695
20 50% Latvian +25% North_European +25% Sorb @ 1.115164
31501779 iterations.
Using 4 populations approximation:
1Belarusian_EastBelarus+Lithuanian_Zemajitia+Swede+French_West @ 0.947002
2Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Sorb @ 0.971605
3Belarusian_EastBelarus+Belarusian_EastBelarus+English_Kent_GBR+Latvian @ 0.973956
4Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Polish_East @ 0.986863
5Belarusian_EastBelarus+Belarusian_EastBelarus+English_Kent_GBR+Lithuanian @ 0.988467
6 French+Lithuanian_Zemajitia+Swede+Balt @ 0.98916
7Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Polish @ 0.996302
8 Belarusian+Lithuanian_Aukstajtia+Shetlandic+French_West @ 1.010485
9 Belarusian+Lithuanian_Zemajitia+Irish_Ulster+French_West @ 1.01227
10 Belarusian+Lithuanian_Zemajitia+French_West+Irish_Ulster @ 1.012977
11 Belarusian_EastBelarus+Lithuanian_Aukstajtia+Swede+Welsh @ 1.013043
12Belarusian_EastBelarus+European_Utah+Lithuanian_Aukstajtia+Swede @ 1.013805
13Belarusian_EastBelarus+Lithuanian_Aukstajtia+Swede+French_West @ 1.018296
14German_NorthGermany+Lithuanian_Aukstajtia+Balt+French_West @ 1.026503
15 Lithuanian_Aukstajtia+Sorb+Ukrainian-Center+French_West @ 1.027473
16 Belarusian+Lithuanian_Zemajitia+French_West+Irish_Connacht @ 1.031967
17Belarusian+Lithuanian_Zemajitia+French_West+Irish_Cork_Kerry @ 1.035716
18 French+Latvian+Latvian+Balt @ 1.036492
и т.д.
То же самое, но в модели K11
Using 3 populations approximation:
1 50% Poltavka_MBA_outlier +25% Halberstadt_LBA +25% Hungary_BA @ 2.031302
2 50% Poltavka_MBA_outlier +25% Bell_Beaker_Czech +25% Hungary_BA @ 2.072453
3 50% British_AngloSaxon +25% Halberstadt_LBA +25% Poltavka_MBA_outlier @ 2.125791
4 50% Bell_Beaker +25% Bell_Beaker +25% LesCloseaux13_Mesolithic @ 2.209118
5 50% Halberstadt_LBA +25% British_AngloSaxon +25% Poltavka_MBA_outlier @ 2.244371
6 50% Halberstadt_LBA +25% Hungary_BA +25% Samara_HG @ 2.270667
7 50% Halberstadt_LBA +25% Poltavka_MBA_outlier +25% Unetice_EBA @ 2.291406
8 50% Poltavka_MBA_outlier +25% British_AngloSaxon +25% Hungary_BA @ 2.30791
9 50% Bell_Beaker_Czech +25% Hungary_BA +25% Samara_HG @ 2.356281
10 50% Halberstadt_LBA +25% Nordic_BA +25% Poltavka_MBA_outlier @ 2.358744
11 50% Bell_Beaker +25% Hungary_BA +25% Karelia_HG @ 2.369978
12 50% Bell_Beaker_Czech +25% Nordic_BA +25% Poltavka_MBA_outlier @ 2.385823
13 50% Halberstadt_LBA +25% Corded_Ware_Germany +25% Nordic_BA @ 2.490915
14 50% Poltavka_MBA_outlier +25% Hungary_BA +25% Unetice_EBA @ 2.503754
15 50% British_AngloSaxon +25% Bell_Beaker_Czech +25% Poltavka_MBA_outlier @ 2.53217
16 50% Halberstadt_LBA +25% Baltic_LBA +25% Halberstadt_LBA @ 2.540751
17 50% Hungary_BA +25% Poltavka_MBA_outlier +25% Samara_HG @ 2.551414
18 50% Poltavka_MBA_outlier +25% Alberstedt_LN +25% Hungary_BA @ 2.561557
19 50% British_AngloSaxon +25% Poltavka_MBA_outlier +25% Unetice_EBA @ 2.575398
20 50% Bell_Beaker_Czech +25% British_AngloSaxon +25% Poltavka_MBA_outlier @ 2.575919
1127348 iterations.
Using 4 populations approximation:
1 Halberstadt_LBA+Hungary_BA+Poltavka_MBA_outlier+Poltavka_MBA_outlier @ 2.031302
2 Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier+Unetice_EBA @ 2.03713
3 Bell_Beaker_Czech+Hungary_BA+Poltavka_MBA_outlier+Poltavka_MBA_outlier @ 2.072453
4 British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier+Unetice_EBA @ 2.088049
5 British_AngloSaxon+British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.125791
6 British_AngloSaxon+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.131526
7 Bell_Beaker_Czech+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.14648
8 Bell_Beaker+Bell_Beaker+Bell_Beaker+LesCloseaux13_Mesolithic @ 2.209118
9 Bell_Beaker_Czech+Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier @ 2.209365
10 Bell_Beaker_Germany+British_AngloSaxon+Hungary_BA+Samara_HG @ 2.212982
11 Bell_Beaker_Czech+Bell_Beaker_Germany+Hungary_BA+Samara_HG @ 2.232922
12 British_AngloSaxon+Halberstadt_LBA+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.244371
13 British_AngloSaxon+Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier @ 2.254756
14 Alberstedt_LN+British_AngloSaxon+Hungary_BA+Samara_HG @ 2.255589
15 Bell_Beaker_Czech+British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.256027
16 Halberstadt_LBA+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.270667

3) новым инструментом в релизе будет R программа nMonte, разработанная голландцем Гером Гизбертом. В отличие от двух предыдущих инструментов (ограниченных в числе используемых для моделирования этнических групп), nMonte позволяет использовать для моделирования (аппроксимации) генмоа все референсные грппы. Программа использует алгоритм эволюционного моделирования по методу Монте-Карло.
После пошагового добавления новой популяции программа определяет уменьшается ли евклидово расстояние; если да, то шаг сохраняется, в противном случае шаг отклоняется. Алгоритм завершает свою работу после выполнения примерно миллиона шагов. Как и два предыдущих инструмента программа стремится к минимализации евклидова расстония; но похоже за счет использования метода Монте-Карло, алгоритм гораздо более эффективен. И, также, как и в других инструментах, в nMonte «наилучшая комбинация» определяется как комбинация с наименьшим расстоянием. Недостаток же nMonte состоит в том, что она выдает только наилучшее подходящее решение, в то время как Oracle представляет альтернативные варианты.
Пример. Посмотрим, сколько потенциальных предковых популяций выдаст nMonte при аппроксимации моего генома.
При первом запуске программа выдала комбинацию (в cкобках процентный вклад референсной популяции) следующих 65 популяций. Также как и в других инструментах, тон задают балтийские популяции, а также белорусы, сорбы и поляки.

Lithuanian_Zemajitia 10.1
Latvian 7.85
Lithuanian_Aukstajtia 7.85
Belarusian_SouthBelarus 6.55
Lithuanian 6.5
Pole 5.45
Belarusian_WestBelarus 4.8
Balt 4.35
Sorb 3.35
Belarusian 3.05
Belgian 3
Norwegian 2.95
Czech 2.75
Dane 2.5
Slovak 2.4
Icelandic 1.9
Swede 1.9
French_SouthFrance 1.5
Slovenian 1.5
Basque_Spanish 1.3
Frisian 1.15
German_NorthGermany 1.1
Sardinian 1.1
Polish_East 1.05
Ukrainian_WestUkraina 1
Polish 0.95
Basque_French 0.9
Orcadian 0.7
Spanish_Pais_Vasco_IBS 0.7
Hungarian 0.65
Irish_Connacht 0.65
DonKuban_cossack 0.6
Dutch 0.6
Ukrainian_EastUkraina 0.6
Scottish_Argyll_Bute_GBR 0.55
European_Utah 0.5
English_GBR 0.45
Croatian 0.4
Russian-Pskov 0.4
French_South 0.4
Welsh 0.35
Irish_Ulster 0.35
Scottish_Fife 0.3
German_SouthGermany 0.25
Scottish_Dumfries_Galloway 0.25
Belarusian_CentralBelarus 0.2
Datog 0.2
English_Cornwall_GBR 0.2
North_European 0.2
Ukrainian 0.2
Russian_Orjol 0.15
Afar 0.1
Belarusian_EastBelarus 0.1
English_Kent_GBR 0.1
Irish 0.1
Kambera 0.1
Russian_Smolensk 0.1
Vindija 0.1
Belarusian-East 0.1
Spanish_Canarias_IBS 0.1
Spanish_Cantabria_IBS 0.1
Spanish_Cataluna_IBS 0.1
Peruvian 0.05
Russian_Voronezh 0.05

В K11 показаны следующие палеогеномы (или их группы). По-прежнему, основа генома 40% моделируется как геном представителя культуры колоколовидных кубков.

«Bell_Beaker» 40.3
«Halberstadt_LBA» 31.6
«Samara_HG» 8.5
«Tyrolean_Iceman_EN» 2.05
«Esperstedt_MN» 1.95
«Swedish_Mesolithic» 1.95
«BerryAuBac_Mesolithic» 1.85
«Swedish_Motala_Mesolithic» 1.7
«Bichon_Azillian» 1.6
«Continenza_Paleolithic» 1.5
«Hungary_BA» 1.5
«LaBrana_Mesolithic» 1.35
«Bell_Beaker_Germany» 1.05
«Hungary_HG» 0.85

4) следующим новым инструментом будет 4mix, более упрощенный вариант 4Admix. Он разработан тем же Г. Гизбертом. Основное отличие от 4Admix — если 4Admix перебирает все возможные комбинации из 4 популяций, то в 4mix можно эксплицитно задавать отдельные комбинации и определять евклидову дистанции между этой комбинацией и аппроксимируемым геномом в пространстве моделей
5) карты компонентов с аннотацией. Аннотации компонентов будут чуть позже, а вот карты уже готовы

Карты распространения некоторых компонентов K16 и K11  в ряде географических ареалов

6) я включил в релиз модифицированный скрип GPS лаборатории Элхайка для определения географического ареала происхождения предков человека, чей геном является предметом изучения. Я включил пару строчек кода для проецирования вычисленных географических координат на географическую карту.
Пример. Ниже показаны две карты, на которые спроецированы географические координаты вычисленной алгоритмом GPS (GPS DNA tool ) точки «этнического происхождения».
Я проверил работоспособность алгоритма на обеих моделях.
В модели K16 (современные популяции) GPS-координаты точки моего «происхождения» 49.7648663288835 32.4345922625112 (примерно 49 градусов северной широты и 32 градуса восточной долготы), т.е где-то на левом берегу Днепра в Украине. Как утверждают разработчики программы, она позволяет определить место происхождения с радиусом погрешности в 500 км. Я вычислил расстояние от полученной точки до настоящего места жительства предков (южная часть Брестской области) и получилось 470 км. Т.е точка попадает в радиус, хотя и с некоторым трудом.

