«Ледниковый период в Европе и изучение останков древнего человека на территории России»

Лекция Йоханнеса Краузе  (Johannes Krause) «Ледниковый период в Европе и изучение останков древнего человека на территории России» состоится в рамках Фестиваля науки

8 октября 2016  в  Шуваловском корпусе МГУ, аудитория «В4» 

12.45-13.45

Йоханнес Краузе  — профессор археологии и палеогенетики,  директор Института наук об истории человека Общества Макса Планка (Max Planck Institute for the Science of Human History) в Йене.

программу Фестиваля науки 7-9 октября можно скачать здесь  program-2016

«МОСКВА, 10 окт – РИА Новости. Известный палеогенетик Йоханнес Краузе рассказал РИА «Новости» о том, почему ученые сегодня считают степи Прикаспия родиной народов Европы, поделился мыслями о причинах почти полного вымирания Европы в конце ледникового периода, а также порассуждал о перспективе «воскрешения» средневековой чумы.

Йоханнес Краузе, палеогенетик из Института истории человека в Йене (Германия) – один из самых известных «некромантов» современности, которому удалось за последние несколько лет восстановить и изучить геномы средневековых возбудителей чумы и проказы, раскрыть тайны миграций и вымирания первых жителей Земли.

Кроме того, он обнаружил, что в конце ледникового периода фактически вся Европа вымерла и была заново заселена «северными евразийцами», поселенцами с юга России, а также нашел однозначные генетические свидетельства того, что неандертальцы были каннибалами. Обо всем этом Краузе рассказал на лекции в МГУ имени М.В. Ломоносова, которая проводилась в рамках всероссийского фестиваля Наука 0+.

— Йоханнес, недавно вы выяснили, что почти все первые жители Европы вымерли и не оставили следов в ДНК современного населения субконтинента. В чем могли быть причины такой катастрофы, вызвали ли ее болезни или климат?

— Сам по себе ледниковый период был периодом масштабных климатических изменений. Поэтому мы собственно и называем его ледниковым периодом – температуры упали на 10 градусов Цельсия, и большая часть Европы была покрыта льдом во время последнего ледникового максимума, 20 тысяч лет назад.

В то время, по сути, в Центральной Европе было невозможно жить – она представляла собой области вечной мерзлоты, покрытые тундрой и льдами.

Череп кроманьонца из Чехии
Генетики: в конце ледникового периода почти вся Европа вымерла

Поэтому то, что в то время местное население полностью вымерло и было замещено новой группой людей, никого не должно удивлять. Поэтому я считаю, что болезни, в том числе и чума, вряд ли могли вызвать это вымирание, а климатические изменения – вполне могли это сделать.— Вы и ваш коллега Дэвид Рейчпоказали в недавнем прошлом, что Европа была заселена несколькими волнами мигрантов, которых было или три, или четыре. Сколько их было на самом деле?

— На текущий момент у нас есть сведения о том, что первые люди появились в Европе примерно 40 тысяч лет назад. Следы этой популяции людей были найдены в Румынии в виде скелета одного человека, а также останками еще одного древнего кроманьонца, которые были открыты в окрестностях Омска, в Усть-Ишиме. Они являются на сегодняшний день древнейшими останками человека современного типа за пределами Африки.

Оба этих человека принадлежали к особой популяции древних людей, следов которых вообще не осталось в нашей ДНК. Иными словами, они не были предками современных жителей Азии и Европы. Их популяцию можно назвать первой провалившейся попыткой колонизовать мир за пределами Африки.

За ними следовали люди, подобные тем, чьи останки были найдены в окрестностях деревни Костенки в Воронежской области. Их следы уже можно заметить в ДНК последующих групп древних людей.

Реконструкция облика члена ямной культуры Прикаспя
Генетики нашли новые доказательства каспийских корней индоевропейцев

Со времени жизни людей в Костенках и до конца ледникового периода, который завершился примерно 15 тысяч лет назад, в генетике Европы почти ничего не поменялось. Примерно 14 тысяч лет назад в Европу проникли первые мигранты с Ближнего Востока, и затем, около 7-8 тысяч лет назад, произошла вторая волна ближневосточной миграции, принесшая с собой фермерское искусство. И последняя волна миграции, самая масштабная из них, произошла примерно пять тысяч лет назад, когда Европа была заселена жителями прикаспийских и причерноморских степей.

Проблема, на самом деле, не в подсчете волн миграции, а в самом термине. Под миграцией мы обычно понимаем перемещение больших групп людей, условно говоря, из точки А в точку Б. С другой стороны, в реальности могли происходить не массовые миграции, а просто медленная экспансия новых групп людей, распространявшихся по Европе со скоростью, скажем, пять километров в год. Поэтому нельзя говорить о том, что древние люди в один момент вдруг сказали «мы покидаем Россию, едем в Европу», собрали вещи и поехали – этот процесс мог протекать органично и незаметно для коренных жителей субконтинента, постепенно замещая их благодаря большему числу потомства и другим факторам. Мне кажется, именно так нужно думать, когда мы рассуждаем о волнах миграции в прошлом.»

