ALDER анализ происхождения белорусов и поляков

В качестве одного из метода проверки надежности импутированных снипов для анализа популяционной истории различных этнических групп, я использовал метод ALDER (он представляет собой более продвинутую версию алгоритма ROLOFF, описанного в известной работе Patterson et al. 2012).

Метод ALDER  выявляет нюансы популяционной истории через оценку двух важных параметров: а) рекомбинации — процесса обмена участками между разными молекулами ДНК, который напоминает перемешивание игральных карт в колоде (у человека он обязательно происходит при образовании половых клеток) и б) неравновесия по сцеплению — явления, при котором несколько участков ДНК передаются вместе блоками, которые формируются несколько по-разному в разных популяциях из-за того, что в разных популяциях наследуются разные комбинации сегментов ДНК. Таким образом, метод основан на выявлении специфических для каждой популяции сцепленных участков ДНК и на оценке доли общих сегментов в выборках сравниваемых популяций. При этом метод ALDER на основе оценки неравновесия по сцеплению определяет правдоподобность того, что две выбранные группы являются предковыми по отношению к анализируемым популяциям. Кроме того, метод позволяет также установить время смешения через оценку доли рекомбинаций на поколение.
Как было сказано выше, метод ALDER представляет собой расширенный вариант алгоритма ROLLOFF.Этот метод позволяет производить математическую оценку как времени, так как и уровня адмикса. Оценка производится на основании анализа неравновесия по сцеплению между SNP-ами. Тут необходимо вспомнить стандартное определение неравновесия по сцеплению.Неравновесием по сцеплению (часто используется английская аббревиатура LD) называется неслучайная связь между двумя аллелями, в силу которой определенные комбинации аллелей встречаются наиболее часть. В теории,  чем дальше друг от друга находятся SNP-ы ,тем меньше будет уровень LD. Темп угасания снижения  LD в адмиксе напрямую связана с числом поколений, прошедших с момента адмикса,  так как c возрастанием числа поколений увлечивается число рекомбинаций произошедших между  двумя отдельными SNP-ами. Проще говоря: Rolloff соответствует экспоненциальной кривой угасания уровня LD от расстояния, и эта скорость экспоненциального снижения как раз и используется  для оценки числа поколений, так и уровня адмикса в анализируемой популяии. Учитывая, что одно поколение примерно равно 29 лет, можно преобразовать число поколений в года.В качестве двух тестовых популяций я использовал две группы — выборку белорусов (данные публичной коллекции эстонского биоцентра, вошедшие позднее в стандартный набор популяций лаборатории Райха, а также данные белорусов, собранные мной в проекте MDLP) и выборку поляков (из публичной коллекции эстонского биоцентра, а также данные поляков из выборки моего проекта MDLP).   В 2012 году я уже проводил анализ ROLLOFF белорусов, поэтому было интересно посмотреть, как изменится картина после добавления новых палеогеномов и импутированных (негенотипированных) снипов. Для полноты эксперимента, я также включил данные поляков, чтобы посмотреть, работает ли метод на данных, полученных с помощью других платформ генотипирования (NB:когда я проводил анализ, у меня еще не было данных поляков из кураторской базы данных лаборатории Reich).

В качественных референсных популяций (кандидатов в предковые популяции) я использовал набор из 400 популяций в моей расширенной выборки.  Программа работает в три этапа:

  • На первом этапе определяется статистическая значимость сравнения амплитуд угасания 2-референсной LD(в случае наличия такой значимость программа пишет success)

Cледующие комбинации дали положительный результат

Belarusian Andronovo.SG Chukchis
Belarusian Andronovo.SG Koryaks
Belarusian Armenian_Martuni Karelia_HG
Belarusian Bashkir Turkish_Jewish
Belarusian Nordic_LN.SG Villabruna
Belarusian Turkish_Jewish Uzbek
Belarusian Anatolia_Neolithic Brahui
Belarusian Anatolia_Neolithic Burusho
Belarusian Anatolia_Neolithic Itelmen
Belarusian Anatolia_Neolithic Koryak
Belarusian Anatolia_Neolithic Mixtec
Belarusian Anatolia_Neolithic Pathan
Belarusian Anatolia_Neolithic Mala
Belarusian Anatolia_Neolithic Turkmen
Belarusian Anatolia_Neolithic Uygur
Belarusian Druze Selkup
Belarusian Mala Syrian
Belarusian Mixtec Spain_EN
Belarusian Anatolia_Neolithic Brahui
Belarusian Anatolia_Neolithic Burusho
Belarusian Anatolia_Neolithic Chukchi
Belarusian Anatolia_Neolithic Selkup
Belarusian Anatolia_Neolithic Sindhi
Belarusian Anatolia_Neolithic Uygur
Belarusian British-Roman Koryak
Belarusian British-Roman Mixtec
Belarusian Chukchi Mala
Belarusian Itelmen Uzbek_WGA
Belarusian LBK_EN Selkup
Belarusian Selkup Turkish_Trabzon
Belarusian Abhkasian Lahu
Belarusian Ami_Coriell Uzbek_WGA
Belarusian Anatolia_Neolithic Chukchi
Belarusian Anatolia_Neolithic Daur
Anatolia_Neolithic Han
Anatolia_Neolithic Han_NChina
Anatolia_Neolithic Miao
Anatolia_Neolithic Turkmen
Belarusian Atayal_Coriell Uzbek_WGA
Belarusian British-Roman Mixtec
Belarusian Chukchi Mala
Belarusian Dai Greek_Islands
Belarusian Dai Uzbek_WGA
Belarusian Daur North_Ossetian
Belarusian Daur Uzbek_WGA
Belarusian Eskimo_Chaplin LBK_EN
Belarusian Georgian Lahu
Belarusian Georgian Yi
Belarusian Greek_Islands Han
Belarusian Greek_Islands Miao
Belarusian Greek_Islands Mixtec
Belarusian Greek_Islands Nganasan
Belarusian Greek_Islands Ulchi
Belarusian Greek_Islands Xibo
Belarusian Han Uzbek_WGA
Belarusian Han Yemenite_Jew
Belarusian Han_NChina Uzbek_WGA
Belarusian Han_NChina Yemenite_Jew
Belarusian Japanese Uzbek_WGA
Belarusian Korean Uzbek_WGA
Belarusian Lahu Turkish_Jew
Belarusian Lahu Uzbek_WGA
Belarusian Lahu Yemenite_Jew
Belarusian LBK_EN Selkup
Belarusian Miao Uzbek_WGA
Belarusian Miao Yemenite_Jew
Belarusian Naxi Uzbek_WGA
Belarusian Oroqen Uzbek_WGA
Belarusian She Uzbek_WGA
Belarusian Tu Uzbek_WGA
Belarusian Tujia Uzbek_WGA
Belarusian Tujia Yemenite_Jew
Belarusian Ulchi Uzbek_WGA
Belarusian Uzbek_WGA Xibo
Belarusian Uzbek_WGA Yi
Belarusian Uzbek_WGA Yukagir_Tundra
Belarusian Yemenite_Jew Yi
  • На втором — cоответствие скоростей угасания LD в попарном сравнении с референсными популяциями (программа выдает предупреждение, если амплитуды угасания LD несовместимы).  Как видно, большинство триплетов (таргетная популяция + 2 референса) имеет несовместимые амплитуды угасания LD.