Rplot

Что касается модели K11 (древние геномы), то в этой модели мой «Urheimat» локализуется — весьма ожидаемо — на землях древней унетицкой и лужицких культур (51.1254133094371 13.2336209988448)

Rplot

 

 

Реклама

О «ближневосточном компоненте» палеолитических охотников-собирателей Европы

Сергей Козлов

О «ближневосточном компоненте» палеолитических охотников-собирателей Европы

Описание
Рассмотрена статья Qiaomei Fu et al. «The genetic history of Ice Age Europe». Проведен анализ европейских палеогеномов возрастом от 37 до 8 тысяч лет из данной статьи и более ранних работ. Аутосомный компонент западных охотников-собирателей (WHG) — преимущественно результат генетического дрейфа, гипотеза авторов о его формировании в результате однократной миграции в Европу около 14 тысяч лет назад носителей ближневосточных аутосомных компонентов несостоятельна. Вместе с тем, обмен генофондом с ближневосточными популяциями несомненно происходил, однако для прояснения его истории необходимы палеогеномы с Ближнего Востока. Подтверждаются выводы из более старых работ о наличии ближневосточного («базального») компонента у образца Костенки-14 (человек с Маркиной Горы), отрицаемые в рассматриваемой статье. Вероятно, он связан с компонентом охотников-собирателей Кавказа (CHG). Опровергается вывод авторов о восточноазиатском влиянии на поздних WHG. Проведено моделирование ряда возможных событий смешения и построено дерево вероятных взаимосвязей аутосомных компонентов с размещением на нем имеющихся палеогеномов.

Обсуждение работы Qiaomei Fu et al на форуме «Молекулярная генеалогия».

Новые палеогеномы из статьи
В рассматриваемой статье впервые произведен временной срез геномов жителей Европы верхнего палеолита. Конечно, единичные геномы у нас были и раньше (Костенки-14, Oase1), однако не хватало системности для построения целостной картины изменений в генофонде европейцев на протяжении этого периода. Статья частично решает эту проблему — прочтено несколько десятков новых геномов. К сожалению, остался неохваченным период 19-28 тысяч лет назад (а с учетом лишь геномов приемлемого качества — 19-30 тлн), но и имеющиеся образцы позволяют сделать ряд интересных выводов.

Коротко о содержании рассматриваемой работы, критика
Авторы подтверждают выводы из более ранних работ об угасании вклада неандертальцев в генофонд современных европейцев с ходом времени (предположительно, на неандертальские участки ДНК действовал отрицательный отбор). Далее они касаются нескольких интересных мелочей (присутствие Y-гаплогруппы R1b в палеолитической Европе — образец Villabruna возрастом 14 тысяч лет, появление «мутации светлоглазости» почти одновременно в Европе и на Кавказе (разумеется, это не отменяет вероятности нахождения более древних образцов с этой мутацией впоследствии) и необычные для региона в наши дни митогаплогруппы). После этого авторы переходят к объединению образцов в кластеры и попытке реконструкции их взаимоотношений. По сути, здесь все просто — европейские палеогеномы из одной эпохи объединяются в один кластер. Классические европейские WHG выступают под псевдонимом «кластер Villabruna», их непосредственные предшественники — el Miron, и ряд геномов возрастом 30 тысяч лет (из них лишь один заслуживающего рассмотрения качества) — кластер Vestonice. Чуть более старые GoyetQ116-1 и костенковец не вошли ни в один кластер. Далее делается очень странный вывод, что с появлением кластера Villabruna (в дальнейшем я буду называть их «WHG» согласно общепринятой терминологии), произошло резкое изменение генофонда в результате вливания компонента, связанного с современными ближневосточными популяциями. Формально приводится и альтернативное объяснение — результат нормальной изменчивости среди охотников-собирателей, и группы с меньшей общностью с Ближним Востоком были замещены группами, изначально имевшими большую общность. Однако в abstract статьи попал лишь первый вариант.

Мое объяснение
Даже из диаграммы, которая должна иллюстрировать точку зрения авторов, следует прямо противоположный ей вывод — изменения, относимые к появлению классических WHG, начались задолго до этого и происходили постепенно. «Ближневосточное влияние» (зеленые ромбики) появляется в заметных масштабах уже в предшествующем кластере el Miron, на пять тысячелетий ранее. Но перед этим кластером находится разрыв в девять тысячелетий, где, вполне возможно, мы тоже могли бы увидеть это влияние. Однако на картинке разрыв закрыт и создается впечатление резкого перехода.
Исходное изображение:

ИсходнаяСхема
Отмасштабированная пропорционально реальной временной шкале картинка:
Безымянный-3
Как я покажу в дальнейшем, общность палеообразцов с классическими WHG и современными северными европейцами (которые являются преимущественно потомками WHG) с ходом времени росла постоянно — от костенковца и GoyetQ116-1 к el Miron, Villabruna и Loschbour. По моим предположениям, основной механизм здесь — дрейф генов. Не надо думать, что это был некий целенаправленный процесс — наоборот, дрейф генов во многом случаен (хотя и отбор наверняка сыграл свою роль), но именно то, что получилось в его результате, и стало европейскими охотниками-собирателями мезолита. Поэтому естественно, что чем ближе к нашему времени, тем выше сходство с итоговым результатом процесса.
Вместе с тем, с ходом времени мы наблюдаем и относительное повышение общности с ближневосточными популяциями, хотя и в заметно меньшем масштабе. Однако трудно сказать, кто, когда, сколько раз и на кого влиял. Допустим в качестве модели, что несущие компонент WHG группы повлияли на ближневосточников в относительно недавнем прошлом. Тогда повышение сходства палеогеномов с WHG автоматически будет немного повышать сходство и с ближневосточниками пропорционально доле WHG в их генофонде, даже если в ту эпоху на Ближнем Востоке о WHG и не слыхали. С другой стороны, небольшие равномерные вливания с Ближнего Востока в Европу могли дать такой же эффект. Или же третья группа, вроде CHG, могла повлиять как на WHG, так и на ближневосточников (необязательно одновременно). Словом, точку здесь поставит лишь хорошая выборка палеогеномов с Ближнего Востока -сравнение с современными популяциями всегда оставит место гаданиям.
Что касается восточноазиатского влияния на часть WHG (внимательные читатели критикуемой работы могли заметить, что оно «проявляется» и у одного из древнейших образцов — GoyetQ116-1), то оно объясняется ошибочностью принятия основой для сравнения образца Kostenki-14. Далее я еще коснусь этого.

Использованные для анализа методы и палеообразцы, причины их выбора
В этой заметке я не стал применять свой излюбленный метод — подсчет сумм общих (IBD) сегментов. Хотя качество некоторых образцов вполне позволяет его применить, трудно понять, как при этом надежно сравнить между собой образцы из эпох, разделенных десятками тысячелетий? Ведь сегменты со временем уменьшаются в размерах, при этом скорость процесса сильно зависит от популяционной истории — в одной выборке быстрее, в другой медленнее… Добавим к этому резко различающееся качество прочтения палеогеномов, и за корректность сравнения поручиться становится совершенно невозможно.
Поэтому я решил пойти путем подсчета доли общих снипов (IBS), как простого и объективного показателя. Чем больше значений снипов совпадает, тем выше генетическая близость. Я не согласен с мнением, что учитывать надо лишь производные (derived) аллели — ведь если оба варианта закрепились в популяции, то для дрейфа генов уже безразлично, какой из них предковый. Для того, чтобы поставить геномы разного качества в одинаковые условия, я случайным образом выбрал для каждого аллеля одно из прочтений и оставил лишь его, то есть создал искусственную гаплоидность, как часто делается с палеогеномами от лаборатории Райха. Обычно я ругаю этот подход, как разрушающий IBD-сегменты, но в данном случае он приносит пользу. Далее я ограничил набор снипов пересечением трех множеств — снипы, используемые мной для сравнения с современными выборками и снипы, прочитанные у образцов Villabruna и GoyetQ116-1. Более логично было бы выбрать в качестве базового образца WHG прочитанный наиболее качественно из всех Loschbour, однако носитель R1b Villabruna в любом случае будет вызывать интерес общественности и подозрения в отличиях от других WHG, поэтому решение было принято в его пользу. Что касается GoyetQ116-1, то из всех древних образцов он наиболее связан с «промежуточным» между палеолитическими европейцами и WHG el-Miron, за что и был выбран в качестве второй опоры. Итоговый набор составил около 107 тысяч снипов. Для сравнения Villabruna и Goyet с el Miron было проведено отдельное уменьшение набора до присутсвующих у всех троих 65 тысячи снипов.
Среди остальных использованных палеообразцов хорошо прочитанные Loschbour, Ust-Ishim, Kostenki, NE1, Kotias отмасштабировались практически без потерь в количестве снипов, Mota1 и Motala12 — с незначительными потерями. Несколько хуже отмасштабировались Vestonice16, «карел» c Оленьего острова I0061, «мальтинец» и один из наиболее ранних геномов неолитчических земледельцев Анатолии I0707, но они также были включены в сравнение, поскольку представляют явный интерес. Судя по сравнению результатов I0707 и его близкого аналога из Европы NE1, подсчеты сохранили корректность.

Таблица результатов и ее применение
Результаты сравнения сведены в таблицу, с которой желающие могут ознакомиться по ссылке. Кроме современных выборок, приведены и выборки из имеющихся палеогеномов (конец таблицы), хотя их качество очень разное. Впрочем, интересующие нас в первую очередь западные охотники-собиратели WHG и ранние неолитические земледельцы Анатолии AEF представлены вполне неплохо, хотя по Анатолии пока, к сожалению, охвачена лишь крайняя западная часть. Наиболее древние европейцы — Kostenki14, GoyetQ116-1, Vestonice16 объединены в выборку pre-WHG. Число в каждой ячейке — доля совпадающих аллелей для текущего образца с этой выборкой — допустим, 65 означает 65% общих снипов (на данном наборе снипов — число сильно зависит от набора).
Несмотря на все ухищрения, призванные поставить геномы в равные условия, прямое сравнение результатов оказалось невозможным — у некоторых образцов чуть больше совпадающих снипов со всеми выборками, у некоторых — чуть меньше. Разница невелика, но в этом методе играют роль даже доли процента. Возможно, причина — в разном качестве прочтения, возможно — индивидуальные особенности образцов или что-то еще. Однако решение проблемы существует. Поскольку увеличение или уменьшение доли совпадающих снипов примерно пропорционально для всех выборок, можно взять соотношение этой доли с выборкой, равно удаленной от всех («outgroup»). В качестве подобного ориентира я решил взять объединение всех четырех используемых мной выборок из Африки южнее Сахары — представителей пигмеев мбути и бьяка, кенийских банту, нигерийского племени йоруба. На графике ниже приведена доля общих снипов для каждого из палеогеномов с соответствующей выборкой (Balt, Druze, WHG и т.д.) после приведения доли общих снипов с африканцами к одинаковому с другими образцами значению путем домножения на коэффициент. Для проверки корректности метода на график помещены другие outgroups, которые в исследуемый период явно не могли участвовать в обмене генами ни с африканцами, ни с исследуемыми палеообразцами — выборка папуасов. Как интерпретировать их результат, я опишу чуть ниже.
График1
Палеогеномы (kya означает тысяч лет назад):
Ust-Ishim — усть-ишимский человек, наиболее древний приемлемо прочитанный геном человека современного типа.
Kostenki-14, GoyetQ116-1, Vestonice16 — древние геномы из Европы
el-Miron — предшественники WHG
Villabruna, Loschbour — WHG
Motala12 — охотник-собиратель из Швеции, представитель группы SHG (охотники-собиратели Скандинавии)
Karelian — образец с Оленьего Острова, так называемый EHG (восточный охотник-собиратель). Malta — древний «сибиряк» со стоянки Мальта, образец аутосомного компонента ANE — предковые северные евразийцы
EHG находятся в промежутке между WHG и ANE и, вероятно, являются их смесью.
I0707 — ранний неолитический земледелец с запада Анатолии
NE1 — ранний неолитический земледелец с территории Венгрии
Kotias — мезолитический охотник-собиратель с Кавказа

Ради интереса я также поместил на график результаты современного восточноевропейца с предками из трех восточнославянских народов (Modern EE).