 

Реклама

Размышления над эффективностью алгоритма SPA

Перед тем,  как закрыть тему SPA, я решил поразмышлять о причинах неточности определения географического ареала происхождения с помощью генома. Те, кто воспользовался моей моделью для программы SPA (последняя версия — сентябрь 2016 года), могли убедится в том, что даже при наличии большого количества маркеров, модель не во всех случаях точно определяет ареал происхождения (даже с поправкой на погрешность радиусом в 500 км).
В основу алгоритма SPA положены примерно те же самые предпосылки, что и в случае с классическим анализом главных компонент (PCA)

  • Первая предпосылка  подхода SPA состоит в том, что частота аллели каждого SNP в популяции может быть смоделирована в виде непрерывной двумерной функции на карте. Другими словами, при выборе хромосомы индивидуума из локации с позицией (х, у) на карте, вероятность наблюдения минорного аллеля в SNP j на хромосоме может быть сформулирована в виде функции F (х, у), где Fj является непрерывной функцией, описывающей поведение частоты аллеля в зависимости от географического положения
  • Затем на основании сказанного делается упрощающее предположение, что эта функция является экземпляром логистической функции

 

где х представляет собой вектор переменных, указывающих географическое местоположение и а и Ь коэффициенты функции. Авторы понимают каждую из этих функций, как функцию FJ функции наклона градиента частота в SNP J. Эта функция кодирует крутизну склона по норме а, при этом предпологается что смещение параметра b фиксировано. Кроме того, направленность наклона  кодируется в значении вектора а.  Более подробно, θj = арктангенс (aj(1) / aj(2)) могут быть приняты в знчения угла для SNP j, где aj(1)  и aj(2)  являются первым и вторым элементами вектора а.

Поскольку SPA имеет явные географические координаты, подход может быть расширен для систем за пределами обычной картезианской двумерной плоскости координат. В качестве демонстрации этого, авторы программы SPA использовали алгоритм для анализа пространственной структуры населения земного шара, в которой двухмерное отображение на двухмерной плоскости не может точно фиксировать структуру популяции. Таким образом, каждый индивид проецируется на точку земного шара в трехмерном пространстве. Соответственно, авторы использовали трехмерный вектор х (с ограничением || х || равным определенной константе), чтобы представить индивидуальную позицию.

Используя данные (генотипы индивидов из различных популяций из  HGDP), авторы обнаружили что пространственная топология расположения индивидов в пространстве SPA мы наблюдали, что сильно напоминала топологию географической карту мира. В частности, люди из того же континента были сгруппированы вместе, а континенты были разделены примерно так, как это следовало бы ожидать из пространственного расположения.

ng-2285-f3

 

Главная проблема метода состояла в другом. Несмотря на точность топологии взаимного расположения индивидов,  на карте SPA сильно искажены расстояния между континентами.

Например, продольный размер континента Евразии составил 92 градусов в  SPA-пространстве земного шара, в то время как в пространстве реального земного шара — 150 градусов. Продольное расстояние между Европой и Северной Америкой составило 167 градусов на SPA карте земного шара, в то время как на самом деле оно составляет 90 градусов.  Любопытно отметить, что мой опыт работы с этой программы показал, что наибольшую проблему составляют географические координаты долготы, в то время как широты предсказываются довольно точно. То есть по какой-то причине (несимметричность генетических градиентов в направлении север-юг и направлении восток-запад?) пространство SPA очень сильно искажается в продольном измерении (т.е в долготу).
По этой причине, вычисленные географические точки происхождения для европейцев часто оказываются в Атлантическом океана и так далее.

Я решил использовать данные импутированных генотипов для европейских популяций (я занимался их импутацией на протяжении последнего полгода). На этот раз я ограничился только европейскими популяциями. Я  сделал два разных набора с разным числом снипов — один с 1 062 376 снипами, которые содержатся в платформах генотиприрования клиентов 23andme и FTDNA, другой — примерно 590 395 снипов.  Обе модели можно скачать с Google Drive  (здесь и здесь).

Несмотря на тщательный подбор снипов, обе модели продолжают страдать характерным сдвигом географических долгот, а это означает, что данная проблема обусловлена не выборкой генотипов, а самим алгоритмом программы (т.е. улучшение качества выборки или увеличение количества снипов не приводит к повышению точности даже в том случае, если мы используем для тренировки программы на обучающей выборке  индивидов с известной географической локацией).

Это хорошо видно на полученных в ходе анализа моих собственных данных географических координатах 2 точек происхождения (одна из них в Гренландии,  другая в Средиземном море)

untitled

Разумеется, вряд ли можно говорить о точности подобных вычислений. В ходе размышлений над способом решения проблемы я вспомнил о существовании ортогонального прокрустового анализа.

Я взял две матрицы — одну с географическими координатами (фактически центроиды — географические центры стран) и  вторую с предсказанными  (в модели 1M cнипов) величинами географических координат тех же самых образцов (с усредненными значениями по этносам), а затем совершил прокрустово преобразование в программе R, получив новую матрицу с преобразованными значениями координат. Ниже виден результат операции (преобразованные усредненные координаты образцов спроецированы вместе с центроидами на карту Европы). И хотя координаты по-прежнему немного сдвинуты относительно истинных, в целом результат уже гораздо лучше (правдоподобнее).rplot14При проведении прокрустова анализа, кроме Xnew (трансформированной матрицы),  мы получили значения матрицы вращения R, s- коэффициент масштабирования и tt — вектор трансляции координат, минимизирующие дистанцию между матрицей предсказанных координат и матрицей географических координат.

Эти значения можно использовать для коррекции значений географических координат, рассчитанных в SPA. Я снова использую свои данные (2 предсказанные точки географического происхождения Xp):


Xt=sRXp + 1tt


При подстановке Xp получаем следующие значения

точка A:  60.245448+-11.059673 северной широты;  21.394898 +- -5.979712  восточной долготы (северо-западная Балтика и Скандинавия)

точка B: 43.000748+-8.801889 северной широты;  20.725216+-52.159598 восточной долготы (юго-восточная Европа, Балканы и Греция).

 

 

 

 

 

Геномика датской популяции

В середине августа в журнале Genetics опубликовали статью о генофонде современной датской популяции Athanasiadis et al., Nationwide Genomic Study in Denmark Reveals Remarkable Population Homogeneity, Genetics Early online August 17, 2016; DOI: 10.1534/genetics.116.189241

Методологически исследование напоминает известную статью о генофонде Великобритании.