DATA: success (warning: decay rates inconsistent) 0.028 Belarusian Andronovo.SG Chukchis 4.64 2.80 2.11 85% 244.96 +/- 44.45 0.00055485 +/- 0.00011964 262.22 +/- 50.30 0.00029724 +/- 0.00010632 105.99 +/- 50.22 0.00013405 +/- 0.00003707
DATA: success (warning: decay rates inconsistent) 3.8e-05 Belarusian Andronovo.SG Koryaks 5.86 2.80 2.36 85% 241.36 +/- 36.30 0.00059837 +/- 0.00010219 262.22 +/- 50.30 0.00029724 +/- 0.00010632 105.75 +/- 44.80 0.00011083 +/- 0.00002791
DATA: success (warning: decay rates inconsistent) 0.037 Belarusian Armenian_Martuni Karelia_HG 4.58 2.20 3.48 53% 206.14 +/- 39.11 0.00072944 +/- 0.00015918 324.91 +/- 90.64 0.00018302 +/- 0.00008311 189.01 +/- 42.42 0.00043186 +/- 0.00012423
DATA: success (warning: decay rates inconsistent) 0.044 Belarusian Bashkir Turkish_Jewish 4.55 2.70 2.53 83% 121.78 +/- 24.93 0.00009384 +/- 0.00002064 153.64 +/- 48.19 0.00006384 +/- 0.00002366 296.25 +/- 73.05 0.00014988 +/- 0.00005929
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Nordic_LN.SG Villabruna 4.54 2.19 5.01 30% 160.01 +/- 35.24 0.00086280 +/- 0.00018037 139.86 +/- 63.88 0.00033916 +/- 0.00014340 117.88 +/- 23.51 0.00043952 +/- 0.00008295
DATA: success (warning: decay rates inconsistent) 0.0032 Belarusian Turkish_Jewish Uzbek 5.07 2.53 2.35 112% 116.58 +/- 23.00 0.00008493 +/- 0.00001382 296.25 +/- 73.05 0.00014988 +/- 0.00005929 83.46 +/- 35.51 0.00004275 +/- 0.00001721
DATA: success (warning: decay rates inconsistent) 0.0066 Belarusian Anatolia_Neolithic Brahui 4.18 4.42 2.87 37% 63.78 +/- 15.17 0.00000803 +/- 0.00000192 92.46 +/- 19.49 0.00001427 +/- 0.00000323 88.94 +/- 27.82 0.00000775 +/- 0.00000270
DATA: success (warning: decay rates inconsistent) 0.019 Belarusian Anatolia_Neolithic Burusho 3.93 4.42 2.19 47% 93.43 +/- 9.05 0.00001536 +/- 0.00000390 92.46 +/- 19.49 0.00001427 +/- 0.00000323 149.25 +/- 37.02 0.00001357 +/- 0.00000621
DATA: success (warning: decay rates inconsistent) 0.035 Belarusian Anatolia_Neolithic Itelmen 3.79 4.42 2.15 64% 69.11 +/- 15.92 0.00002889 +/- 0.00000762 92.46 +/- 19.49 0.00001427 +/- 0.00000323 134.23 +/- 58.31 0.00003278 +/- 0.00001523
DATA: success (warning: decay rates inconsistent) 0.023 Belarusian Anatolia_Neolithic Koryak 3.90 4.42 2.30 30% 82.94 +/- 21.28 0.00003363 +/- 0.00000828 92.46 +/- 19.49 0.00001427 +/- 0.00000323 111.83 +/- 48.56 0.00002562 +/- 0.00000985
DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.90 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Mixtec 3.87 4.42 2.73 71% 71.36 +/- 14.69 0.00003027 +/- 0.00000782 92.46 +/- 19.49 0.00001427 +/- 0.00000323 149.36 +/- 43.83 0.00002944 +/- 0.00001080
DATA: success (warning: decay rates inconsistent) 0.019 Belarusian Anatolia_Neolithic Pathan 3.93 4.42 2.02 42% 104.78 +/- 14.08 0.00001497 +/- 0.00000380 92.46 +/- 19.49 0.00001427 +/- 0.00000323 141.03 +/- 36.42 0.00001165 +/- 0.00000577
DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success (warning: decay rates inconsistent) 0.026 Belarusian Anatolia_Neolithic Uygur 3.87 4.42 2.54 56% 71.95 +/- 14.95 0.00001528 +/- 0.00000395 92.46 +/- 19.49 0.00001427 +/- 0.00000323 127.39 +/- 37.67 0.00001541 +/- 0.00000606
DATA: success (warning: decay rates inconsistent) 0.02 Belarusian Druze Selkup 3.93 2.02 3.14 73% 51.53 +/- 13.06 0.00001224 +/- 0.00000311 110.46 +/- 43.38 0.00001040 +/- 0.00000516 59.53 +/- 18.98 0.00000945 +/- 0.00000299
DATA: success (warning: decay rates inconsistent) 0.044 Belarusian Mala Syrian 3.73 3.87 2.84 28% 72.39 +/- 19.33 0.00000805 +/- 0.00000216 87.55 +/- 18.75 0.00001071 +/- 0.00000277 96.31 +/- 27.52 0.00000993 +/- 0.00000350
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Mixtec Spain_EN 3.85 2.73 2.67 26% 114.65 +/- 21.37 0.00005462 +/- 0.00001417 149.36 +/- 43.83 0.00002944 +/- 0.00001080 117.07 +/- 30.31 0.00002193 +/- 0.00000820
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Anatolia_Neolithic Brahui 3.70 3.45 2.55 32% 63.07 +/- 15.18 0.00000871 +/- 0.00000235 81.39 +/- 21.48 0.00001207 +/- 0.00000349 87.19 +/- 27.66 0.00000771 +/- 0.00000303
DATA: success (warning: decay rates inconsistent) 0.039 Belarusian Anatolia_Neolithic Burusho 3.74 3.45 2.00 61% 89.47 +/- 10.12 0.00001582 +/- 0.00000423 81.39 +/- 21.48 0.00001207 +/- 0.00000349 152.62 +/- 45.80 0.00001482 +/- 0.00000742
DATA: success (warning: decay rates inconsistent) 0.0013 Belarusian Anatolia_Neolithic Chukchi 4.52 3.45 2.79 35% 77.64 +/- 16.37 0.00003602 +/- 0.00000797 81.39 +/- 21.48 0.00001207 +/- 0.00000349 110.36 +/- 39.54 0.00002861 +/- 0.00000981
DATA: success (warning: decay rates inconsistent) 0.038 Belarusian Anatolia_Neolithic Selkup 3.74 3.45 2.41 38% 55.27 +/- 13.63 0.00002155 +/- 0.00000576 81.39 +/- 21.48 0.00001207 +/- 0.00000349 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Anatolia_Neolithic Sindhi 3.83 3.45 2.68 61% 65.40 +/- 9.12 0.00001072 +/- 0.00000280 81.39 +/- 21.48 0.00001207 +/- 0.00000349 122.70 +/- 32.60 0.00001132 +/- 0.00000423
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.00000250 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Uygur 3.85 3.45 2.16 37% 70.37 +/- 13.51 0.00001582 +/- 0.00000411 81.39 +/- 21.48 0.00001207 +/- 0.00000349 102.34 +/- 33.39 0.00001107 +/- 0.00000512
DATA: success (warning: decay rates inconsistent) 0.021 Belarusian British-Roman Koryak 3.89 2.37 2.28 74% 62.36 +/- 16.01 0.00003903 +/- 0.00000934 52.03 +/- 19.63 0.00002305 +/- 0.00000974 113.23 +/- 49.75 0.00002665 +/- 0.00001027
DATA: success (warning: decay rates inconsistent) 0.0084 Belarusian British-Roman Mixtec 4.11 2.37 2.50 80% 64.78 +/- 15.52 0.00004703 +/- 0.00001145 52.03 +/- 19.63 0.00002305 +/- 0.00000974 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success (warning: decay rates inconsistent) 0.01 Belarusian Chukchi Mala 4.06 2.79 4.06 60% 172.83 +/- 30.55 0.00002691 +/- 0.00000663 110.36 +/- 39.54 0.00002861 +/- 0.00000981 93.18 +/- 21.71 0.00001222 +/- 0.00000301
DATA: success (warning: decay rates inconsistent) 0.047 Belarusian Itelmen Uzbek_WGA 3.69 2.36 2.20 54% 142.22 +/- 27.73 0.00006725 +/- 0.00001821 129.35 +/- 53.29 0.00003152 +/- 0.00001338 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.009 Belarusian LBK_EN Selkup 4.09 2.18 2.41 67% 67.83 +/- 16.58 0.00002655 +/- 0.00000641 115.11 +/- 38.65 0.00001960 +/- 0.00000899 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 0.05 Belarusian Selkup Turkish_Trabzon 3.68 2.41 2.11 32% 56.53 +/- 15.37 0.00001451 +/- 0.00000330 57.06 +/- 20.02 0.00000933 +/- 0.00000386 77.83 +/- 33.34 0.00000751 +/- 0.00000355
DATA: success (warning: decay rates inconsistent) 0.017 Belarusian Abhkasian Lahu 4.21 2.47 2.97 174% 32.04 +/- 6.68 0.00001002 +/- 0.00000238 3.95 +/- 1.60 0.00000098 +/- 0.00000024 57.34 +/- 19.33 0.00001384 +/- 0.00000369
DATA: success (warning: decay rates inconsistent) 0.00018 Belarusian Ami_Coriell Uzbek_WGA 5.15 2.09 2.20 63% 162.32 +/- 22.43 0.00007649 +/- 0.00001486 118.09 +/- 56.57 0.00002688 +/- 0.00001279 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0041 Belarusian Anatolia_Neolithic Chukchi 4.52 3.45 2.79 35% 77.64 +/- 16.37 0.00003602 +/- 0.00000797 81.39 +/- 21.48 0.00001207 +/- 0.00000349 110.36 +/- 39.54 0.00002861 +/- 0.00000981
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Daur 4.12 3.45 2.63 47% 73.39 +/- 17.81 0.00002378 +/- 0.00000569 81.39 +/- 21.48 0.00001207 +/- 0.00000349 118.84 +/- 40.98 0.00002486 +/- 0.00000947