Левая часть графика иллюстрирует изменения в генофонде европейцев с течением времени (усть-ишимский человек добавлен для сравнения, хотя он и не из Европы), правая — другие представляющие интерес геномы.
При сравнениях палеогеномов с палеовыборками сравнение «сам с собой» пропускалось.

Интерпретация сравнения с выборкой папуасов
Как мы видим, соотношение «родство с папуасами»/»родство с африканцами» для палеоевропейцев представляет собой почти горизонтальную линию. Это значит, что с какой скоростью европейцы «отдрейфовывали» от папуасов, примерно с такой же они отдалялись и от суб-сахарцев. Выглядит логично. Усть-ишимец выше всех, и это тоже логично — ведь он находится наиболее близко во времени к моменту расхождения папусов, восточноазиатов и WHG/ANE — значит, он и должен иметь относительно больше общего с папуасами. С другой стороны, для образца Kotias, имеющего много «базального» компонента, логично иметь заметно более низкое значение этого соотношения — момент расхождения «базальников» и предков остальных не-африканцев (включая папуасов) был очень давно. Ранние земледельцы, как смесь «базальников» и WHG, закономерно находятся в промежутке между WHG и Kotias. Даже неравномерности в графике охотников-собирателей находят свое объяснение — как я покажу позже, у костенковца вероятно небольшое влияние «базальников», и он проваливается на графике. Также я предполагаю небольшое базальное влияние у WHG и el Miron — соответственно, они находятся чуть ниже Goyet, мальтинца и оленеостровца. Итак, контрольная проверка показала применимость метода.

Важная ремарка — когда я в дальнейшем буду писать о росте доли общих снипов (график с течением времени идет вверх), надо понимать, что этот рост относительный. Есть некий базовый «уровень разбегания» — это скорость, с которой мы с каждым поколением отдаляемся от африканцев и папуасов из-за дрейфа генов и других факторов. Если в относительных значениях общность с друзами растет, это не значит, что она точно растет в абсолютных значениях — возможно, она тоже падает, но из-за обмена генами с нами падает медленнее, чем могла бы. А может, с друзами общность медленно растет, но с отстающими от них йеменцами медленно падает. Все зависит от соотношения скорости дрейфа генов, который нас растаскивает, и скорости обмена генами, который объединяет. В данном случае нас интересует, что удается увидеть наличие факта этого обмена.

Интерпретация графика
В первую очередь бросается в глаза пунктирная красная линия вверху — доля общих снипов с выборкой WHG. Как легко заметить, рост был почти непрерывен в течение всего времени, лишь, немного споткнувшись на образце Vestonice (возможно, поэтому в статье отнесли этот кластер к «тупиковой ветви». Впрочем, на сравнении с балтской выборкой такого не происходит, а современные выборки все же качеством на порядок выше — значит, доверия им больше). Ниже сплошной красной линией приведено сравнение с наиболее близкой к WHG выборкой наших современников — жителями восточного побережья Балтики (выборка Balt состоит из 11 литовских образцов, 6 латышских, 2 из Латгалии и одного с российско-латышской границы). Здесь картина аналогична — каждый следующий во времени образец ближе к балтам, чем предыдущий, включая даже Vestonice16. Очевидно, что объяснить это монотонное приближение единоразовой миграцией невозможно, а вот процессы генетического дрейфа укладываются в модель замечательно. Зеленые линии — аналогичная пара для неолитических земледельцев (пунктир) и считающихся (по результатам аутосомного анализа) наряду с армянами их наиболее сохранившимися представителями на Ближнем Востоке друзами Палестины. Здесь мы тоже видим рост, но более медленный по сравнению с ростом сходства с WHG. Если учесть, что порядка четверти генофонда AEF считается полученным от WHG, то примерно половину роста необходимо отнести на этот фактор. Оставшаяся половина и будет искомым обменом генами между «базальниками» и WHG. Для моделирования «базальников» зачастую применяют выборку из Йемена, как наиболее отдаленную от европейцев среди ближневосточников. Неизвестно, насколько это моделирование корректно, однако я включил их в сравнение (голубая линия). Родство с ними также растет, хотя и медленнее, чем с AEF или друзами. Однако, начав заметно ниже папуасов, ближе к нашему времени йеменцы успешно обгоняют их и становятся более близкими к WHG. Ведь обмен генами с йеменцами гораздо менее затруднен географически, чем с папуасами.

Несколько слов о правой половине графика
Представитель сестринской к WHG клады — ANE, мальтинец (24 тлн), обладает относительным сродством с WHG примерно на уровне европейских образцов 30-37 тысяч лет назад. Можно предположить, что момент расхождения был не слишком задолго до этого времени. При этом сродство с «балтской» выборкой относительно выше — поскольку в Восточной Европе присутствует не только WHG, но и доля ANE. У «карела» EHG связь с WHG закономерно выше (поскольку он и сам частично WHG), соответственно выросла и связь с ближневосточниками. То же самое, но в еще большей степени можно сказать про образец из Швеции Motala12 (скандинавские охотники-собиратели — SHG считаются WHG с примесью ANE). На паре AEF/NE1 можно пронаблюдать, как при продвижении в Европу у неолитчиков вырос вклад WHG, зато упал «ближневосточный» компонент. У «палеокавказца» Kotias по сравнению с ними резко падает связь с восточноевропейцами, и менее резко, но тоже падает — с ближневосточниками.

Определенный интерес представляет и сравнение с некоторыми другими современными выборками. Я не стал помещать их на основной график, чтобы избежать его перегруженности, но размещаю более полный вариант ниже.
График2
Сардинцы добавлены, как наиболее яркие современные представители неолитических земледельцев, удмурты — как связанные с EHG, корнцы — с более западным вариантом WHG, калаши — за «калашский» кластер, кеты и южноамериканские индейцы каритиана — за связь с ANE.

Карты для палеогеномов

Теперь перейдем к рассмотрению каждого из палеогеномов отдельно. Для начала несколько слов об усть-ишимце. Хотя он и наиболее близок к общему корню, но все же, судя по всему, в его времена расхождение неафриканского человечества на основные ветви уже состоялось. Ближайшими к усть-ишимцу выборками оказались меланезийцы и папуасы, далее идут жители юго-восточной Азии, тамилы и восточноазиаты.

Каждая карта нормируется отдельно — ярко-красным выделяется наиболее хорошо связанная с этим геномом выборка из представленных, ярко-зеленым — наименее связанная. Не представленные на карте выборки (четыре африканские, две америндские, папуасы и меланезийцы) в нормировании не участвуют, по сравнению с африканцами все неафриканцы были бы просто разными оттенками красного. Карты в этой статье построены согласно доле общих снипов (IBS), по тем же таблицам, что и предыдущий график. Это не IBD-анализ. В более хорошем качестве карты можно загрузить отсюда
UstIshim.png
Хотя европейцы и среднеазиаты чуть ближе к усть-ишимцу, чем североафриканцы и ближневосточники, разница сравнительно невелика. Частично удаление европейцев от усть-ишимца следует отнести на влияние «базальников», но думаю, WHG и сами по себе успели хорошо удалиться от восточной ветви человечества. Поэтому на роль представителя общей для всех базы усть-ишимец не годится.

GoyetQ116-1
По причинам, описанным мной в разделе «Использованные для анализа методы и палеообразцы», из наиболее древних европейских геномов на роль «базового» был выбран GoyetQ116-1. И, как показывает карта, уже 35 тысячелетий назад европейские аутосомы начали приобретать свои основные черты. На первом месте по схожести — уже упоминавшаяся выборка «Balt», она будет попадаться нам вновь и вновь. Родство с остальными европейцами выражено вполне отчетливо. Однако интересно обратить внимание на другие регионы. Во-первых, родство с североафриканскими и ближневосточными популяциями находится на том же уровне, что и родство с восточноазиатами. Видимо, мы поймали тот момент, когда протоевропейцы были равноудалены от этих двух стволов. В дальнейшем родство с восточноазиатами будет ослабевать, а с ближневосточниками — усиливаться. Как говорится, «география-это судьба».

GoyetQ116-1.png
Еще раз повторюсь, что речь идет о современных ближневосточниках. Насколько они репрезентативны по сравнению с населением региона 10, 20, 50 тысяч лет назад — совершенно непонятно.
Очень интересно «вторичное пятно» в Индии. Вероятно, оно было бы соединено яркой полосой с европейским ареалом, если бы не размывшие ее миграции «базальников» с юго-запада и восточноазиатов с северо-востока. При этом в юго-восточной Индии и Бирме ареал связи с прото-WHG перекрывается с ареалом хорошей связанности с усть-ишимцев. Не отсюда ли когда-то разошлись две наших ветки? Я не являюсь специалистом по Y-гаплогруппам, но кажется, с максимумом разнообразия макрогаплогруппы K, включающей в себя в качестве ветвей такие известные гаплогруппы, как N, O, R, Q, это соотносится хорошо (в таком случае, «базальников» можно связать с IJ). Разумеется, сюда также относится оговорка о возможной несхожести современного и древнего населения.

Vestonice16
Картина для Vestonice16 довольно схожа с картой GoyetQ116-1.

Vestonice16.pngПри сравнении видно, что связь с восточной (и в первую очередь Юго-Восточной) Азией несколько ослабла, а связь с западными выборками (как европейскими, так и ближневосточными) слегка усилилась. Однако разница невелика и из-за этого сравнительная карта выглядит некрасиво. Чтобы избежать загромождения излишними иллюстрациями, ее не привожу.