Аннотация: Дания играет существенную роль в истории Северной Европы. В рамках общенациональной научной просветительской инициативы, мы собрали генетические и антропометрические данные примерно 800 датчан — учащихся средней школы и использовали их, чтобы выяснить генетический состав населения Дании, а также для оценки методики полигенного предсказания фенотипических признаков у подростков. Мы обнаружили замечательную однородность датского генофонда в разных географических регионах, хотя  исследование и  обнаружило слабые сигналы генетической структуры, отражающие историю страны. Датский генофонд характеризуется геномной близостью с соседними странами, особенно общим сходством по генетическим маркерам снижения веса из Великобритании, Швеции, Норвегии, Германии и Франции. Геномный сигнал обмена генами с польской популяцией был обнаружен в регионах Зеландия и Фюна , причем наша датировка даты «смешения» совпала с историческими свидетельствами о переселении славян-вендов на юге Дании. Мы также обнаружили  значительное различие в демографической истории скандинавских стран. Дания имеет наименьший текущий эффективный размер популяции по сравнению с Норвегией и Швецией. И, наконец, мы обнаружили, что полигенное предсказание самооценки роста у подростков  в датской популяции был удивительно точным (коэффициент корреляции R2 = 0,639 ± 0,015). Высокая однородность генофонда населения Дании позволят пренебречь изучением этнической структуры генофонда  в ходе предстоящих крупномасштабных исследований по картированию генов (GWAS) в  стране.

DK_clusters_&_admix

Анализ древней ДНК – проблемы, их преодоление и результаты

На портале Генофонд.ру размещен реферат важной статьи, подводящей промежуточные итоги изучения древней ДНК. Я позволю себе удовольствие процитировать себе некоторые места этого замечательного обзора, написанного ув. Надеждой Марковой

Термин «древняя ДНК» возник в научной литературе в 1980-х годах в связи с появлением новой области исследований, которая получила название «молекулярная палеонтология». С развитием сначала методов ДНК-амплификации (полимеразной цепной реакции), а потом методов секвенирования нового поколения эта область получила мощный толчок к развитию и сегодня стала основным средством реконструкции эволюции живых организмов, и в том числе реконструкции истории человека.

Революция в эволюционной генетике

Исследование древней ДНК совершило революцию в эволюционной генетике, так как появилась возможность напрямую исследовать прошлое, законсервированное в «капсуле времени» ДНК, пишут авторы статьи. Работы последних десятилетий показали, что древняя ДНК может сохраняться в костях, зубах, мумифицированных и замороженных тканях, и может быть извлечена из этих древних образцов. Впервые древняя ДНК была извлечена в 1984 г. (Higuchi et al.) из высохшей мышцы вымершего родственника зебры. Но ее анализ целиком зависел от развития технологий, поэтому стал возможен с появлением ДНК-амплификации (метод полимеразно-цепной реакции – ПЦР), и вышел на новый уровень с появлением методов секвенирования нового поколения. На рисунке авторы представили основные вехи в истории изучения древней ДНК.

О методологии исследования палео-ДНК

Методы палеогенетики оказались незаменимы, чтобы разобраться в  ключевых этапах человеческой цивилизации. Например, понять, как именно происходила смена обществ охотников-собирателей на первых земледельцев, как распространялось по Европе сельское хозяйство – имела ли место передача технологий от одних популяций другим или же происходила смена самих популяций («циркуляция идей или людей»). Анализ древней ДНК показал, что между периодами 8 и 5 тысяч лет назад Европа не была генетически однородной: первые земледельцы с Ближнего Востока мигрировали в Западную Европу и  смешивались там с местными охотниками-собирателями. В Восточную Европу около  6-5 тыс. лет назад туда пришли группы людей из Анатолии, которые смешавшись с охотниками-собирателями, дали начало популяциям скотоводов, наиболее успешная из которых известна по ямной культуре.  Полагают, что именно миграции ямников из понто-каспийских степей на запад и на восток около 4,5 тыс. лет назад можно связать с распространением технологий и, возможно, языков индоевропейской семьи.

Древняя ДНК может помочь и в изучении развития признаков, характерных только для Homosapiens, таких как речь, подчеркивают авторы статьи. Изучение генетических вариаций, связанных с языком, дает информацию о том, когда мог возникнуть сложный  язык, присущий человеку. Так, было показано, что определенный вариант гена FOXP2 (именно его в первую очередь связывают с развитием речи)  имелся уже у неандертальцев. Вероятно, считают специалисты, этот вариант возник у общих предков неандертальцев и современного человека.

Древняя ДНК помогает в изучении адаптации человека к разным условиям среды. При анализе древних геномов в них были выявлены сигналы отбора, связанных с изменением диеты, чувствительностью к ультрафиолету  и пр. Так, становится ясно, как распространялись по Европе такие черты, как светлая кожа и толерантность  к лактозе (способность переваривать молоко во взрослом возрасте).

Трудности в изучении палео-ДНК и их преодоление

Одна из основных проблем, с которыми сталкиваются исследователи древней ДНК, это ее деградация, которая неизбежно происходит со временем.  Обычно ДНК из древних образцов сильно фрагментирована, загрязнена микробной ДНК и химически модифицирована. Причем степень деградации  в больше степени зависит от условий, в которых находился древних образец (температура, влажность), чем от его возраста. Последние исследования показали, что теоретический предел возраста образца, из которого можно извлечь ДНК, составляет 1-1,5 млн лет. Авторы описывают методы, которыми можно преодолеть трудности, связанные с особенностями древней ДНК.

Фрагментация ДНК может быть частично преодолена с помощью современных протоколов, позволяющих извлекать и анализировать очень короткие фрагменты, длиной 50-70 нуклеотидов. К тому же, методы секвенирования нового поколения ориентированы на анализ коротких фрагментов, длина которых составляет 50-100 нуклеотидов.