DATA: success 0.05 Belarusian Anatolia_Neolithic Han 3.96 3.45 3.00 17% 79.39 +/- 18.74 0.00002687 +/- 0.00000678 81.39 +/- 21.48 0.00001207 +/- 0.00000349 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.00002310 +/- 0.00000644
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.20 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.00000250 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success (warning: decay rates inconsistent) 0.00046 Belarusian Atayal_Coriell Uzbek_WGA 4.97 2.02 2.20 53% 179.16 +/- 31.95 0.00008213 +/- 0.00001654 130.82 +/- 54.40 0.00002576 +/- 0.00001275 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian British-Roman Mixtec 4.11 2.37 2.50 80% 64.78 +/- 15.52 0.00004703 +/- 0.00001145 52.03 +/- 19.63 0.00002305 +/- 0.00000974 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success (warning: decay rates inconsistent) 0.033 Belarusian Chukchi Mala 4.06 2.79 4.06 60% 172.83 +/- 30.55 0.00002691 +/- 0.00000663 110.36 +/- 39.54 0.00002861 +/- 0.00000981 93.18 +/- 21.71 0.00001222 +/- 0.00000301
DATA: success (warning: decay rates inconsistent) 0.009 Belarusian Dai Greek_Islands 4.35 3.05 2.28 32% 122.32 +/- 24.18 0.00004797 +/- 0.00001103 88.71 +/- 29.04 0.00001846 +/- 0.00000511 102.11 +/- 26.83 0.00001569 +/- 0.00000687
DATA: success (warning: decay rates inconsistent) 0.049 Belarusian Dai Uzbek_WGA 3.97 3.05 2.20 87% 160.47 +/- 30.16 0.00006276 +/- 0.00001582 88.71 +/- 29.04 0.00001846 +/- 0.00000511 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0015 Belarusian Daur North_Ossetian 4.73 2.63 2.09 122% 42.94 +/- 8.92 0.00000724 +/- 0.00000153 118.84 +/- 40.98 0.00002486 +/- 0.00000947 178.58 +/- 51.90 0.00001887 +/- 0.00000901
DATA: success (warning: decay rates inconsistent) 0.047 Belarusian Daur Uzbek_WGA 3.97 2.63 2.20 62% 164.70 +/- 29.83 0.00008292 +/- 0.00002087 118.84 +/- 40.98 0.00002486 +/- 0.00000947 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.00086 Belarusian Eskimo_Chaplin LBK_EN 4.84 2.29 2.18 73% 53.65 +/- 11.08 0.00002657 +/- 0.00000479 63.81 +/- 27.89 0.00001618 +/- 0.00000586 115.11 +/- 38.65 0.00001960 +/- 0.00000899
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Georgian Lahu 4.10 2.89 2.97 166% 43.55 +/- 10.61 0.00001537 +/- 0.00000311 5.27 +/- 1.82 0.00000079 +/- 0.00000023 57.34 +/- 19.33 0.00001384 +/- 0.00000369
DATA: success (warning: decay rates inconsistent) 0.05 Belarusian Georgian Yi 3.96 2.89 3.26 179% 35.28 +/- 8.91 0.00000897 +/- 0.00000226 5.27 +/- 1.82 0.00000079 +/- 0.00000023 93.65 +/- 25.60 0.00002033 +/- 0.00000624
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3.00 15% 108.92 +/- 26.70 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.50 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.20 2.28 3.37 15% 118.40 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.90 0.00002845 +/- 0.00000805
DATA: success (warning: decay rates inconsistent) 0.042 Belarusian Greek_Islands Xibo 4.00 2.28 2.59 37% 101.05 +/- 22.65 0.00003689 +/- 0.00000922 102.11 +/- 26.83 0.00001569 +/- 0.00000687 70.25 +/- 27.10 0.00001649 +/- 0.00000507
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success (warning: decay rates inconsistent) 1.8e-05 Belarusian Han Uzbek_WGA 5.56 3.00 2.20 83% 145.83 +/- 21.23 0.00006518 +/- 0.00001171 93.68 +/- 31.25 0.00002137 +/- 0.00000623 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.023 Belarusian Han Yemenite_Jew 4.14 3.00 2.19 41% 101.08 +/- 19.78 0.00002665 +/- 0.00000644 93.68 +/- 31.25 0.00002137 +/- 0.00000623 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.00017 Belarusian Han_NChina Uzbek_WGA 5.15 3.58 2.20 76% 147.58 +/- 21.48 0.00006493 +/- 0.00001261 101.71 +/- 28.43 0.00002310 +/- 0.00000644 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.021 Belarusian Han_NChina Yemenite_Jew 4.16 3.58 2.19 47% 88.25 +/- 14.91 0.00002464 +/- 0.00000593 101.71 +/- 28.43 0.00002310 +/- 0.00000644 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Japanese Uzbek_WGA 3.99 2.51 2.20 76% 158.76 +/- 32.98 0.00007182 +/- 0.00001802 101.02 +/- 40.27 0.00002259 +/- 0.00000766 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.034 Belarusian Korean Uzbek_WGA 4.05 3.28 2.20 72% 147.50 +/- 22.94 0.00006552 +/- 0.00001618 106.54 +/- 29.46 0.00002451 +/- 0.00000748 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0022 Belarusian Lahu Turkish_Jew 4.65 2.97 3.22 53% 53.69 +/- 9.97 0.00001763 +/- 0.00000379 57.34 +/- 19.33 0.00001384 +/- 0.00000369 92.56 +/- 21.52 0.00000780 +/- 0.00000242
DATA: success (warning: decay rates inconsistent) 7.8e-06 Belarusian Lahu Uzbek_WGA 5.70 2.97 2.20 119% 125.65 +/- 17.75 0.00006183 +/- 0.00001084 57.34 +/- 19.33 0.00001384 +/- 0.00000369 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.028 Belarusian Lahu Yemenite_Jew 4.10 2.97 2.19 85% 73.51 +/- 17.32 0.00002186 +/- 0.00000534 57.34 +/- 19.33 0.00001384 +/- 0.00000369 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.029 Belarusian LBK_EN Selkup 4.09 2.18 2.41 67% 67.83 +/- 16.58 0.00002655 +/- 0.00000641 115.11 +/- 38.65 0.00001960 +/- 0.00000899 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 3e-05 Belarusian Miao Uzbek_WGA 5.47 3.63 2.20 89% 141.79 +/- 17.01 0.00005964 +/- 0.00001090 86.31 +/- 23.79 0.00001726 +/- 0.00000411 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.012 Belarusian Miao Yemenite_Jew 4.29 3.63 2.19 49% 96.51 +/- 17.73 0.00002466 +/- 0.00000575 86.31 +/- 23.79 0.00001726 +/- 0.00000411 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.036 Belarusian Naxi Uzbek_WGA 4.04 2.35 2.20 87% 150.57 +/- 27.26 0.00006598 +/- 0.00001633 88.34 +/- 37.62 0.00001891 +/- 0.00000714 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0037 Belarusian Oroqen Uzbek_WGA 4.54 2.50 2.20 75% 159.87 +/- 26.32 0.00007776 +/- 0.00001713 102.18 +/- 40.85 0.00002369 +/- 0.00000834 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.043 Belarusian She Uzbek_WGA 3.99 3.16 2.20 70% 177.32 +/- 34.01 0.00008208 +/- 0.00002055 108.68 +/- 31.62 0.00002238 +/- 0.00000708 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.029 Belarusian Tu Uzbek_WGA 4.09 2.28 2.20 85% 150.44 +/- 31.12 0.00006074 +/- 0.00001485 91.29 +/- 40.04 0.00001929 +/- 0.00000802 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.001 Belarusian Tujia Uzbek_WGA 4.80 2.09 2.20 61% 164.13 +/- 25.59 0.00008133 +/- 0.00001693 120.48 +/- 57.69 0.00002290 +/- 0.00001057 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.00002290 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.0053 Belarusian Ulchi Uzbek_WGA 4.47 3.37 2.20 65% 153.49 +/- 25.35 0.00007000 +/- 0.00001567 114.38 +/- 33.90 0.00002845 +/- 0.00000805 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.00055 Belarusian Uzbek_WGA Xibo 4.93 2.20 2.59 105% 129.90 +/- 24.58 0.00005579 +/- 0.00001132 225.56 +/- 61.89 0.00007507 +/- 0.00003406 70.25 +/- 27.10 0.00001649 +/- 0.00000507
DATA: success (warning: decay rates inconsistent) 0.00062 Belarusian Uzbek_WGA Yi 4.91 2.20 3.26 83% 156.22 +/- 22.94 0.00007252 +/- 0.00001478 225.56 +/- 61.89 0.00007507 +/- 0.00003406 93.65 +/- 25.60 0.00002033 +/- 0.00000624
DATA: success (warning: decay rates inconsistent) 0.011 Belarusian Uzbek_WGA Yukagir_Tundra 4.31 2.20 2.55 61% 182.09 +/- 32.35 0.00008497 +/- 0.00001970 225.56 +/- 61.89 0.00007507 +/- 0.00003406 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success (warning: decay rates inconsistent) 0.048 Belarusian Yemenite_Jew Yi 3.97 2.19 3.26 41% 130.87 +/- 22.50 0.00003478 +/- 0.00000876 142.22 +/- 61.15 0.00001902 +/- 0.00000870 93.65 +/- 25.60 0.00002033 +/- 0.00000624