Kostenki14
Как и Вестонице, костенковец весьма схож с GoyetQ116-1. В данном случае мне хочется привести именно карту разницы со вторым палеогеномом, чтобы продемонстрировать его «южный» компонент. Зеленое — больше общего с костенковцем, красное — с Goyet.
GoyetQ116-1VsKostenki14Merged.png
Из-за схожести двух геномов карта очень зашумлена, однако противоположности проявляются хорошо. Ярко-зеленое прекрасно совпадает с областью распространения компонента кавказских охотников-собирателей CHG (ниже будет приведена карта и для них). Видны его максимумы на Кавказе и у калашей, на Балканах, и даже (хотя это может быть погрешностью) замечавшееся при анализе «ямных» геномов пятно в северо-западной Европе. Красное же в юго-восточной Азии — район максимальной «небазальности». Оттенки бурого и близкие к ним разглядывать нет смысла, также, как и отдельные «выбросы».
Как будет показано далее, костенковец наиболее успешно моделируется, как смесь 86% GoyetQ116-1 и 14% Kotias. Строго говоря, мы не можем утверждать, что GoyetQ116-1 представляет чистых прото-WHG, а костенковец является смесью с южанами. Не исключено, что «южный» компонент присутствует и у GoyetQ116-1, просто его меньше. В конце концов, смешение могло произойти еще по пути в Европу.

el Miron
Закончив с наиболее древними геномами, мы можем перейти к рассмотрению динамики европейского генофонда во времени (впрочем, до момента прибытия неолитических земледельцев она довольно однообразна). Поэтому ближайшие карты будут только сравнительными. Итак, красное — выборки, сходство с которыми у образца el Miron (19 тлн) усилилось по сравнению с образцом GoyetQ116-1 (35 тлн). зеленое — выборки, сходство с которыми ослабло. Бурое — возможно, слегка усилилось, возможно, ослабло, но не так сильно, как с зеленым. Об этом я написал в разделе «важная ремарка» после графика.

elMironVsGoyetQ116-1.png

Villabruna

VillabrunaVsElMiron.pngКак видите, прибытие Villabruna никакого переворота не произвело. Как и раньше, с ходом времени сходство с циркумбалтийцами усиливалось, с восточноазиатами — ослабевало, с ближневосточниками — то ли слегка усиливалось, то ли медленно ослабевало, но медленнее, чем с восточноазиатами.

Loschbour
Этот образец настолько схож с предыдущим (см график), что разностная карта показывает один шум. Поэтому я приведу конечный итог — вот к чему пришли WHG спустя 29 тысячелетий:
LoschbourVsGoyetQ116-1.png
А также сравнение — где произошли наибольшие изменения
Сравнение Loschbour и GoyetQ116-1

LoschbourVsGoyetQ116-1.png
Дальше всего «убежали» от протоевропейцев жители юго-восточной Азии, далее идут Индия, Восточная Сибирь и Северная Африка. За пределами основного региона меньше всего «скорость убегания» на Северном Кавказе, у ираноязычных памирцев, греков-киприотов и кетов (везде можно предположить контакты с носителями WHG).

Теперь перейдем к Кавказу и Анатолии. Уже упоминавшийся в пояснениях к карте для костенковца кавказский охотник-собиратель Kotias:

Kotias.png

Интересно попытаться расщепить этот компонент на составляющие. В значительной части он несомненно связан общим корнем с прото-WHG (хорошо выделяются оба значимых для этого компонента региона — Европа и Индия). Попробуем вычленить не-WHG часть путем сравнения с GoyetQ116-1.

KotiasVsGoyetQ116-1.png

В первую очередь закономерно выделяются зоны наибольшего распространения CHG — Кавказ и Афганистан (калаши)/Пакистан/Иран. Однако кроме этого, проявляется и связь с Ближним Востоком, Анатолией, Балканами — регионами распространения ранненеолитических земледельцев. Таким образом, можно предположить, что у CHG имеется связь с ближневосточным аутосомным компонентом (знаменитые «базальники»), который впоследствии стал основой генофонда неолитических земледельцев и через них повлиял на современных европейцев. Потому-то Европа и выглядит на этой карте в целом нейтрально — на юго-востоке персиливает влияние «базальников», на северо-востоке — WHG. И наоборот, Восточная Азия, куда базальники не добрались, оказалась ярко-зеленой — это говорит о том, что время их расхождения с восточноазиатами древнее, чем время расхождения восточноазиатов и WHG.

Тот же самый эффект, но с противоположной стороны мы можем наблюдать, сравнив Kotias и геном ранненеолитического земледельца из Анатолии:KotiasVsAEF.png

Поскольку теперь Kotias менее «базальный», на этот раз Восточная Азия оказалась красной. Хотя наиболее выражен «не-базальный» компонент Kotias в Индии. Поэтому я считаю, что компонент CHG следует считать смешанным между «ближневосточным» (предковым к AEF) и «индийским» (предковым к WHG) компонентом.

Раз уж я неоднократно упомянул AEF, приведу карту и для представителя этой выборки I0707.

AEF.png

Среди наших современников наиболее схожими с ним являются жители острова Сардиния, находящемся в западной части Средиземного Моря. Можно сказать, что компонент ранних земледельцев сохранился там, словно в заповеднике. В целом он лучше представлен в южной Европе, чем на Ближнем Востоке. Хотя не стоит забывать — для анализа у нас есть лишь палеогеномы с крайнего запада Анатолии, на границе с Европой. Вполне возможно, что ближневосточные геномы оказались бы ближе к современным выборкам с Ближнего Востока. Пока же мы можем сказать, что в регионе наиболее схожими с имеющимися образцами неолитчиков оказались армяне, друзы и греки-киприоты.

Наконец, последними я хочу привести две карты для образца возрастом в 24 тысячелетия со стоянки Мальта в Прибайкалье. На основе его анализа в свое время было выдвинуто предположении о существовании «популяции-призрака» — ANE, предковых северных евразийцев, которые повлияли на многих соседей, в том числе на американских индейцев, но сами к нашему времени исчезли. ANE считаются родственной к WHG веткой и не несут восточноазиатского или ближневосточного влияния. В схожести картин можно легко убедиться:

MaltaIBDext.png

Если WHG это западный вариант, то у ANE основная тяжесть приходится на выборки из Западной Сибири (кеты), Урала (манси) и недавных мигрантов из этого же региона (саами). Очевидно, в прошлом ареал ANE простирался заметно восточнее, но к нашим дням они оказались вытеснены мигрантами с юга, из Восточной Азии. Интересно сравнить, каковы же основные отличия ANE от прото-WHG:

MaltaVsGoyetQ116-1.png

Пятно в западной Сибири вполне ожидаемо. Меня более заинтересовало пятно вокруг выборки калашей в средней Азии. Если вспомнить о связи этого же региона с кавказскими охотниками-собирателями, то уместно предположить, что здесь мы нащупали корень не-ближневосточной части CHG. При анализе Admixture мальтинец показывал наличие около 30% CHG, поэтому я долго ломал голову, как связать этот факт с явной не-ближневосточностью мальтинца. Теперь все становится на свои места — взаимосвязь идет через «калашский» компонент.
Что касается отличий прото-WHG от ANE, то они чуть ближе к восточноазиатам (может, их точка отделения чуть юго-восточнее, чем у ANE?), и ближе к «базальникам», что вновь заставляет меня думать о «базальном» влиянии уже у GoyetQ116-1. В конце концов, если у двух других образцов оно есть, может быть и у этого. Но пока более «чистых» образцов у нас нет, сравнить не с кем. С другой стороны, мальтинский образец на одиннадцать тысячелетий моложе — возможно, за это время он сильнее отдрейфовал от остальных веток.

Численная оценка доли вклада каждого компонента в некоторые из адмиксов.
В процессе работы над сравнительными картами у меня возникла мысль, не попробовать ли сделать численную оценку на основе все тех же таблиц общности IBS с современными выборками. Действительно, если я предполагаю, что не-WHG компонент костенковца очень похож на результаты кавказского охотника-собирателя Kotias, то я могу проверить, насколько близка к костенковцу будет комбинация 1% Kotias + 99% GoyetQ116-1, 2% Kotias + 98% GoyetQ116-1 и так далее, проверив сумму среднеквадратичных отклонений по всем столбцам. Для того, чтобы исключить влияние уже упоминавшегося в начале статьи эффекта, для каждой тройки сравниваемых геномов производилось нормирование. Таким образом, суммы IBS с современными выборками по каждому геному совпадали.

Для проверки модели я решил использовать геном, смешанное происхождение которого достоверно известно. Как мы знаем, по мере продвижения в Европу и с ходом тысячелетий исходный генофонд неолитических земледельцев постепенно размывался благодаря влиянию местных охотников-собирателей. Следовательно, геном семитысячелетней давности земледельца из Венгрии NE1 должен хорошо моделироваться, как смесь земледельца из Анатолии AEF (возраст генома на тысячу лет больше) и WHG. Так и получается — если в роли представителя WHG выступает более ранний геном Villabruna, модель предсказывает соотношение 11% WHG на 89% AEF, для более позднего Loschbour соотношение почти такое же — 10% WHG на 90% AEF. Среднеквадратичное отклонение при этом меньше единицы — в дальнейшем будем считать такое значение признаком того, что смешение моделируется хорошо.
Ряд результатов для заинтересовавших меня вариантов моделирования приведен на изображениях ниже:
Оракул01.png
Кратко прокомментирую. При попытке смоделировать NE1, как смесь WHG и CHG отклонение резко возрастает, что говорит о неудачности такой модели по сравнению с предыдущим вариантом. Родственные WHG охотники-собиратели ANE могут частично служить заменой Villabruna, однако результат хуже. Таким образом, результаты моделирования полностью соответствуют здравому смыслу. Я решил попробовать сделать еще один шаг и ввести в модель искусственный образец «базальника», полученный вычитанием из геномов неолитических земледельцев 15-20 процентов вклада WHG. Конечно, точная доля компонента WHG в геномах неолитчиков нам неизвестна, однако это лучше, чем применять в качестве «базального» образца геном AEF.
Результат костенковца действительно лучше всего моделируется, как смесь 86% прото-WHG и 14% CHG (Kotias), что мы и наблюдали на сравнительной карте. Чуть хуже вариант 94% прото-WHG на 6% базальников. Для другого древнего образца из Европы, Vestonice16, картина противоположная — базальники лучше подходят в качестве второй стороны, чем кавказцы. Интересно, что наиболее старые образцы Y-гаплогруппы I пока что найдены именно у представителей кластера Вестонице — возможно, это не случайное совпадение и вливание «базального» компонента связано с приходом носителей этой гаплогруппы.
«Опорный» прото-WHG GoyetQ116-1 не моделируется, как смесь кого-либо из двух других представителей группы и южан. Однако он может быть относительно неплохо смоделирован, как 88% костенковца и 12% мальтинца. Вероятно, это связано с отсутствием «базального» компонента у образца со стоянки Мальта.