Большую проблему составляет контаминация древней ДНК современной ДНК. Преодолеть ее нужно путем строгого соблюдения протоколов, учитывающих правила сбора образов, обработки рабочих помещений, применение методов ДНК-аутентификации, независимой перепроверки результатов и пр. Развиваются также методы механической и химической деконтаминации – авторы их описывают.

Еще одна важная проблема – посмертное изменение ДНК из-за гидролиза и окисления, вызывающее деаминацию нуклеотидов, которая ведет к ложным результатам ПЦР. Авторы описывают несколько молекулярно-генетических и биоинформатичесих подходов для преодоления этой проблемы, с ними можно ознакомиться в тексте статьи.

Инструменты анализа

С увеличением числа образцов древней ДНК ученые получают возможность исследовать древнюю генетическую изменчивость на популяционном уровне и сравнивать ее с современной. Различные методы (PCA, STRUCTURE, ADMIXTURE, SPAMIX, SPA, ADMIXTOOLS, GPS, LAMP, HAPMIX,  reAdmix, MUTLIMIX, mSpectrum, SABER и др.), которые были разработаны для анализа современных популяций, применяются и к древним популяциям. В комбинации с антропологическими данными и историческими  сведениями они позволяют реконструировать пути миграций, определять состав предков той или иной популяции, выяснять географическое  происхождение гаплотипов.

Эпигенетика и палео-ДНК

Фенотипическое проявление генотипической изменчивости зависит не только от изменчивости тех или иных аллелей в геноме, но и от степени экспрессии генов, а она во многом определяется химическими модификациями, не затрагивающими последовательность нуклеотидов в ДНК, то есть эпигенетическими. Это метилирование ДНК, модификация белков-гистонов, спектр некодирующей РНК. Последние исследования показали, что некоторые эпигенетические модификации сохраняются и postmortem. Так, удалось картировать метилирование генома неандертальцев и денисовцев. Выяснилось, что некоторые гены были более метилированы у древних людей, чем у современных. Анализ метилирования позволяет также определить возраст индивида (как современного – что важно для криминалистики, так и древнего).

Новая книга Олега Балановского

Присоединяюсь к поздравлениям Олега Балановского по случаю выпуска долгожданной  и важной книги

обложка

Балановский О.П. Генофонд Европы. М.: Тов-во научн. изданий КМК.2015. 354 с.

Монография посвящена генофонду народонаселения Европы – исследованию его пространственной изменчивости и его истории. В книге проанализированы как собственные данные автора, так и литературные: созданные базы данных включили более 130 тысяч образцов по мтДНК и более 140 тысяч – по Y-хромосоме. Параллельное изучение генофонда Европы по маркерам Y-хромосомы, мтДНК и полногеномным панелям обеспечило синтез результатов этих трех генетических систем. Такой синтез актуален не только для генетиков, но и для смежных наук – антропологии, археологии, лингвистики, истории, все активнее включающих данные генетики в комплексные исследования этногенеза. В книге рассмотрены и данные по древней ДНК, позволяющие – эпоха за эпохой – проследить историю генофонда Европы. А совместный анализ количественных лингвистических и генетических данных выявляет непростую связь языков и генофондов. Особую актуальность для российской науки имеют исследования славянских и северокавказских народов, которым посвящены отдельные главы.

 

Подготовка к анализу новых образцов палеогеномов

Несколькими постами ранее ув. Сергей Козлов подготовил замечательный по своей глубине русскоязычный обозор новой статьи Allentoft et al. 2015 (еще раз выражаю свою благодарность). В этом обзоре были затронуты преимущественно технические вопросы, в то время как в аналогичном разборе на сайте генофонд.ру было пересказано общее содержание статьи:  » Cтатья большого международного коллектива, опубликованная 11 июня в журнале Nature, посвящена исследованию геномов популяций Евразии в бронзовом веке (изучен период от 3000 до 1000 лет до н.э.). Первый автор Мортен Aллентофт (Morten E. Allentoft) и ведущий автор Эске Виллерслев (Eske Willerslev) представляют Центр географической генетики Музея естественной истории Университета Копенгагена, Дания. Эта статья вызвала огромный интерес у специалистов по истории популяций человека — ведь в ней представлен анализ самого большого массива древних геномов из разных археологических культур эпохи бронзы. На основании анализа древних геномов авторы пробуют реконструировать древние миграции и распространение археологических культур во времени и пространстве. В бронзовом веке, начало которого датируют временем 3500-3300 лет до н.э., в производстве орудий и оружия камень все больше уступает место металлу. Это сопровождается   радикальными культурными и социальными изменениями в жизни людей. Они касаются не только хозяйственного уклада – возникает новое понимание имущественных отношений, семьи и личности. Основной вопрос, на который попытались ответить авторы статьи — были ли эти изменения результатом передачи культурных навыков или результатом миграций населения. Иными словами, «была ли это циркуляция людей или идей». Важнейший вопрос — связаны ли эти события с распространением индоевропейских языков, на которых сейчас говорит большая часть человечества.»

Лавина публикаций древних геномов (кроме вышеупомянутых статей Allentoft et al. 2015, Haak et al. 2015, летом опубликовались статьи Pinhasi et al. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone,  и Fu et al.  An early modern human from Romania with a recent Neanderthal ancestor, однако к сожалению, количество снипов в большинстве образцов палеогеномов недостаточно для проведения развернутых анализов вместе с палеогеномами из других статей) заставила меня ускорить подготовку своей сводной выборки референсных образцов популяций (об этом я писал в предыдущих записях).