После отсеивания не очень пригодных для дальнейшего анализа триплетов  у нас осталась следующие комбинации:

DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.9 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.05 Belarusian Anatolia_Neolithic Han 3.96 3.45 3 17% 79.39 +/- 18.74 0.00002687 +/- 0.00000678 81.39 +/- 21.48 0.00001207 +/- 0.00000349 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.0000231 +/- 0.00000644
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.2 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3 15% 108.92 +/- 26.7 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.5 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.2 2.28 3.37 15% 118.4 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.9 0.00002845 +/- 0.00000805
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.0000229 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.0000087

На третьем этапе программа определяет статистическая значимость комбинации (p-статистику):

P-значение (англ. P-value) — величина, используемая при тестировании статистических гипотез. Фактически это вероятность ошибки при отклонении нулевой гипотезы (ошибки первого рода). Проверка гипотез с помощью P-значения является альтернативой классической процедуре проверки через критическое значение распределения.

Обычно P-значение равно вероятности того, что случайная величина с данным распределением (распределением тестовой статистики при нулевой гипотезе) примет значение, не меньшее, чем фактическое значение тестовой статистики.

Отберем значения P меньше 0.05

DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.0000231 +/- 0.00000644
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.5 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.9 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.2 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.2 2.28 3.37 15% 118.4 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.9 0.00002845 +/- 0.00000805
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.0000229 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.0000087
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3 15% 108.92 +/- 26.7 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623

Получаем следующие пары (с датировкой адмикса в поколениях и годах)

Таргет Референс 1 Референс 2 Поколения Погрешность Года Погрешность
Belarusian Anatolia_Neolithic Turkmen 85.64 +/- 28.96 2483.56 +/- 839.84
Belarusian Anatolia_Neolithic Turkmen 72.89 +/- 23.73 2113.81 +/- 688.17
Belarusian Anatolia_Neolithic Han_NChina 101.71 +/- 28.43 2949.59 +/- 824.47
Belarusian Anatolia_Neolithic Turkmen 72.89 +/- 23.73 2113.81 +/- 688.17
Belarusian Greek_Islands Mixtec 121.19 +/- 40.18 3514.51 +/- 1165.22
Belarusian Greek_Islands Yukagir_Tundra 119.62 +/- 45.23 3468.98 +/- 1311.67
Belarusian Anatolia_Neolithic Mala 87.55 +/- 18.75 2538.95 +/- 543.75
Belarusian Anatolia_Neolithic Miao 86.31 +/- 23.79 2502.99 +/- 689.91
Belarusian Greek_Islands Ulchi 114.38 +/- 33.9 3317.02 +/- 983.1
Belarusian Tujia Yemenite_Jew 142.22 +/- 61.15 4124.38 +/- 1773.35
Belarusian Greek_Islands Miao 86.31 +/- 23.79 2502.99 +/- 689.91
Belarusian Greek_Islands Nganasan 97.92 +/- 45.95 2839.68 +/- 1332.55
Belarusian Greek_Islands Han 93.68 +/- 31.25 2716.72 +/- 906.25
Belarusian Anatolia_Neolithic Han 93.68 +/- 31.25 2716.72 +/- 906.25