Оракул02.png
Носитель R1b Villabruna может быть смоделирован, как смесь одного из своих предшественников и базальников, однако отклонение при этом слишком велико, чтобы считать моделирование успешным.
CHG Kotias плохо моделируется, как смесь каких-либо двух других образцов. Наиболее удачный вариант — 48% Мальта и 52% базальники (что еще раз говорит о его промежуточном положении между двумя кладами).
«Оленеостровец» EHG наиболее хорошо моделируется, как  смесь 51% SHG (Motala12) и 49% ANE (мальтинец), отклонение великовато.

Оракул03.png
«Скандинав» Motala12 хорошо моделируется, как смесь 72% WHG и 28% EHG
Промежуточный между прото- и классическими WHG образец el Miron оптимально моделируется именно как смесь первых (GoyetQ116-1) и вторых (Villabruna). Однако при этом он оказывается ближе к более древним родственникам, хотя расстояние по времени до них гораздо больше. Возможно, это объясняется ускорением дрейфа в эпоху 19-14 тлн, но мне кажется более правдоподобным другое объяснение — WHG это потомки сестринской к el Miron ветви, поэтому часть дрейфа у них прошла отдельно.

Дерево вероятных взаимосвязей
Попытавшись максимально подробно и непротиворечиво свести вместе как данные, полученные в результате вышеописанных исследований, так и информацию из других работ, я изобразил дерево возможных взаимодействий палеообразцов и аутосомных компонентов. Схема достаточно условна, поэтому размещать на ней датировки далее 40 тысяч лет назад не имеет смысла. Гипотетический общий компонент «мальтинца» и охотников собирателей-кавказа я обозначил «Kalash», но надо понимать, что под этим вовсе не подразумеваются современные калаши — просто неким образом связанная с ними древняя предковая популяция. Серыми стрелками между «базальниками» и CHG, «базальниками» и WHG обозначено, что взаимодействия, по-видимому, были, но обозначить их одиночной линией на схеме тяжело. «Уральский» компонент — это часть генофонда народов Урала и западной Сибири, которую можно отнести к европейской ветви, для получения картины современного состояния необходимо объединить ее с восточноазиатским влиянием.

Дерево08.png

Думаю, что на самом деле все гораздо сложнее и запутаннее, чем изображено здесь )) Будем ждать новых расшифровок древних геномов для дальнейшего развития схемы.

Палеоевропейцы из работы Haak et al, 2015 в свете анализа на IBD-сегменты

Сергей Козлов

Палеоевропейцы из работы Haak et al, 2015 в свете анализа на IBD-сегменты.

Обновлено 21.03.2015

В феврале произошло событие, которое многие геномные блоггеры с нетерпением ожидали на протяжении большей части предыдущего года — на  сервере Bioarxiv был размещен препринт статьи Haak et al с исследованием множества (преимущественно европейских) палеогеномов. Настолько качественного и подробного среза генетической истории европейцев мы еще не видели. Вадим Веренич уже разместил свой отзыв на работу, присовокупив к нему результаты собственных экспериментов и размышлений. Из его заметки можно составить прекрасное впечатление о статье.

Как это обычно и бывает, сообщество геномных блоггеров осталось не вполне удовлетворено полнотой предоставленной информации, и (повторюсь) с нетерпением ожидало возможности наложить свои руки на новые палеогеномы из статьи. Для этого пришлось дождаться официального выхода работы, и вот, наконец, момент настал. В первую очередь мне было интересно провести сравнение аутосомных IBD (или псевдо-IBD) сегментов с современными выборками и удостовериться — кто же все-таки в наибольшей степени является потомками людей, принадлежавших к исследованным археологическим культурам? Конечно, другие виды анализа тоже необходимо провести, но это сделают и без меня. К тому же об их результатах можно было догадаться из информации, опубликованной в статье (и эти догадки действительно подтвердились).

К сожалению, первая попытка оказалась неудачной — опубликованные на страничке лаборатории Райха геномы были полностью гаплоидными. Для того, чтобы сблизить условия анализа прочитанных с разным качеством палеогеномов, авторы статьи случайным образом выбирали один аллель для каждого снипа и далее использовали только его.  Разумеется, все IBD-сегменты при этом оказались разрушены. Однако проблему удалось обойти при помощи утилиты Феликса Чандракумара, преобразующую BAM-файлы в аналоги аутосомных файлов формата FTDNA. Лишь меньшая часть из обработанных геномов пригодна для IBD-анализа, но и прочитанных с удовлетворительным качеством достаточно много. Для этой заметки использованы следующие палеогеномы:

1) «Восточных охотников-собирателей», или EHG, представляет «оленеостровец» I0061 Karelia_HG    Yuzhnyy Oleni Ostrov, Karelia    5500-5000 BCE . «Самарский» образец EHG слишком плохо прочитан.

2) «Самарских ямников» представляют I0443    Yamnaya    Lopatino II, Sok River, Samara    3500-2700 BCE и I0231 Yamnaya    Ekaterinovka, Southern Steppe, Samara    2910-2875 calBCE

3) Культура шнуровой керамики также представлена двумя образцами, это I0103    Corded_Ware_LN    Esperstedt    2566-2477 calBCE и I0104 Corded_Ware_LN    Esperstedt    2473-2348 calBCE (восточная Германия, земля Саксония-Анхальт)

4) От культуры колоколовидных кубков лишь один образец, это I0112 Bell_Beaker_LN    Quedlinburg XII    2340-2190 calBCE (как и в случае КШК, земля Саксония-Анхальт)

5) Лучше всего обстоит дело с охватом неолитических земледельцев из культуры линейно-ленточной керамики, их целых четыре — I0054 LBK_EN    Unterwiederstedt    5209-5070 calBCE , I0100 LBK_EN    Halberstadt-Sonntagsfeld    5032-4946 calBCE, а также два ранее уже известных палеогенома — Stuttgart и NE1

Результаты по выборкам, представленным двумя или более образцами, усреднялись. Кроме этого, производилось нормирование результатов для каждой из пяти палеовыборок в пределах +- 10% с целью наилучшим образом попадать в диапазон карт и убрать влияние разницы в качестве прочтения. Конечно, это искусственное искажение данных, но все же, как мне кажется, оно скорее пошло на пользу, чем нанесло вред. В целом же карты получились качественными и наглядными. Думаю, что метод анализа на IBD-сегменты даже лучше подходит для палеогеномов, чем для наших современников.

«Оленеостровец» I0061 принадлежит к выборке, названной авторами EHG (Eastern Hunter-Gatherers). Это палеоевропейские охотники-собиратели северной части Восточной Европы, предположительно не затронутые позднейшим притоком генов с юга (от неолитических земледельцев и из других источников). И действительно, среди наших современников наибольшее количество пересечений с ним нашлось у северных восточноевропейцев — как говорящих на индоевропейских языках, так и уральцев. В первую очередь выделяются вепсы и северные русские из каргопольской выборки HGDP. Прибалтийская выборка, обычно проявляющаяся у восточноевропейцев наиболее ярко, на этот раз видна чуть слабее. Единственные, кто несколько выбивается из закономерности — поляки. Сложно сказать, случайность это, или же нет. Однако из-за этого отклонения польская выборка временами смотрится странно и на дальнейших «разностных» картах.

Оленеостровец (картинки можно увеличивать):

Обращает на себя внимание пятно в Средней Азии и северной Индии. Особенно интересна значительная разница между высшими и низшими кастами штата Уттар-Прадеш (на карте представлены обе выборки). Напрашивается версия, что это связано с приходом индоевропейцев с севера. Или же, как минимум, с приходом носителей R1a. Кстати, оленеостровец тоже принадлежал к этой Y-гаплогруппе (предковая ветвь R1a1).

Впрочем, как мне справедливо заметили, в северо-западную Индию было немало миграций и в более поздние времена. Например, «кшатрии» на севере считаются многими исследователями потомками переселенцев первого тысячелетия нашей эры.

Следующие на очереди — «ямники». В работе использованы образцы ямников из-под Самары, представляющие их крайний восточный вариант. Авторы статьи смоделировали их как 50% EHG / 50% современные армяне. Как будет показано далее, для этого есть некоторые основания. Однако с точки зрения предковых компонентов Admixture такая модель — далеко не лучший вариант, «южный» ямный компонент скорее связывается с чем-то в промежутке между Восточным Кавказом и Средней Азией. Как и предполагалось, он коррелирует с бимодальным компонентом, условно называемым Gedrosia. Исходя из современных максимумов, его исторический центр находится где-то в южном Прикаспии, возможно, восточнее. Судя по всему, он представляет собой результат смешения «ближневосточного» компонента ENF и ANE, поэтому теоретически исторического центра может и вообще не быть.

Самарские ямники:

В отличие от оленеостровца, «ямное» пятно более широко распределено по всей Европе, а Кавказ и Средняя Азия выделяются сильнее. Впрочем, лучше это смотреть на карте, отображающей разницу между ямниками и оленеостровцем. Не следует думать, что выборки, выделенные на разностной карте одним цветом, обязаны быть схожи между собой — просто разница их «расстояний» до I0443/I0231 и I0061 близка. И не забываем, что разностные карты в большей степени, чем одиночные, подвержены влиянию «шума» и случайных отклонений.

Разница между «оленеостровцем» и «ямниками». Красным цветом обозначено, у кого больше общих сегментов с первым, зеленым — со вторыми.

Как видно, наибольшая разница в пользу оленеостровца у представителей народов из уральской языковой семьи, причем тех, у кого силен «сибирский» вклад. Кроме жителей Западной Сибири, это марийцы (и родственные им тюрки-чуваши) в Поволжье, а также саами. Думаю, это неплохой довод в пользу ямников (или тесно связанной с ними группы), как распространителей индоевропейских языков. Наибольшая же разница «связь с ямниками» минус «связь с оленеостровцем» оказалась у уже упоминавшихся армян (и в целом зеленое пятно Кавказ-Малая Азия выражено сильнее всего). Таким образом, у армян хорошо выражены компоненты, имеющиеся у ямников, но отсутствующие у EHG. Но значит ли это, что модель «ямники=EHG+армяне» оптимальна? Я так не считаю. И при PCA-анализе, и при раскладке на компоненты Admixture мы видим, что «вторая половинка» должна быть где-то восточнее. На карте это проявляется в том, что взаимосвязь ямников с районом Пакистан-северная Индия (а особенно, что представляет отдельный интерес, с уйгурами. Уж не след ли это древних миграций индоевропейцев, например, тохаров, на восток?) выражена сильнее, чем у оленеостровца. Но модель считает, что это взято в основном от него, отсюда и заблуждение. Впрочем, и сами авторы пишут, что более адекватным видится вариант «третья группа, повлиявшая как на ямников, так и на современных армян».