Я решил отказаться от полного импутирования древних геномов (очевидно бессмысленного занятия, так как у нас нет надежной референсной панели для импутирования выборочно секвенированных палеогеномв), и вместо этого ограничился импутированным (с помощью панели 1000 Genomes) набором снипов в контрольном наборе популяций лаборатории Райха (Affymetrix Human Origins Fully Public Dataset), этот набор использовался в статье Lazaridis et al. 2014.  

Разумеется, ни одна процедура «импутирования генома» (imputation of genome -сложнопереводимый на русский язык термин) не обходится без ошибок. Поэтому перед тем как приступить к самому анализу, я провел проверку качества выборки. На этот раз, я использовал  инструментарий Python — PyGenClean. Этот инструментий существенно облегчает стандартизацию генетических данных и  контроль качества выходных данных платформы генотипирования. Он минимизирует ошибки манипулирования данными, и ускоряет процесс очистки данных от потенциальных ошибок генотипирования,  а также позволяет составлять информативные графики и автоматически оценивать предварительные параметры последующего статистического анализа.

После отсеивания снипов c низким качеством и индивидов с низкой степенью генотипирования, а также снипов с существенным отклонением от равновесия Харди-Вайнберга, я посмотрел оставшиеся образцы на предмет наличия в выборке «оutliers» (так называемых «статистических выбросов»). До процедуры нахождения выбросов график главных компонент выглядел следующим образом:

И после нахождения выбросов (т.е образцов со стандартным отклонением больше 5 сигм)

Первоначально я планировал анализировать древние геномы вместе с геномами современных людей, однако (как видно из нижеприведенных графиков) палеогеномы гораздо в большей степени отклоняются от реперных точек, бессистемно разбиваясь на группы:

 

Поэтому такую очистку данных лучше проводить в два захода, один — для современных образцов, а другой — для палеогеномов. А затем полученные «качественные» выборки соединять в общую контрольную выборку.
В нашем случае, я так и поступил, получив выборку из 2250 этнопопуляционных образцов и 155 000 снипов.

Вот так выглядит взаимное расположение образцов геномов на PCA графике.

 

Caucasian, North-African, Afro-American, AG2, South-European, Alberstedt-LN, Native-American, Siberian, African, East-Asian, Near-Eastern, Atayal-Coriell, Native-Australian, Australian, Australian-ECCAC, East-European, Baalberge-MN, South-Asian, Volga-Ural, West-European, Bell-Beaker-LN, North-Indian, BenzigerodeHeimburg-LN, South-Indian, Ancient-African, American, Oceanian, South-East-Asian, Arctic, Corded-Ware, Near-East, Denisovan, Denmark-Carlstrup, Denmark-Falshoy, Denmark-Marbjerg, Denmark-Sebberskole, Esperstedt-MN, EuropeanIronAge, North-European, Halberstadt-LBA, Central-Asian, Hixton, Href, HungaryGamba-BA, HungaryGamba-CA, HungaryGamba-EN, HungaryGamba-HG, HungaryGamba-IA, Iceman, Karelia-HG, Karsdorf-LN, Kostenki14, LaBrana1, LateDorset, LBK-EN, WHG, MA1, Mezmaiskaya, MiddleDorset, North-Greek, South-Italian, Piramalai-Kallars, Poland-Polwice, Poland-Szczepankowice, Poland-Unetice, Poland-Chociwiel, Samara-HG, Saqqaq, East-Aasian, Spain-EN, Spain-EN-relative-of-I0410, Spain-MN, Starcevo-EN, Stuttgart, Sweden-Abekas, Sweden-Angamollan, Sweden-Visby, SwedenSkoglund-MHG, SwedenSkoglund-MN, SwedenSkoglund-NHG, Thule, Unetice-EBA, Ust-Ishim, Vindija, Yamnaya

Именно эту выборку я положил в основу своего нового тестового калькулятора K13 (о его создании я расскажу позже) — предназначенный для анализа «глубокого» происхождения популяций. Как всегда, модель нового калькулятора основана на базовой модели известного DIYDodecad калькулятора. Впервые я остался более или менее удовлетворен полученными результатами. Думаю, что от этой модели можно плясать дальше. И хотя модельная кластеризация с помощью алгоритма Mclust дает основание полагать, что используемая мной выборка из 2230 геномов наилучшим образом (т.е без неизбежного при больших значениях K вырождения компонентов) описывается моделью из 8 кластеров, я остановился на K=13 т.е 13 кластерах:

  1. Amerindian — модальный компонент американских индейцев

 

 

  • ANE — модальный компонент северных евразийцев, изолирован из общего с WHG кластера — наивысшие значения в древнесибирских образцах MA1, AG2, а также у андроновцев, синаштинцев, представителей ямной культуры, шнуровиков и т.д. Из ныне живущих популяций самый высокий процент у калашей. Практически совпадает с ANE в статье Lazaridis et al. 2014

 

 

  • Arctic — модальный компонент с пиком в популяциях коряков, чукчей, ительменов и эскимосов

 

 

  • ASI — модальный компонент южноиндийских популяций, у современных популяций наивысший процент у онге, идентичен ASI в работе Reich et al. 2009.

 

 

  • Caucas(us)-Gedrosia — идентичен кластеру, открытому в 2011 году Диенеком Понтикосом

 

 

  • EastAsian — модальный компонент жителей восточной Азии

 

 

  • ENF — компонент древних европейских земледельцев неолита, пик в образцах палеогеномов культуры линейно-ленточной керамики. Тождественен аналогичному компоненту в работах популяционных генетиков (Lazaridis et al. 2014, Haak et al. 2015). В современных этнопулах — наивысшие значения у сардинцев, корсиканцев и басков.