О чем свидетельствует результаты? Результаты указывают на наличие сигнала смешивания предковых популяций белорусов с неолитическими земледельцами (ближневосточные популяции и популяции ближнего Востока здесь выступают в качестве суррогата неолитических популяций), и с рядом восточноазиатских, сибирских и америндских популяций (здесь они выступают в качестве суррогата сибирского вклада в генофонд восточной Европы) cо средним интервалом смешения примерно 2850 +- 950 лет назад, т.е в период бронзового века.

Ниже приведены графики угасания LD в комбинации Anatolian-Neolithic + Mala

Затем я уменьшил масштаб подгонки (fitting) кривых угасания LD до 0.5 сантиморганид и взял в качестве референса  палеогеномы с хорошим покрытием

Эксперимент с Loschbour + Stuttgart оказался неудачным.

Более правдоподобна комбинация андроновцев (Andronovo) и чукчей (дата адмикса — 125+-60 поколений тому назад)

Вторая попытка подгонки референсных популяций Loschbour и Stuttgart в качестве предковых групп оказался более удачным (дата адмикса — приблизительно 445 +- 56 поколений тому назад, времена энеолита)

Адмикс с сибирскими палеопопуляциями (MA1) примерно в два раза «моложе» (258 +- 42 поколения, бронзовый век)

Еще один вариант адмикса между палеолитическими жителями Европы и MA1 (датировка — 393 +- 75 поколений)

Теперь о поляках. К сожалению, результаты оказались гораздо более зашумленными, так как использовались данные генотипирования на платформе Illumina, имеющей меньшее пересечение снипов со снипами платформы Affymetrix HumanOrigins. Несмотря на это, программа ALDER нашла три комбинации, пусть и с несовместимой амплитудой угасания LD.

DATA: success (warning: decay rates inconsistent) 0.011 Pole Eskimo_Sireniki Irish-BA 3.87 2.01 2.53 40% 146.66 +/- 27.30 0.00035747 +/- 0.00009228 161.51 +/- 69.51 0.00013202 +/- 0.00006577 107.56 +/- 33.31 0.00015435 +/- 0.00006109
DATA: success (warning: decay rates inconsistent) 0.0068 Pole Eskimo_Sireniki Remedello_BA.SG 3.99 2.01 2.57 49% 110.88 +/- 21.02 0.00024049 +/- 0.00006022 161.51 +/- 69.51 0.00013202 +/- 0.00006577 182.60 +/- 39.99 0.00014922 +/- 0.00005796
DATA: success (warning: decay rates inconsistent) 0.035 Pole Eskimo_Chaplin Remedello_BA.SG 3.59 2.51 2.57 56% 102.38 +/- 21.46 0.00022199 +/- 0.00006181 126.26 +/- 42.96 0.00009643 +/- 0.00003846 182.60 +/- 39.99 0.00014922 +/- 0.00005796

Здесь тоже виден слабый сигнал адмикса популяций бронзового века из Западной Европы (Remedello и ирландского бронзового века) c америндскими популяциями.

Впрочем, дополнительный анализ в программе ROLLOFF (с уменьшенным масштабом подгонки — fitting) выдал правдоподобные (c низким значением P) варианты. Например, вариант Bichon + Georgian_Kakheti: 151.41 +/-38.18, p= 4.7e-06

Очень хорошим вариантом оказался вариант адмикса Esperstedt_MN-Halberstadt_LBA: (дата адмикса — 163.80 +/- 34.11), p=4.8e-07

Реклама

Охотники-собиратели Кавказа и южный генетический полюс ямников

Сергей Козлов

Охотники-собиратели Кавказа и южный генетический полюс ямников.

За прошедший год в научный оборот было введено множество палеогеномов из Европы и евразийской степи. Было доказано, что в западной части Европы произошло как минимум два резких смещения аутосомного ландшафта — сначала на палеоевропейские охотники-собиратели были замещены пришедшими из Анатолии неолитическими земледельцами (впрочем, часть их генофонда все же сохранилась), а впоследствии уже земледельцы оказались сильно потеснены новыми пришельцами, генетически схожими с представителями ямной КИО. Их след хорошо выделяется в современной Европе — во-первых, это относительно недавно обнаруженный, но ставший широко известным среди интересующихся геногеографией компонент ANE, во-вторых же, «загадочный» южный компонент ямников.

Авторы первой из опубликованных работ по аутосомам ямников смоделировали их, как смесь ~50 на 50 мезолитических восточноевропейских охотников-собирателей (EHG) и современных армян (впрочем, еще лучше на эту роль подошли иракские евреи, но их решили пропустить). Эта модель сразу вызвала во мне отрицательное отношение, поскольку у армян хорошо представлен аутосомный компонент неолитических земледельцев, а у ямников он не обнаружен в сколь-нибудь значимых количествах. Таким образом, модель изначально была неверна, но, к сожалению, была растиражирована еще до выхода статьи в свет (благодаря «утечкам» от авторов) и завладела многими умами. Постепенно вокруг слова «армянский» даже перестали ставить кавычки ))

К счастью, над палеогеномами работает целый ряд команд ученых и одна из них решила обратить внимание не только на северные палеообразцы, но и на остававшиеся долгое время в пренебрежении южные. Первой ласточкой стали два охотника-собирателя, жившие (согласно радиоуглеродной оценке) 9 и 13 тысяч лет назад на территории нынешней Грузии. В запаснике у этой команды еще немало могущих представлять интерес образцов древней ДНК, поэтому ждем дальнейших работ.

В качестве основного был использован более поздний из двух образцов, найденный в пещере Kotias. Он прочитан с весьма хорошим для палеогенома качеством (что позволило мне использовать его для подсчета IBD-сегментов). Моделирование показало, что в качестве «южного полюса» генофонда ямников кавказские охотники-собиратели (для них авторы статьи ввели новое сокращенное название — CHG) подходят намного лучше, чем любая из современных выборок:

CHGF3Stat

Это и неудивительно — ведь доминирующим аутосомным компонентом в предпочитаемом мной калькуляторе MDLP K27 у Kotias является Gedrosia-Caucasian, о котором я уже писал:

Однако с точки зрения предковых компонентов Admixture такая модель — далеко не лучший вариант, «южный» ямный компонент скорее связывается с чем-то в промежутке между Восточным Кавказом и Средней Азией. Как и предполагалось, он коррелирует с бимодальным компонентом, условно называемым Gedrosia. Исходя из современных максимумов, его исторический центр находится где-то в южном Прикаспии, возможно, восточнее. Судя по всему, он представляет собой результат смешения «ближневосточного» компонента ENF и ANE, поэтому теоретически исторического центра может и вообще не быть.