Кроме уже перечисленных, явственно более сильную связь с ямниками проявляет выборка из Йемена (возникла мысль, что мы видим влияние небезызвестных Basal Eurasians — предположительно, именно йеменцы наиболее близки к ним из современных народов) и северо-западные европейцы. Это хорошо укладывается в предложенную авторами статьи модель, согласно которой северные европейцы в очень заметной мере являются потомками связанной с «ямниками» группы, которая мигрировала с востока и по большей части заместила предшествующее население. Кстати, у немцев (и германских народов в целом) необычно сильно проявляется все тот же компонент Gedrosia, которого не было у мезолитических охотников и неолитических земледельцев Западной Европы. И действительно, у восточногерманских образцов, принадлежащих к культуре шнуровой керамики, этот компонент появляется.

Карта для представителей КШК:

Очень похоже на «ямную» карту, не так ли? Но должны существовать и различия, попробуем их увидеть на разностной карте «самарцы» (красное) минус «шнуровики» (зеленое):

SamaraYamnayaMinusCWCIBDext

Картинка отнюдь не настолько контрастна, как было в случае сравнения ямников с оленеостровцем. Видимо, это связано с тем, что разница между сравниваемыми выборками в данном случае слабее. И все же некоторые взаимосвязи проявляются. Во-первых, заметно сильнее связь со шнуровиками у жителей острова Сардиния — как считается, они наиболее хорошо сохранили генофонд неолитических земледельцев Европы. Кроме этого, лучше связаны со шнуровиками, чем с ямниками, люди из района Белоруссия-Польша-Западная Украина. И наоборот, «ямные» пятна выделяются вокруг Удмуртии (уж не там ли живут потомки «самарцев»?), в районе «Средняя Азия-Индия» (включая уже упоминавшихся выше уйгуров), и в Закавказье/Малой Азии. Можно предположить, что шнуровики получились в результате смешения неолитических земледельцев и группы, родственной «самарцам», но более западной, сильнее связанной с «белорусским» пятном (и слабее — с тремя «ямными»).

Намного более наглядна разностная карта представителей культуры линейно-ленточной керамики (неолитических земледельцев) и шнуровиков:

LBKMinusCWCIBDext

Два мира — красным выделены народы, в большей степени связанные с неолитическими земледельцами (в отличие от предыдущей карты, сардинцы здесь сильнее связаны с противоположной шнуровикам стороной), зеленым — связанные с заместившими и поглотившими их пришельцами, носителями компонентов WHG и ANE. Обратите внимание, что армяне здесь ярко-красные — это еще раз доказывает ошибочность модели «ямников» как смеси EHG и армян в пропорции 50/50. Ведь тогда «армянский» вклад у «шнуровиков» был бы заметно сильнее.

А вот разница с «оленеостровцем»:

Здесь мало что можно добавить к тому, что уже писалось про разницу «оленеостровец»-«самарцы». Разве что Западное Средиземноморье стало более зеленым, а Средняя Азия-менее.

Наконец, для полного комплекта добавлю карту сравнения с представителем более западного варианта охотников-собирателей, Loschbour:

LoschbourMinusCWCIBDext

Родство с WHG преобладает лишь в дальнем северо-восточном углу Европы. Таков печальный итог нескольких волн миграций с замещением предыдущего населения.

Результаты для представительницы культуры колоколовидных кубков очень близки предшествующей «шнуровой» выборке. Поэтому разностная карта между ними еще более невразумительная, чем при сравнении шнуровиков и самарцев. Дело усугубляется еще и тем, что образец ККК лишь один, а значит, случайные отклонения и прочий «шум» выше.

ККК минус КШК:

BellBeakerMinusCWCIBDext

Судя по всему, у шнуровиков неколько выше доля вклада «охотников-собирателей» и «ямного» компонента в целом. В то же время «средиземноморский» компонент выглядит чуть сильнее у ККК. Но все это тонет в шуме.

Не вижу смысла приводить сравнения представительницы ККК с окружающими, аналогичные КШК, поскольку они выглядят практически так же. А следовательно, мой обзор закончен. Что ж, можно с глубоким удовлетворением отметить, что палеогеномы из работы Haak et al действительно проливают свет на процессы, происходившие в Европе на рубеже каменного и бронзового веков — естественно, уточняя и дополняя уже известное специалистам.

Расширенные карты для палеогеномов

Обновлено 30.11.2014

Этот пост также продолжает один из предыдущих, а именно визуализацию суммы IBD-сегментов (а возможно, это и не IBD — вопрос остается открытым) двух палеоевропейцев и мальчика со стоянки Мальта с современными  выборками. С тех пор в открытом доступе появилось еще несколько обработанных палеогеномов — «усть-ишимец«, «Костенки-14» («человек с Маркиной горы») и два палеогенома хорошего качества из Венгрии.

Результаты собраны мной в онлайн-таблицу, а также отрисованы на расширенных картах. Поскольку усть-ишимец явно тяготел к восточноазиатам, пришлось добавить к сравнению выборки из Южной и Восточной Азии. Ну а после этого логика подсказывала, что неолитических земледельцев Европы неплохо бы сравнить с жителями Ближнего Востока. Таким образом, все карты перерисованы.

Напомню также, что результаты для «мальтинца» и «костенковца» получены при ослабленных настройках фильтра из-за низкого качества прочтения этих двух геномов. Напрямую сравнивать их с пятью другими нельзя. Для отрисовки Loschbour значения умножены на 1,5 в целях повышения контрастности.

«Неолитическая фермерша» )) Stuttgart/LBK

«Неолитический земледелец» NE1:

Усреднение по двум земледельцам дает более ровную картинку:

«Охотник-собиратель» Loschbour:

Разница между «охотником-собирателем» и усреднением по двум земледельцам. Красное — больше сегментов с Loschbour, зеленое — c Stuttgart и NE1

Европеец позднего бронзового века BR2 из Венгрии:

«Усть-ишимец»:

Костенки-14 (ослабленные настройки):

Мальтинец (аналогично):

И наконец, в качестве примера результата нашего современника, моя собственная карта:

 

 

Визуализация уровня гомозиготности и генетического разнообразия у народов Евразии

Обновлено 30.11.2014

После составления при написании предыдущего поста таблицы уровня гомозиготности в выборках Евразии, мне, конечно же, захотелось визуализировать его на карте (дополнив рядом новых выборок) .  Можно считать, что эта карта показывает уровень генетического разнообразия у каждого народа (ведь чем ниже количество гомозиготных снипов, тем разнообразие выше), но с одной оговоркой. Дело в том, что это число сильно зависит от используемого набора снипов. Таким образом, если в наборе много снипов, более часто встречающихся у европейцев, то разнообразие у них автоматически окажется завышенным, а у жителей других частей света — заниженным. А поскольку чипы для генотипирования предназначены в первую очередь для европейцев, такое вполне возможно.

Но все же мне кажется, что этот эффект либо не повлиял на результаты, либо повлиял незначительно. Наиболее разнообразными выборками получились отнюдь не европейские, а жители районов, прилегающих к Красному Морю. Это выглядит вполне объяснимо, поскольку где-то там и находится прародина всех не-африканцев. Другие результаты смотрятся тоже очень логично — по мере удаления от прародины разнообразие постепенно терялось.

Update от 21.01.2015. Для оценки эффекта можно сравнить с подсчетами из работы Fu et al:

FuHomosyg

Как можно увидеть, результаты по неафриканским популяциям хорошо коррелируют с моими. Однако по африканским выборкам результат прямо противоположный. Очевидно, евразийские снипы у них менее распространены, зато имеются свои собственные. Таким образом, метод (с данным набором снипов) можно использовать для выборок за пределами Черной Африки.

На карте зеленым цветом выделены выборки с наибольшим разнообразием, красным — с наименьшим:

HomosygIBDext

Как я уже писал, наивысшим разнообразие получилось у жителей Египта, Эфиопии, Йемена. Наинизшее из присутствующих на карте — у народов Северо-Восточной Сибири и Южного Китая. Однако у не попавших на карту есть и гораздо более экстремальные значения гомозиготности. Наибольшей она оказалась у южноамериканских индейцев и выборки папуасов. Чуть отстали африканские пигмеи, а вот обычные африканцы (йоруба и кенийские банту) вышли примерно на уровне восточноазиатов. Возможно, их реальное разнообразие еще выше (с учетом эффекта, описанного в первом абзаце).

Видно снижение разнообразия у народов-изолятов — калашей и бедуинов. И наоборот, у народов смешанного происхождения разнообразие выше. Например, на границе Европы и Азии выделяются ногайцы, башкиры, татары, коми-зыряне. В целом в Европе разнообразие плавно снижается с юга на север, за исключением выборок-изолятов — басков и сардинцев. А, допустим, в Индии все наоборот — понижение идет с северо-запада, откуда шли вторжения пришельцев, на юг и восток, к дравидам и австроазиатам.

При подсчете суммы IBD-сегментов уровень гомозиготности в выборке играет заметную роль. Например, «экстремалы» эвенки и эвены всегда разделяют меньше сегментов с европейцами, чем их соседи, но зато больше — с восточноазиатами.

В заключение приведу обновленную таблицу среднего процента гомозиготных снипов по используемым выборкам (и по используемому набору снипов):