 

 

  • NearEast — модальный компонент жителей ближнего Востока

 

 

  • Oceanian — модальный компонент аборигенных жителей Океании, Австронезии, Меланезии и Микронезии — пик у современных папуасов и австралийских аборигенов

 

 

  • Paleo-African — модальный компонент африканских пигмеев и бушменов

 

 

  • Siberian — модальный компонент народностей юго-восточной Сибири

 

 

  • Subsaharian — второй африканских компонент — пик в популяциях мандинка, йоруба и ишан

 

 

  • WHG-UHG — компонент древних европейских мезолитических охотников-собирателей, пик в образцах палеогеномов мезолитических популяций европейских охотников-собирателей. Тождественен аналогичному компоненту в работах популяционных генетиков (Lazaridis et al. 2014, Haak et al. 2015). Из современных популяций — наивысший процент в популяциях эстонцев, литовцев, финнов и др.

 

 

MDS plot - K13 ancestral population

Как я и предполагал, модель калькулятора оказалась особенно хороша в применении к анализу древних геномов. И на самом деле, на нижеприведенном графике PCA (пространстве 2 главных компонент результатов анализа древних геномов в моем бета-калькуляторе K13) видны замечательные вещи. Расположение геномов хорошо вписывается в треугольник, один из углов которого образуют геномы древних «ямников» (из работы Haak et al. 2015), причем геномы «русских»ямники из работы Allentoft at al.2015 чуть-чуть сдвинуты в сторону древних мезолитических геномов древних европейских охотников-собирателей. За ними (в направлении «неолитического» угла) следуют представители шнуровой культуры, еще дальше — геномы представителей геномов унетицкой культуры и т.д. Второй угол треугольника образован неолитическим геномами, причем если более поздние неолитические геномы сдвигаются ближе к представителям линейно-ленточной культуры (англ. Linear Pottery culture, фр. Culture rubanée, нем. Linearbandkeramische Kultur, LBK — наиболее распространенная неолитическая культура Центральной Европы 5500—4500 гг. до н. э.), то более ранние геномы — геном представительницы более ранней фазы этой культуры (Stuttgart-LBK), а также геномы представителей балканских неолитических культур — Старчево и Винча — очень близки к палеогеному из Barcin (культура Чатал-Хююк, cамые ранние найденные культурные слои относятся к 7400 г. до н. э.). Таким образом генетика подтверждает утверждения археологов о близости неолитических культур Балкан и Анатолии. Более того — данные генетики свидетельствуют о том, что во времена т.н «неолитической революции» происходила не только и не столько миграция технологий (как считали некоторые археологи), но и миграция населения (из Анатолии на Балканы). Причем, судя по моему графику PCA, миграция происходила в несколько, хронологически удаленных, этапов, и — скорее всего — из разных мест. Крайную точку в этому угле треугольника я обозначил как «анатолийские земледельцы» (ближайший к этой точки геном — геном «земледельца» из культуры Старчево — взят из работ Haak et al. 2015).

Для людей, интересующихся вопросами происхождения индоевропейцев, разумеется будет более интересна другая сторона треугольника, которая скорее всего отражает градиент увеличения градиента частот так называемого ANE — «компонента древних северных евразийцев».

Образно говоря, вектор градиента начинается в геномах ямников (больше половины генома которых состояла из этого компонента) и затем идет к геномам представителей синташтинской, афанасьевской, андроновской, окуневской и карасукской культур.
Пару слов об этих культурах (положение геномов представителей которых можно посмотреть на графике).
1) Синташтинская культура формировалась из древнеямных и катакомбных племён и местного населения. Синташтинцев связывают с индоиранскими племенами.
2) Андроновская культура также развивается на базе ямной. На западе она доходила до района Урала и Волги, где контактировала со срубной культурой. На востоке андроновская культура распространилась до Минусинской котловины, частично включив в себя территорию ранней афанасьевской культуры. Андроновцев (также как и синаштинцев) относят к индоиранской сообщности.
3) Афанасьевская культура была создана мигрантами из Восточной Европы, в частности, носителями древнеямной культуры, ассимилировавшими местное население. Сменилась карасукской и окуневской культурами.Наследниками афанасьевцев были племена тагарской культуры, дожившей до III в. до н. э., по другой версии, тагарцы были скифами, а потомки афанасьевцев — тохарами, которых именно скифы-тагарцы вытеснили в Синьцзян.Большинство исследователей ассоциируют афанасьевскую культуру с (прото-)тохарами.
4) Окуневская культура — фнтропологический тип населения этой эпохи был смешанного европеоидно-монголоидного происхождения, с преобладанием монголоидного. Как отмечает А. В. Громов, бросается в глаза их морфологическая разнородность — встречаются как чисто монголоидные черепа, так и типично европеоидные, не обнаруживающими никаких следов монголоидной примеси. Проведя обстоятельный анализ антропологических особенностей населения неолита и ранней бронзы, А. А. Громов пришел к выводу, что физический тип окуневцев сложился в результате смешения местного неолитического населения с выходцами из территории Средней Азии и Казахстана (афанасьевцами)
5) Карасукская культура — развилась на основе окуневской культуры под влиянием андроновской культуры.

Интересно, что геном мальчика с южносибирской палеолитической стоянки MA-1 как раз проецируется между центроидами геномов представителей синташтинской, афанасьевской, андроновской, окуневской и карасукской культур. Эти геномы (вернее их центроиды) занимают на графике значительное место. Самый дальний из них — геном алтайца из эпохи железного века (примерно 50 год до нашей эры). Сразу за ним идут все из имеющихся у меня палеогеномов жителей Америков (палеоэскимосы — в том числе и Saqqaq; и «палеоиндейцы» — Clovis, древние жители Перу и палеогеномы Botocudo). Любопытно что последние — геномы Botocudo — хотя и являются самыми современными (1600 год нашей эры), однако в них хорошо заметен «океанский компонент», именно поэтому они смыкаются на графике с палеогеномом австралийского аборигена. В этой связи я вспоминаю оригинальную теорию Тура Хейердала о наличии доисторических контактов между жителями островов Тихого океана и жителями Южной Америки.