Как выяснилось, девять тысячелетий назад этот компонент преобладал и в более западных районах. Что ж, это делает его только еще более подходящим.

Результаты Kotias в K27:

0.42%   Nilotic-Omotic
  2.22% Ancestral-South-Ind.
  3.66% North-European-Balt.
  0.00% Uralic
  0.01% Australo-Melanesian
  1.79% East-Siberian
  0.00% Ancestral-Yayoi
30.28%   Caucasian-Near-East.
  0.00% Tibeto-Burman
  0.00% Austronesian
  0.00% Central-African-Pygm
  1.05% Central-African-HG
  3.66% Nilo-Saharian
  0.00% North-African
52.04%   Gedrosia-Caucasian
  0.00% Cushitic
  0.00% Congo-Pygmean
  1.73% Bushmen
  0.00% South-Meso-Amerind.
  0.00% South-West-European
  0.00% North-Amerindian
  0.00% Arabic
  0.01% North-Circumpolar
  3.13% Kalash
  0.00% Papuan-Australian
  0.00% Baltic-Finnic
  0.00% Bantu

Карта сумм IBD-сегментов Kotias с образцами из современных выборок:

KotiasSnpc-100IBDext

Лидерами по сумме сегментов оказались грузины (приведен список первых 25 результатов):

Georgian 71,79
Abkhazian 70,75
Lezgin 68,27
Greek_Azov 67,15
Balkarian 65,02
Kurd 64,38
Ossetian 62,66
Armenian 61,98
Nogay 60,38
Bosnian 60,23
Slovenian 60,02
Chechen 59,07
Adygei 58,39
Cypriot 58,28
Turkish 55,86
Kosovar 54,64
Ukrainian-West-and-Center 54,17
Bulgarian 53,21
Slovak 53,01
Cornish 52,46
Croatian 52,21
Kumyk 51,96
Makrani 51,91
Syrian 51,78
Greek 51,68

Что ж, можно их поздравить с генетической преемственностью на протяжении десятка тысячелетий. Однако по пропорциям компонентов Admixture грузины и абхазы довольно заметно отличаются от Kotias:

Abkhasian_S3 Georgian_Kaheti_R2 Georgian_West_R4 Svan_R3
Nilotic-Omotic 0,24 0,00 0,52 0,06
Ancestral-South-Indian 0,75 0,92 0,44 0,31
North-European-Baltic 8,58 5,60 6,87 6,93
Uralic 2,17 1,69 0,72 2,34
Australo-Melanesian 0,27 0,07 0,59 0,42
East-Siberean 1,20 0,00 0,20 0,42
Ancestral-Yayoi 0,72 0,00 0,00 0,44
Caucasian-Near-Eastern 40,79 41,08 45,61 42,85
Tibeto-Burman 0,00 1,09 0,12 0,38
Austronesian 0,72 0,20 0,00 0,23
Central-African-Pygmean 0,05 0,06 0,20 0,00
Central-African-Hunter-Gatherers 0,22 0,15 0,29 0,18
Nilo-Saharian 0,55 0,01 0,02 0,15
North-African 0,50 1,17 0,90 0,31
Gedrosia-Caucasian 32,01 31,65 33,18 35,31
Cushitic 1,17 1,56 0,31 0,42
Congo-Pygmean 0,00 0,25 0,18 0,35
Bushmen 0,04 0,00 0,00 0,00
South-Meso-Amerindian 0,27 0,04 0,14 0,12
South-West-European 2,68 5,06 2,73 1,91
North-Amerindian 0,13 0,04 0,13 0,23
Arabic 2,42 6,83 3,56 3,72
North-Circumpolar 0,47 0,09 0,99 0,41
Kalash 2,38 2,33 1,66 1,77
Papuan-Australian 0,42 0,11 0,33 0,32
Baltic-Finnic 1,25 0,00 0,20 0,14
Bantu 0,00 0,00 0,11 0,28

Как видно, компонент Gedrosia-Caucasian у них стал заметно ниже, а более западные и южные Caucasian-Near-Eastern, Arabic, South-West-European — выросли. Вырос и «северный» North-European Baltic. Думаю, что это связано с миграциями в регион новых групп, что несколько размыло изначальный генофонд. Поэтому современные грузины подошли на роль «южного компонента» в меньшей степени по сравнению с Kotias, и древние CHG выглядят на генетической карте более «восточными» (почему я и помещал этот компонент где-то в Прикаспии).

Кроме Кавказа, вызывает интерес явная связь CHG с рядом балканских популяций (и примыкающей к ним правобережной украинской выборке) — вероятно, это неспроста. Причем направление миграций здесь, очевидно, именно от CHG либо их родственников к балканцам.

Думаю, что сами CHG могут быть смоделированы, как смесь ближневосточников и носителей ANE откуда-то с родины компонента Gedrosia. Например, в калькуляторе ANE K7 Kotias получается таким (как обычно, «Африка» отображает архаику палеогеномов):

31.10%   ANE
  5.36% ASE
  0.01% WHG-UHG
  0.00% East_Eurasian
  2.47% West_African
  1.50% East_African
59.56%   ENF

Однако же никаких связей с Сибирью на карте IBD-сегментов он не проявляет. Таким образом, вновь встает вопрос о «южном» и «северном» вариантах ANE. Методами Admixture разделить его пока не удалось (если говорить о «чистом» ANE а не более новых компонентах, куда он входит составной частью). Возможно, он сам по себе является композитом — результатом смеси охотников северной Евразии и пришельцев с юга? Тогда у Kotias проявляется лишь его южная часть. Во всяком случае, мы можем выделить этот «восточный» компонент Kotias  в том числе и методом IBD-анализа, рассмотрев его разность с европейскими неолитическими земледельцами (EEF), выступающими здесь «прокси» ближневосточного компонента:

CHGMinusEEFIBDext

Результат прекрасно совпадает с распределением компонента Gedrosia-Caucasian — один из пиков оказался в Дагестане (лезгины), второй — рядом с исторической Гедрозией. Можно поздравить Вадима Веренича с удачным калькулятором. Любопытно, что соседи лезгинов по Восточному Кавказу — чеченцы и кумыки не оказались ярко выделенными, несмотря на немногим уступающую лезгинам долю ANE. Зато они выделяются у ямников и оленеостровца EHG. Возникает предположение, что либо эти народы в наибольшей степени испытали «ямное» влияние, либо «южный компонент» ямников наиболее связан с ними, либо их ANE относится к чуть другой веточке по сравнению с Kotias, более близкой к ямной. Во всяком случае. здесь есть, над чем подумать.

Теперь сравним Kotias с самими ямными геномами:

CHGMinusYamnayaIBDext

Как видите, связь с ямниками у выборок из Северной Европы и Поволжья-Урала очень сильна по сравнению со связью с CHG. Думаю, что основное объяснение этому — отсутствие у Kotias компонентов WHG и «северного» ANE. Они занимают основную часть как генофонда европейцев, так и ямников. Более интересна ситуация в Азии — в Средней Азии сильнее связь с ямниками, далее при движении на юг, к Индийскому океану, постепенно идет выравнивание в пользу CHG (возможно, это говорит о том, что ямное влияние сокращается и мы видим более «фоновое» родство) и на самом дальнем юге возвращается равновесие (эти популяции уже мало связаны как с ямниками, так и с CHG). «Ямный язык», вдающийся в Китай через алтайцев, уйгуров и Ту — не след ли это тоже индоевропейской миграции? Хотя это может быть и совпадением.