Yemenite 65,20%
Egyptian 65,31%
Ethiopian 65,33%
Nogay 65,49%
Moroccan 65,52%
BR2 65,61%
Tatar-Kazan 65,65%
Azerbaijani 65,66%
Tatar-Crimean 65,67%
Kumyk 65,71%
Uttar-Pradesh-HC 65,72%
Bashkir 65,73%
Balkarian 65,78%
Komi 65,88%
Gujarati 65,92%
Tadjik 65,92%
UAE 65,92%
Turkmen 65,95%
Uzbek 66,00%
Uygur 66,00%
Greek_Azov 66,01%
Ashkenazi 66,03%
Ossetian 66,04%
Spanish 66,05%
Burusho 66,05%
Chuvash 66,05%
Croatian 66,05%
Abkhazian 66,09%
Iranian 66,09%
Russian-North-East 66,10%
Lezgin 66,10%
German 66,10%
Armenian 66,13%
Bulgarian 66,13%
Russian-South 66,14%
Italian-South 66,15%
Romanian 66,16%
Ukrainian-West-and-Center 66,16%
Sicilian 66,16%
Russian-North-Kargopol 66,17%
Greek 66,17%
Cypriot 66,18%
Swedish 66,19%
Palestinian 66,19%
Chechen 66,20%
Belarusian 66,20%
Hungarian 66,23%
Hazara 66,23%
Moksha 66,23%
Erzya 66,24%
Udmurt 66,25%
Georgian 66,26%
Ukrainian-East-and-Center 66,26%
Sephard 66,27%
Italian 66,29%
Ust-Ishim 66,29%
Kazah 66,29%
Tatar_Lithuanian 66,30%
Kurd 66,32%
Jordanian 66,33%
Turkish 66,33%
Mari 66,33%
Polish 66,34%
Adygei 66,35%
Norwegian 66,35%
Russian-West 66,36%
French 66,36%
Estonian 66,42%
Balt 66,45%
Karelian 66,45%
Kol 66,47%
NE1 66,49%
Veps 66,50%
British 66,51%
Finnish 66,51%
Tunisian 66,52%
Uttar-Pradesh 66,53%
Mansi 66,60%
Sindhi 66,61%
Brahui 66,68%
Kanjar 66,71%
Pathan 66,75%
Syrian 66,78%
Kirgiz 66,79%
Saud 66,91%
Makrani 67,02%
Basque 67,02%
Druze 67,08%
LBK 67,08%
Sardinian 67,08%
Andhra-Pradesh 67,09%
Bedouin 67,27%
Karnataka 67,33%
Hakas 67,33%
Altaian 67,33%
Balochi 67,36%
Saami 67,55%
Mongol 67,56%
Kalash 67,59%
Shor 67,63%
Munda 67,75%
Kerala 67,88%
Burmese 67,97%
BantuKenia 68,08%
Tuvinian 68,08%
Dolgan 68,24%
Tamil-Nadu 68,27%
Buryat 68,48%
Selkup 68,49%
Ket 68,54%
Xibo 68,54%
Cambodian 68,61%
Mongola 68,63%
Tu 68,65%
Yoruba 68,68%
Yakut 69,01%
Daur 69,11%
Han-North 69,14%
Nivh 69,25%
Naxi 69,31%
Evenk 69,32%
Hezhen 69,34%
Oroqen 69,39%
Yi 69,40%
Han 69,48%
Dai 69,62%
Japanese 69,67%
Miao 69,73%
Tujia 69,80%
She 69,88%
Naga 70,06%
Lahu 70,14%
Nganassan 70,37%
Even 70,64%
BiakaPygmy 70,69%
Maya 71,08%
MbutiPygmy 72,80%
Melanesian 73,03%
Loschbour 73,79%
Papuan 75,67%
Karitiana 76,17%
Kostenki-14 85,96%
Motala12 90,19%
Malta 94,41%

Оценка влияния уровня аутосомной гомозиготности при генотипировании на длину и количество ложных IBD-сегментов

В последнее время я пробовал сравнивать файлы геномов, полученные при генотипировании останков древних людей, с современными выборками в поисках  длинных общих IBD (или все же на деле это IBS?)-сегментов. Как выяснилось, результат в первую очередь зависит от качества прочтения древнего генома, особенно от уровня гомозиготности. Большинство древних геномов прочитывают с небольшим уровнем покрытия (1х-2х), и естественно, при этом захватывается лишь один аллель. Например. если реальные значения снипа A и T, при единичном прочтении можно увидеть либо A, либо T — второе значение останется нерасшифрованным. Любой длинный сегмент при этом окажется разорван.

Есть и геномы, прочитанные с высоким качеством. Их уровень гомозиготности близок к получающемуся у наших современников при коммерческом тестировании в FTDNA и 23andMe. Например, к таким относится BR2 из недавней работы Gamba et al. «Genome flux and stasis in a five millennium transect of European prehistory». Сумма общих сегментов у «венгра» бронзового века с европейскими выборками вполне сопоставима с тем, что получается у наших современников. Как уже неоднократно писалось, возраст таких сегментов вполне может насчитывать несколько тысячелетий, поэтому результат не слишком удивляет. Однако общие сегменты с нашими современниками нашлись и у «усть-ишимца» — древнейшего расшифрованного генома человека современного типа возрастом около 44 тысяч лет (согласно радиоуглеродной датировке). Сложно поверить, чтобы IBD-сегменты могли сохраняться так долго. Что послужило этому причиной? Поддержка отбора, ошибки генетической карты (расстояния между многими снипами получены интерполированием, а это может быть неправильно)? А может быть, это вовсе и не IBD-сегменты, а просто случайно возникшие IBS?

(IBD (identical by descent) — участки совпадающих последовательностей снипов, полученные несколькими людьми от одного и того же предка в результате общности происхождения. IBS (identical by state) — тоже участки совпадающих последовательностей снипов, но причины этого совпадения могут быть другими. Формально IBD это частный случай IBS, но часто понятие IBS используют как синоним лже-IBD сегмента)

Если высокий уровень гомозиготности способен разрушать сегменты, не может ли высокий уровень гетерозиготности создавать лже-сегменты? Вообще, насколько протяженными могут быть лже-IBD сегменты, и каково их количество? Понятно, что идеально гетерозиготный генотип (то есть несущий оба аллеля для каждого снипа) будет совпадать на уровне «родитель-ребенок» с любым человеком (в реальной жизни его возникновение невозможно, разве что искусственным путем). Также понятно, что по теории вероятностей между любыми двумя людьми будут возникать микро»сегменты» из случайно совпавших снипов. Насколько протяженными они могут быть?

Для начала я решил попробовать оценить уровень гомозиготности в используемом мной для IBD-карт наборе выборок. Для сравнения туда же добавлено несколько древних геномов (они выделены жирным шрифтом). «Усть-ишимец» пока выложен лишь до 8 хромосомы, это составляет около половины протяженности аутосом по количеству снипов. Используется набор из примерно 255 тысяч снипов, на другом наборе результаты должны отличаться. Показан усредненный по выборке процент снипов от общего числа, где оба аллеля совпадают.

Уровень гомозиготности по выборке:

Nogay 65,49%
BR2 65,61%
Tatar-Kazan 65,65%
Azerbaijani 65,66%
Tatar-Crimean 65,67%
Kumyk 65,71%
Bashkir 65,74%
Balkarian 65,78%
Komi 65,88%
Tadjik 65,92%
Turkmen 65,95%
Uzbek 66,00%
Uygur 66,00%
Greek_Azov 66,01%
Ossetian 66,01%
Ashkenazi 66,03%
Croatian 66,05%
Chuvash 66,08%
Iranian 66,09%
Lezgin 66,10%
German-Austrian 66,13%
Armenian 66,13%
Bulgarian 66,13%
Belarusian 66,13%
Russian-South 66,14%
Abkhazian 66,15%
Turkish 66,15%
Romanian 66,16%
Russian-North 66,17%
Greek 66,17%
Swedish 66,19%
Erzya 66,19%
Chechen 66,20%
Moksha 66,21%
Ukrainian-East-and-Center 66,21%
Georgian 66,22%
Hungarian 66,23%
Udmurt 66,25%
Sephard 66,27%
Italian 66,29%
Kazah 66,29%
Tatar_Lithuanian 66,30%
Ukrainian-West-and-Center 66,31%
Finnish 66,33%
Mari 66,33%
Polish 66,34%
Adygei 66,35%
Norwegian 66,35%
French 66,36%
Russian-West 66,37%
Estonian 66,42%
UstIshim 66,44%
Karelian 66,45%
Balt 66,46%
Veps 66,50%
British 66,51%
Mansi 66,60%
Kirgiz 66,79%
Basque 67,02%
LBK 67,08%
Sardinian 67,08%
Hakas 67,33%
Altaian 67,33%
Saami 67,55%
Mongol 67,56%
Shor 67,63%
Tuvinian 68,08%
Dolgan 68,24%
Buryat 68,48%
Selkup 68,49%
Ket 68,54%
Xibo 68,54%
Mongola 68,63%
Yakut 68,98%
Daur 69,11%
Han-North 69,14%
Nivh 69,25%
Evenk 69,32%
Hezhen 69,34%
Oroqen 69,39%
Nganassan 70,37%
Even 70,62%
Loschbour 73,79%
Motala12 90,19%
Malta-1 94,41%

Выборкой с наибольшим аутосомным разнообразием (наименьшей гомозиготностью)  оказались кубанские ногайцы, что совершенно не удивляет в связи с их смешанным происхождением. Многие другие народы из начала списка также известны своей смешанностью. Любопытно, что близки к началу и ашкенази, хотя я ожидал от них, наоборот, большего однообразия. Видимо, здесь проявляется их происхождение от двух различающихся групп — ближневосточников и европейцев.

Большая часть списка расположилась в промежутке 66-67% , в том числе и усть-ишимец. Несмотря на более свежий вклад неандертальцев и близость к общему корню, по уровню разнообразия он оказался таким же, как и наши современники. Либо здесь сказываются сложности с расшифровкой столь древнего генома, либо аутосомное разнообразие с тех времен поддерживалось на примерно одном уровне — вымывание одних снипов сопровождалось появлением новых.

Самым низким уровень разнообразия оказался у народов Сибири (где мы явно видим результат генного дрейфа) и китайцев (след быстрого расширения?). В Европе хуже всего с разнообразием оказалось у народов-изолятов — басков и сардинцев. Геном охотника-собирателя Loschbour, скорее всего, прочитан со средним качеством — похоже, это и было причиной того, что в предыдущей заметке у него оказалось меньше общих сегментов с нашими современниками, чем у «фермера» LBK, а вовсе не вымирание его народа.

Таким образом, за базовый уровень гомозиготности можно смело принять 66,6%, то есть 2/3 снипов из используемого мной набора у среднего европейца гомозиготны. Попробуем сделать оценку длины и количества лже-сегментов. Очевидно, что на гетерозиготных участках сегмент разорваться не может. Таким образом, вероятность разрыва на отдельно взятом снипе уже падает до 2/32/3=44,36% . (это оценка вероятности, что у обоих сравниваемых геномов выбранный снип гомозиготен. К сожалению, для упрощения модели пришлось использовать предположение, что для каждого снипа вероятность гетерозиготности примерно одинакова, в то время как в реальности это должно быть не так). Далее, если на гомозиготном участке у обоих геномов сравниваемый аллель один и тот же, то разрыва сегмента также не произойдет. Возьмем для простоты вероятность минорного варианта снипа как 1/6 (вероятность гетерозиготности на снипе 1/3, минорным мог быть либо первый, либо второй аллель, значит, делим вероятность пополам. В реальности надо считать сложнее, но для оценки подойдет). К разрыву могут привести два варианта — в первом геноме мажорный вариант снипа, во втором минорный — вероятность 5/61/6=5/36, и наоборот — в первом минорный, во втором мажорный вероятность такая же. Для получения итоговой вероятности разрыва сегмента на один снип мы умножаем 44,36% на (5/36+5/36) и получаем 12,32% вероятность разрыва лже-сегмента на любом случайно выбранном снипе.

Да уж, есть где запутаться ))) Надеюсь, я все же нигде сильно не ошибся и оценка близка к истине ))

Исходя из вероятности разрыва 12,32% на снип, лже-сегмент будет иметь кумулятивную, то есть накопленную вероятность разрыва 50% при прохождении 5-6 снипов (это медиана). Значит, половина лже-сегментов будет короче этого числа, половина-длиннее. Кумулятивная вероятность разрыва растет в 10 раз каждые 17-18 снипов — 90% лже-сегментов будут короче 18 снипов, 99% — короче 37,  99,9%-54 и так далее. Так как медианное значение при нормальном распределении обычно составляет около 0,7 от среднего, средняя длина лже-сегмента оценивается в 7,5 снипов. На 245 тысяч снипов будет приходиться 32 тысячи сегментов, а на 1130 геномов из используемых выборок — в общей сложности около 36 с половиной миллионов.