Особое место на графики занимают «живые реликты» — онге, один из коренных андаманских народов (адиваси), геномы так называемого «усть-ишимца» (возраст 45000 лет), костенковца (Kostenki-14, возраст 38 700 -36 200 лет), и недавно опубликованный палеогеном Oase из Румынии (возрастом 37000-42000 лет). Они образуют отдельную группу (особенно близки друг к другу румынский палеогеном Oase и усть-ишимец), однако я терясь в догадках о том, что именно означает столь заметная близость этих геномов.

 

 

Eurasian and American paleogenomes

Еще раз о палеогеномах европейцев (к работе Haak et. al. 2015)

Еще когда появились первые анонсы препринта статьи Haak et al. 2015,  можно было сделать интуитивные предположения о том, что использованные в работе образцы палеогеномов будут всесторонне изучены не только авторами статьи, но и многочисленными любителями, причем ожидаемая степень детализации полученной картины генетического разнообразия  будет предположительно выше именно у последних (т.е всевозможных геномнных блоггеров).

Так оно и вышло. Давид Веселовский из Eurogenes провел целый ряд экспериментов с объединенным базовым набром «геномов» современных популяций и так называемых древних геномов.  В частности, в одном из своих анализов он задействовал новую программу qpAdm из последней версии пакета Admixtools,  и в ходе пробного моделирования геномов представителей ямной культуры из самарской культуры был наилучшая аппроксимация (fit, подгонка) была получена в комбинации  51.4% генома  охотников-собирателей Самары и  48.6 современных грузин (STD 0,032, chisq 3,890, р-value 2.20661e-22). Образцы палеогеномов представителей  шнуровой керамики могут быть в свою очередь смоделированы как 73% геномов ямников + 27% палеогеномов Esperstedt_MN (STD 0,060, chisq 2,621, р-value 9.74968e-06).

Это интересный результат, главным образом потому данные лингвистики позволяют предположить, что ранние индоевропейцы — по-видимому, кочевники ямной культуры или их предки — были в тесном контакте с прото-картвельскими популяциями.  Похожий результат был получен авторами статьи (у которых представители ямной культуры выступали как 50% -50% смесь геномов карельских охотников-собирателей и армян), а также в моих экспериментах, в которых геномы современных белорусов были представлены  гибридной моделью  современных геномов армян и палегеномов шведских охотников-собирателей Motala.

Впрочем, я согласен с Веселовским — главная проблема с подобными ретроспективными анализами заключается в том, что про причине отсутствия большого количества достоверных древних палеогеномов, популяционные генетики часто вынуждены моделировать древние популяции посредством комбинаций современных популяций. Как отмечает Веселовский, в генофонде современных грузин присутствует (по его оценке) 20% так называемого ANE-компонента, который, вероятно, прибыл на Кавказ из Евразийской степи. Если это так, то алгоритм qpAdm  может переоценить «кавказский» компонент в геномах ямников, по крайней мере, на 10%.

В другом своем анализе Веселовский уделил особое внимание  проблеме происхождения одного из основных компонентов в геноме древних ямников. Так например, анализ Admixture в Haak et al. 2015 включает в себя ряд интригующих компонентов с К = 16 до К = 20, которые, как правило составляют более 40% от генетической структуры потенциально прото-индо-европейских геномов ямников. Веселовский выделил компонент сигнализирующий этот тип «адмикса» и подробно изучил его. Заслуживает внимание тот факт, что компонент достигает своего пика на Кавказе и в горах Гиндукуша, и в целом показывает сильную корреляцию с регионами относительно высокой частоты связанных с палеогеномом MA1  компонентами происхождения (ANE). С другой стороны, другой компонент ямников достигает пиковых значений у  ранних европейских фермеров (EEF), у которых отсутствует компоент ANE.

Выделенные Веселовским 3 основные компоненты-составляющие геномов ямников были преобразованы в синтетические популяции (центрально-азиатская, европейская и неолитическая европейская), которые в свою очередь использовались в качестве подмножества для вычисления векторов загрузки (loadings) в PCA анализе полного набора современных популяций.

https://drive.google.com/file/d/0B9o3EYTdM8lQak82NFVYSUJfWGc/preview

Очевидно, более детальный расклад и анализ вклада различных компонентов геномов палеоевропейцев в геном современных жителей Европы можно найти в подробном анализе Сергея Козлова  «Палеоевропейцы из работы Haak et al, 2015 в свете анализа на IBD-сегменты«.

Как я уже упоминал ранее, мой опыт с «выведением» предкового аутосомного компонента индоевропейцев (обозначенного в статье Lazaridis et al. 2013 сокращением ANE) полностью удался. Поскольку всем очевидно, что этот компонент родственен «североиндийскому предковому компоненту» (ANI — обозначение из статьи Reich et al. 2009 и Moorjani et al 2011) о структуре генофонда индийских этнических групп), я взял 10 индийских этнических групп, имеющихся в кураторском наборе лаборатории Райха и проанализировал эту выборку в Admixture на пропорции вхождения их геномов в 2 априорно заданные кластеры. Первый кластер ANE был априорно задан 40 синтетическим индивидами, сгенерированными в программе Plink на основании расчитанных ранее частот аллелей «чистого» компонента ANE. В качестве дополнительного контрольного образца я использовал геном Malta1, т.к. он содержит в себе наивысшее содержание компонента ANE. Второй кластер был задан 4 индивидами Onge (одна из аборигенных народностей Андаманских островов). Как неоднократно указывалось в литературе, именно жители Андаманских островов являются самыми «чистыми» носителями т.н «южно-индийского» предкового компонента ASI (на континенте чистых носителей этого «компонента» не осталось, в том числе и среди популяций дравидов, ведда и мунда). После нескольких экспериментов по эвристическому методу проб и ошибок, я получил более или менее приемлимое разделение индивидов на 2 кластера, а затем вычислил частоты аллелей в каждом из этих кластеров. Любопытно, что в ходе опыта, удалось не только выделить компонент ANI, но и добиться неплохого уровня дискримнации между компонентом ANI, ANE, и благодаря этому, оба компонента могут быть включены в мой следующий этно-популяционный калькулятор.