Что касается родного для Kotias Кавказа, то если на западе связь с ним очень сильна, к северо-востоку, как уже писалось, «ямное» влияние нарастает.

Некоторый интерес представляет и сравнение охотников-собирателей Кавказа с уже не раз упоминавшимися в этой заметке западноевразийскими охотниками-собирателями (WHG):

CHGMinusWHGIBDext

Поскольку WHG входит составной частью в генофонд неолитических земледельцев Европы (EEF), то «ближневосточное» влияние в Южной Европе, связанное с их миграциями, частично отфильтруется. Например, считающиеся наиболее схожими с EEF среди наших современников жители острова Сардиния здесь ярко-зеленые. Можно сделать вывод, что на Балканах и в южной Италии влияние CHG довольно серьезно (что мы и видели на первой карте). Хотя из-за влияния «чистого» WHG повсюду в Европе делать точные оценки сложно.

В заключение можно подытожить, что расшифровка геномов охотников-собирателей Кавказа является очередным, и достаточно заметным, шагом в деле восстановления доисторических миграций и формирования современной генетической картины в Евразии.

 

Еще раз о палеогеномах европейцев (к работе Haak et. al. 2015)

Еще когда появились первые анонсы препринта статьи Haak et al. 2015,  можно было сделать интуитивные предположения о том, что использованные в работе образцы палеогеномов будут всесторонне изучены не только авторами статьи, но и многочисленными любителями, причем ожидаемая степень детализации полученной картины генетического разнообразия  будет предположительно выше именно у последних (т.е всевозможных геномнных блоггеров).

Так оно и вышло. Давид Веселовский из Eurogenes провел целый ряд экспериментов с объединенным базовым набром «геномов» современных популяций и так называемых древних геномов.  В частности, в одном из своих анализов он задействовал новую программу qpAdm из последней версии пакета Admixtools,  и в ходе пробного моделирования геномов представителей ямной культуры из самарской культуры был наилучшая аппроксимация (fit, подгонка) была получена в комбинации  51.4% генома  охотников-собирателей Самары и  48.6 современных грузин (STD 0,032, chisq 3,890, р-value 2.20661e-22). Образцы палеогеномов представителей  шнуровой керамики могут быть в свою очередь смоделированы как 73% геномов ямников + 27% палеогеномов Esperstedt_MN (STD 0,060, chisq 2,621, р-value 9.74968e-06).

Это интересный результат, главным образом потому данные лингвистики позволяют предположить, что ранние индоевропейцы — по-видимому, кочевники ямной культуры или их предки — были в тесном контакте с прото-картвельскими популяциями.  Похожий результат был получен авторами статьи (у которых представители ямной культуры выступали как 50% -50% смесь геномов карельских охотников-собирателей и армян), а также в моих экспериментах, в которых геномы современных белорусов были представлены  гибридной моделью  современных геномов армян и палегеномов шведских охотников-собирателей Motala.

Впрочем, я согласен с Веселовским — главная проблема с подобными ретроспективными анализами заключается в том, что про причине отсутствия большого количества достоверных древних палеогеномов, популяционные генетики часто вынуждены моделировать древние популяции посредством комбинаций современных популяций. Как отмечает Веселовский, в генофонде современных грузин присутствует (по его оценке) 20% так называемого ANE-компонента, который, вероятно, прибыл на Кавказ из Евразийской степи. Если это так, то алгоритм qpAdm  может переоценить «кавказский» компонент в геномах ямников, по крайней мере, на 10%.

В другом своем анализе Веселовский уделил особое внимание  проблеме происхождения одного из основных компонентов в геноме древних ямников. Так например, анализ Admixture в Haak et al. 2015 включает в себя ряд интригующих компонентов с К = 16 до К = 20, которые, как правило составляют более 40% от генетической структуры потенциально прото-индо-европейских геномов ямников. Веселовский выделил компонент сигнализирующий этот тип «адмикса» и подробно изучил его. Заслуживает внимание тот факт, что компонент достигает своего пика на Кавказе и в горах Гиндукуша, и в целом показывает сильную корреляцию с регионами относительно высокой частоты связанных с палеогеномом MA1  компонентами происхождения (ANE). С другой стороны, другой компонент ямников достигает пиковых значений у  ранних европейских фермеров (EEF), у которых отсутствует компоент ANE.

Выделенные Веселовским 3 основные компоненты-составляющие геномов ямников были преобразованы в синтетические популяции (центрально-азиатская, европейская и неолитическая европейская), которые в свою очередь использовались в качестве подмножества для вычисления векторов загрузки (loadings) в PCA анализе полного набора современных популяций.

https://drive.google.com/file/d/0B9o3EYTdM8lQak82NFVYSUJfWGc/preview

Очевидно, более детальный расклад и анализ вклада различных компонентов геномов палеоевропейцев в геном современных жителей Европы можно найти в подробном анализе Сергея Козлова  «Палеоевропейцы из работы Haak et al, 2015 в свете анализа на IBD-сегменты«.

Как я уже упоминал ранее, мой опыт с «выведением» предкового аутосомного компонента индоевропейцев (обозначенного в статье Lazaridis et al. 2013 сокращением ANE) полностью удался. Поскольку всем очевидно, что этот компонент родственен «североиндийскому предковому компоненту» (ANI — обозначение из статьи Reich et al. 2009 и Moorjani et al 2011) о структуре генофонда индийских этнических групп), я взял 10 индийских этнических групп, имеющихся в кураторском наборе лаборатории Райха и проанализировал эту выборку в Admixture на пропорции вхождения их геномов в 2 априорно заданные кластеры. Первый кластер ANE был априорно задан 40 синтетическим индивидами, сгенерированными в программе Plink на основании расчитанных ранее частот аллелей «чистого» компонента ANE. В качестве дополнительного контрольного образца я использовал геном Malta1, т.к. он содержит в себе наивысшее содержание компонента ANE. Второй кластер был задан 4 индивидами Onge (одна из аборигенных народностей Андаманских островов). Как неоднократно указывалось в литературе, именно жители Андаманских островов являются самыми «чистыми» носителями т.н «южно-индийского» предкового компонента ASI (на континенте чистых носителей этого «компонента» не осталось, в том числе и среди популяций дравидов, ведда и мунда). После нескольких экспериментов по эвристическому методу проб и ошибок, я получил более или менее приемлимое разделение индивидов на 2 кластера, а затем вычислил частоты аллелей в каждом из этих кластеров. Любопытно, что в ходе опыта, удалось не только выделить компонент ANI, но и добиться неплохого уровня дискримнации между компонентом ANI, ANE, и благодаря этому, оба компонента могут быть включены в мой следующий этно-популяционный калькулятор.

Надежность компонентов я проверил на собственных данных. В рабочей модели калькулятора K14 удельное распределение этно-генографических компонентов моего генома выглядит следующим образом:

68.75% — европейский мезолитический компонент
13.12% — северо-евразийский компонент ANE
10.23% — европейский неолитический компонент
4% — ANI (северо-индийский предковый компонент)
1.6% — кавказский компонент
1.2% — алтайский компонент
0.2% — сибирский компонент

Затем я использовал 120 древних образцов аутосомной ДНК человека (начиная с верхнего палеолита до бронзового и железного веков) из последней работы и проработал их в бета-версии своего этно-популяционного калькулятора K14. Я надеялся выделить компонент ANE из ANI, но из таблицы видно, что это фактически один и тот же компонент

Когда я закончу полномерную импутацию всего набора данных от лаборатории Райха, я займусь проведением аналогичных экспериментов. А пока — примерно месяц назад я сообщил о начале первого этапа своего нового проекта. Согласно первоначальному замыслу, на первый этап — фазирование и импутация данных выборок из статей Haak et al .2015 (preprint) и Lazaridis et al. 2014 — я отводил месяц. Так оно и получилось.