Из них около трех с половиной тысяч будут иметь длину не менее 72 снипа, около 36 — 107 снипов, а чтобы гарантированно снизить число лже-сегментов до нуля, нужно установить фильтр в районе 130-140 снипов. Что интересно, примерно на те же цифры я вышел экспериментальным путем, пробуя различные настройки. Оптимальным мне показалось отбрасывать все сегменты с длиной менее, чем 150 снипов. Теория неплохо сошлась с практикой.

Итак, лже-УПСы (участки половинного совпадения), возникшие по статистическим причинам, не должны оказывать особого влияния на IBD-сегменты. Подавляющее большинство из них по длине не превышает несколько десятков снипов (лишь примерно каждый тысячный преодолевает рубеж 50-60 снипов). Разумеется, из-за их наличия реально существующие сегменты неизбежно удлиняются, однако принципиально исказить картину это не может. Конечно, такие причины, как поддержка отбором и искажения, вызванные неточностью генетических карт, остаются в силе. Возможны и другие причины — загадка наличия значимых сегментов с палеоДНК продолжает требовать объяснения.

При ослаблении фильтра до 50 снипов, как в случае с мальтинцем, лже-УПСы уже должны стать заметными. Неудивительно, что при нормальных настройках значимых сегментов почти не получалось — уровень гомозиготности оказался весьма велик.

В заключение приведу график зависимости вероятности разрыва лже-сегмента от уровня гомозиготности в популяции при использовании той же формулы. Как уже писалось, идеально гетерозиготный геном не будет иметь разрывов вообще. Но и в идеально гомозиготной выборке разрывов не будет, ведь аллели у всех совпадают! Что же происходит в промежутке между этими двумя крайностями? Как выяснилось, максимальна вероятность разрыва лже-сегмента при уровне гомозиготности около 70%, что близко к реально существующему уровню. При больших значениях длина лже-сегментов начинает быстро расти из-за того, что все слишком похожи между собой, при меньших — из-за того, что на гетерозиготных снипах сегмент порваться не способен. Уровни ниже 0,45 я убрал из-за их явной нереалистичности. Как можно догадаться, там график движется к нулю.

HZ

Сравнение двух древних европейцев и одного сибиряка с выборками из современных народов методом поиска общих аутосомных сегментов

За последние годы был опубликован ряд работ, посвященных попыткам генотипирования останков древних людей — от живших несколько тысячелетий назад до «усть-ишимца» с предположительным возрастом около 45 тысяч лет, неандертальцев и «денисовки». Количество таких расшифровок растет все быстрее, что не может не вызывать оптимизма.  Трудами известного геномного блоггера Феликса Чандракумара большинство из них было переведено в простой и доступный формат, аналогичный файлам raw data от FTDNA и 23andMe.

Ради интереса я попробовал проверить геномы (предположительно, это два «бритта» железного века и три «англа», «сакса» или «юта» времен переселения этих племен в Британию) из одной из таких недавних работ на наличие IBD-сегментов с современными выборками. Ничего особенного от этой попытки я не ожидал, но результат все равно разочаровал. Никаких связей с современными германцами или кельтами, лишь короткие обрывки сегментов с северо-восточными европейцами.

Как выяснилось, большинство из имеющихся сейчас древних геномов совершенно не годится для такого рода анализа. Основная причина — крайне низкое качество генотипирования. Количество снипов и прочтений на один снип невелико, и подавляющее большинство из них гомозиготно (то есть второй аллель не прочитан). А это значит, что практически все IBD-сегменты разрушены и мы можем увидеть лишь самый базовый и древний уровень родства. В терминах этнокалькуляторов на основе Admixture это оказался (в данном случае) «северо-восточноевропейский» предковый компонент, который наиболее ярко проявляется у народов восточной Балтики — с ними и нашлось наибольшее количество обрывков.

Тем не менее, не все так плохо. Можно выделить известную работу Иосифа Лазаридиса с коллегами о трех предковых популяциях современных европейцев. Геномы европейского раннего земледельца культуры линейно-ленточной керамики (образец Stuttgart, или LBK. Около 7500 лет назад) и почти синхронного ему охотника-собирателя, останки которого найдены на территории нынешнего Люксембурга (Loschbour, около 8000 лет назад) прочитаны очень качественно и почти не уступают файлам от 23andMe и FTDNA.

Карта сумм общих сегментов древнего земледельца с современными выборками:

LBKIBD

С заметным отрывом от остальных лидируют жители острова Сардиния, считающиеся сохранившимися в наиболее чистом виде потомками когда-то переселившихся в Европу земледельцев Восточного Средиземноморья. За ними следуют другие южноевропейские популяции (включая ашкенази и сефардов), скандинавы и восточноевропейцы.

Sardinian 61,06 —//Confidence: very high
Italian 50,14 —//Confidence: very high
French 49,56 —//Confidence: very high
Bulgarian 48,9 —//Confidence: high
Hungarian 48,29 —//Confidence: very high
Basque 45,92 —//Confidence: very high
Greek 45,7 —//Confidence: very high
Norwegian 44,95 —//Confidence: high
Ashkenazi 44,04 —//Confidence: high
Sephard 43,52 —//Confidence: high
Croatian 42,23 —//Confidence: very high
Belarusian 42,12 —//Confidence: high
Swedish 41,86 —//Confidence: high
German-Austrian 41,33 —//Confidence: very low
British 41,2 —//Confidence: very high
Russian-South 40,7 —//Confidence: very high
Balt 40,38 —//Confidence: high
Greek_Azov 39,61 —//Confidence: low
Ukrainian-East-and-Center 39,49 —//Confidence: medium
Estonian 39,27 —//Confidence: high

Наличие общих сегментов с этими народами можно объяснять и миграциями потомков земледельцев на север, и ассимиляцией «земледельцами» «охотников» при продвижении вглубь Европы. Думается, для южных европейцев более актуальна первая причина, для восточных вторая, скандинавы где-то посередине.

Все это не новость, хотя мне понравилось подтверждение работоспособности метода. Более интересным мне показался «язык», протянувшийся на восток — через Кавказ и Среднюю Азию до самой Монголии. Забегая вперед, скажу, что у «охотника» Loschbour такого не наблюдается. Чем может объясняться эта связь? Приток генов с Востока к предкам «штутгартца»? Или же наоборот, его родственники, переселившиеся на восток, оставили свой след в геноме монголов? Для проверки я решил использовать один из этнокалькуляторов, разработанных до появления образца LBK в открытом доступе. При разработке более поздних он был использован как европеец и мог исказить картину.

LBK

Как видите, никаких следов Восточной Азии — чистый средиземноморец. Так что совсем не исключено, что на востоке мы здесь видим следы, к примеру, афанасьевцев.

«Охотник» Loschbour не показал такого яркого сходства ни с одной из современных выборок. Можно предположить, что его племя не оставило дожившего до наших дней потомства, или же оставило мало. Тем не менее, очень хорошо видно, кто из наших современников в наибольшей степени родственен древнему охотнику — это восточноевропейцы с максимумом на восточном побережье Балтийского моря

LoschbourIBD

Finnish 41,21 —//Confidence: very low
Estonian 39,63 —//Confidence: high
Balt 37,85 —//Confidence: high
Russian-North 36,25 —//Confidence: very high
Belarusian 35,31 —//Confidence: high
Karelian 35,21 —//Confidence: high
Veps 34,75 —//Confidence: medium
Ukrainian-West-and-Center 34,48 —//Confidence: medium
Polish 33,8 —//Confidence: high
Norwegian 32,34 —//Confidence: high
German-Austrian 31,4 —//Confidence: very low
Russian-South 30,87 —//Confidence: very high
Russian-West 30,73 —//Confidence: medium
Erzya 30,19 —//Confidence: medium
Saami 30,12 —//Confidence: high
Swedish 29,78 —//Confidence: high
Hungarian 28,55 —//Confidence: very high
Ukrainian-East-and-Center 28,54 —//Confidence: medium
Croatian 27,31 —//Confidence: very high
Komi 26,48 —//Confidence: high

Образец Loschbour в том же этнокалькуляторе MDLP K5:

Loschbour

Для визуализации разницы между «охотником» и «земледельцем» я нормировал значения первого путем умножения на 1.5. Красный цвет означает большее родство с Loschbour, зеленый — LBK. Бурый, как у удмуртов, эвенков или китайцев — нейтрален.

LminusLBKIBD

Но что же наш третий источник наследственности европейцев, аутосомный компонент Ancestral North Eurasian, полученный при генотипировании останков мальчика с сибирской палеолитической стоянки Мальта? К сожалению, его геном расшифрован не так хорошо по сравнению с двумя предыдущими. Это и неудивительно — оценочный возраст мальтинца втрое больше, около 24 тысяч лет. К тому же за это время и количество сегментов, дошедших до наших современников, должно заметно упасть. Поэтому поиск общих сегментов со стандартными настройками дал весьма невразумительную картину. Пришлось резко ослабить настройки фильтра — вместо минимального размера сегмента в 15о снипов (из примерно 200 тысяч) до 50, и вместо минимальной длины сегмента в 3 сМ до 2. После этого алгоритм смог кое-что уловить:

MaltaIBD

Итак, наиболее родственным мальтинцу народом среди наших современников получились удмурты. Вспоминается, что этот народ является одним из чемпионов по наличию Y-гаплогруппы N, пришедшей в Европу с востока. Впрочем, дело тут может быть совсем в другом.

Конечно, уровень погрешности здесь еще выше, чем в предыдущих случаях, но тем не менее, картина вырисовывается довольно отчетливо и неплохо коррелирует с распространением компонента ANE.

Сборный образец «древнего скандинава» Motala1-2 не показал столь же отчетливой картины, как Loschbour и LBK. Видимо, дело в том, что он получен в результате объединения данных из разных наиболее качественно прочитанных геномов. При ослаблении настроек фильтра аналогично мальтинцу получается весьма похожая на Loschbour картина, но более размытая. Не думаю, что есть смысл приводить ее здесь.

Итак, среди современных европейцев можно найти родственников представителей всех трех основных источников (по крайней мере, известных сейчас) их современного генофонда. Насколько реально это родство? Сложно сказать. Конечно, тяжело поверить в сохранение IBD-сегментов на протяжении сотен поколений. С другой стороны, как показало моделирование, мелкие сегменты почти неуничтожимы. А ведь для отрисовки карт используются в основном именно маленькие сегменты в диапазоне 3-4-5 сМ. Возможно, многие из них являются результатом случайного объединения еще более мелких сегментов, или они поддерживаются отбором, или случайно закрепились в популяции. Думаю, что мы в любом случае можем считать этих людей своими родственниками, хотя и не очень близкими ))