Надежность компонентов я проверил на собственных данных. В рабочей модели калькулятора K14 удельное распределение этно-генографических компонентов моего генома выглядит следующим образом:

68.75% — европейский мезолитический компонент
13.12% — северо-евразийский компонент ANE
10.23% — европейский неолитический компонент
4% — ANI (северо-индийский предковый компонент)
1.6% — кавказский компонент
1.2% — алтайский компонент
0.2% — сибирский компонент

Затем я использовал 120 древних образцов аутосомной ДНК человека (начиная с верхнего палеолита до бронзового и железного веков) из последней работы и проработал их в бета-версии своего этно-популяционного калькулятора K14. Я надеялся выделить компонент ANE из ANI, но из таблицы видно, что это фактически один и тот же компонент

Когда я закончу полномерную импутацию всего набора данных от лаборатории Райха, я займусь проведением аналогичных экспериментов. А пока — примерно месяц назад я сообщил о начале первого этапа своего нового проекта. Согласно первоначальному замыслу, на первый этап — фазирование и импутация данных выборок из статей Haak et al .2015 (preprint) и Lazaridis et al. 2014 — я отводил месяц. Так оно и получилось.

В качестве затравки для импутирования я использовал набор 424329 снипов на 22 аутосомных хромосамх. Набор состоял из снипов, прошедших стандратный геномный контроль качества. Фазирование и импутация снипов я проводил с помощью пайплайна Molgenis.

По окончанию этого вычислительно-емкого процесса, мною был получен набор из примерно 5 миллионов снипов; после отсева не входящих в панели Illumina снипов у меня осталось 913841 снипов.

Ниже приведена похромосомная статистика снипов до и после импутации данных.
Как видно, на всех хромосомах (за исключением 19 и 20) количество снипов увеличилось примерно в два раза.

Для оценки качества импутации я сравнил импутированные генотипы своих данных с известными данными из своих сырых данных (снипы с иллюминовского чипсета 23andme) на предмет конкорданса (соответствия).
Оказалось, что у 6.5% импутированных генотипов оба варианта не совпадали с генотипам в rawdata от 23andme, у 17.33% — не совпадал один из двух вариантов. Таким образом, качество импутации составляет примерно 76.18%, что неплохо, учитывая что среднее значение качества импутации в программе IMPUTE v2 + SHAPEIT составляет примерно 69%.

11071088_10206257613949054_7906454924722989677_nChromosome Pre-imputation Post-imputation Percentage of imputed snps

1 36638 88155 41.56
2 40140 90003 44.60
3 33218 62030 53.55
4 23594 54462 43.32
5 19731 55284 35.69
6 27979 56485 49.53
7 22804 49172 46.38
8 23072 48756 47.32
9 19369 42438 45.64
10 25340 49666 51.02
11 23145 46434 49.84
12 16967 45668 37.15
13 14998 35626 42.10
14 15529 36429 42.63
15 14663 27844 52.66
16 15034 33806 44.47
17 7799 24949 31.26
18 11697 27709 42.21
19 7102 17715 40.09
20 12654 5054 -39.94
21 6495 2572 -39.60
22 6361 13584 46.83
424329 913841 36.74

Для проверки полезности полученного набора (объединенного набора «реальных» и импутированных снипов), я соединил его с 112 образцами человеческих палеогеномов из новой статьи Haak et al. 2015. Полученный таким образом набор я проанализировал методом выделения главных компонент, первые две из которых я впоследствии использовал для построения графика главных компонент. Как мне кажется, получилось красиво и правдоподобно.

Two first principal components

 

Через неделю работы в GoogleCloud, получил результаты второго цикла обработки (импутации и фазировки) палеогеномов. Напомню, задачей ставилось увеличение числа снипов палеогеномов до уровня, позволяющего проводить исследования с привлечением сторонних данных по современным человеческим популяциям (т.е не только по тем популяциям, которые включены в кураторский набор лаборатории Рейха, но и другим наборам, генотипированным на платформе Illumina; и что самое главное — с привлечением данных конкретных пользователей 23andme и FTDNA).

И если результатами первой части я был вполне доволен, то этого нельзя сказать о второй части. Теперь я понимаю, что ошибка содержалась в самом дизайне цикла второй части, в которой для импутации и фазирования использовались только реальные и «симуляционные» палеогеномы. В результате, хотя импутация и улучшила взаимное позиционирование палеогеномов в пространстве главных компонент генетического разнообразия, однако при слиянии импутированного в автономном режиме набора палеогеномов с набор полученным в первой части проекта, получилась картина. в которой палеогеномы образуют как бы параллельную субструктуру по отношению к современным популяциям.
Данное обстоятельство объясняется тем, что у древних геномов людей больше общего разнообразия между собой, чем с геномами современных людей (у которых в результате многочисленных генетических дрейфов и бутылочных горлышек большая часть разнообразия была потеряна). По этому причине, при независимой импутации древних геномов их сходство между собой только усилилось, а дистанция с современными популяциями увеличилась. Примечательно при этом, что пропорции вилкообразного разделения генетического разнообразия такие же, как и у современных людей.

На графике PCA эта ситуация прослеживается особенно хорошо, где отчетиливо видно наложение этих двух V-вилок друг на друга (см. нижний график)

Это означает одно — работу над проектом надо продолжить