В качестве затравки для импутирования я использовал набор 424329 снипов на 22 аутосомных хромосамх. Набор состоял из снипов, прошедших стандратный геномный контроль качества. Фазирование и импутация снипов я проводил с помощью пайплайна Molgenis.

По окончанию этого вычислительно-емкого процесса, мною был получен набор из примерно 5 миллионов снипов; после отсева не входящих в панели Illumina снипов у меня осталось 913841 снипов.

Ниже приведена похромосомная статистика снипов до и после импутации данных.
Как видно, на всех хромосомах (за исключением 19 и 20) количество снипов увеличилось примерно в два раза.

Для оценки качества импутации я сравнил импутированные генотипы своих данных с известными данными из своих сырых данных (снипы с иллюминовского чипсета 23andme) на предмет конкорданса (соответствия).
Оказалось, что у 6.5% импутированных генотипов оба варианта не совпадали с генотипам в rawdata от 23andme, у 17.33% — не совпадал один из двух вариантов. Таким образом, качество импутации составляет примерно 76.18%, что неплохо, учитывая что среднее значение качества импутации в программе IMPUTE v2 + SHAPEIT составляет примерно 69%.

11071088_10206257613949054_7906454924722989677_nChromosome Pre-imputation Post-imputation Percentage of imputed snps

1 36638 88155 41.56
2 40140 90003 44.60
3 33218 62030 53.55
4 23594 54462 43.32
5 19731 55284 35.69
6 27979 56485 49.53
7 22804 49172 46.38
8 23072 48756 47.32
9 19369 42438 45.64
10 25340 49666 51.02
11 23145 46434 49.84
12 16967 45668 37.15
13 14998 35626 42.10
14 15529 36429 42.63
15 14663 27844 52.66
16 15034 33806 44.47
17 7799 24949 31.26
18 11697 27709 42.21
19 7102 17715 40.09
20 12654 5054 -39.94
21 6495 2572 -39.60
22 6361 13584 46.83
424329 913841 36.74

Для проверки полезности полученного набора (объединенного набора «реальных» и импутированных снипов), я соединил его с 112 образцами человеческих палеогеномов из новой статьи Haak et al. 2015. Полученный таким образом набор я проанализировал методом выделения главных компонент, первые две из которых я впоследствии использовал для построения графика главных компонент. Как мне кажется, получилось красиво и правдоподобно.

Two first principal components

 

Через неделю работы в GoogleCloud, получил результаты второго цикла обработки (импутации и фазировки) палеогеномов. Напомню, задачей ставилось увеличение числа снипов палеогеномов до уровня, позволяющего проводить исследования с привлечением сторонних данных по современным человеческим популяциям (т.е не только по тем популяциям, которые включены в кураторский набор лаборатории Рейха, но и другим наборам, генотипированным на платформе Illumina; и что самое главное — с привлечением данных конкретных пользователей 23andme и FTDNA).

И если результатами первой части я был вполне доволен, то этого нельзя сказать о второй части. Теперь я понимаю, что ошибка содержалась в самом дизайне цикла второй части, в которой для импутации и фазирования использовались только реальные и «симуляционные» палеогеномы. В результате, хотя импутация и улучшила взаимное позиционирование палеогеномов в пространстве главных компонент генетического разнообразия, однако при слиянии импутированного в автономном режиме набора палеогеномов с набор полученным в первой части проекта, получилась картина. в которой палеогеномы образуют как бы параллельную субструктуру по отношению к современным популяциям.
Данное обстоятельство объясняется тем, что у древних геномов людей больше общего разнообразия между собой, чем с геномами современных людей (у которых в результате многочисленных генетических дрейфов и бутылочных горлышек большая часть разнообразия была потеряна). По этому причине, при независимой импутации древних геномов их сходство между собой только усилилось, а дистанция с современными популяциями увеличилась. Примечательно при этом, что пропорции вилкообразного разделения генетического разнообразия такие же, как и у современных людей.

На графике PCA эта ситуация прослеживается особенно хорошо, где отчетиливо видно наложение этих двух V-вилок друг на друга (см. нижний график)

Это означает одно — работу над проектом надо продолжить

Палеоевропейцы из работы Haak et al, 2015 в свете анализа на IBD-сегменты

Сергей Козлов

Палеоевропейцы из работы Haak et al, 2015 в свете анализа на IBD-сегменты.

Обновлено 21.03.2015

В феврале произошло событие, которое многие геномные блоггеры с нетерпением ожидали на протяжении большей части предыдущего года — на  сервере Bioarxiv был размещен препринт статьи Haak et al с исследованием множества (преимущественно европейских) палеогеномов. Настолько качественного и подробного среза генетической истории европейцев мы еще не видели. Вадим Веренич уже разместил свой отзыв на работу, присовокупив к нему результаты собственных экспериментов и размышлений. Из его заметки можно составить прекрасное впечатление о статье.

Как это обычно и бывает, сообщество геномных блоггеров осталось не вполне удовлетворено полнотой предоставленной информации, и (повторюсь) с нетерпением ожидало возможности наложить свои руки на новые палеогеномы из статьи. Для этого пришлось дождаться официального выхода работы, и вот, наконец, момент настал. В первую очередь мне было интересно провести сравнение аутосомных IBD (или псевдо-IBD) сегментов с современными выборками и удостовериться — кто же все-таки в наибольшей степени является потомками людей, принадлежавших к исследованным археологическим культурам? Конечно, другие виды анализа тоже необходимо провести, но это сделают и без меня. К тому же об их результатах можно было догадаться из информации, опубликованной в статье (и эти догадки действительно подтвердились).

К сожалению, первая попытка оказалась неудачной — опубликованные на страничке лаборатории Райха геномы были полностью гаплоидными. Для того, чтобы сблизить условия анализа прочитанных с разным качеством палеогеномов, авторы статьи случайным образом выбирали один аллель для каждого снипа и далее использовали только его.  Разумеется, все IBD-сегменты при этом оказались разрушены. Однако проблему удалось обойти при помощи утилиты Феликса Чандракумара, преобразующую BAM-файлы в аналоги аутосомных файлов формата FTDNA. Лишь меньшая часть из обработанных геномов пригодна для IBD-анализа, но и прочитанных с удовлетворительным качеством достаточно много. Для этой заметки использованы следующие палеогеномы:

1) «Восточных охотников-собирателей», или EHG, представляет «оленеостровец» I0061 Karelia_HG    Yuzhnyy Oleni Ostrov, Karelia    5500-5000 BCE . «Самарский» образец EHG слишком плохо прочитан.

2) «Самарских ямников» представляют I0443    Yamnaya    Lopatino II, Sok River, Samara    3500-2700 BCE и I0231 Yamnaya    Ekaterinovka, Southern Steppe, Samara    2910-2875 calBCE

3) Культура шнуровой керамики также представлена двумя образцами, это I0103    Corded_Ware_LN    Esperstedt    2566-2477 calBCE и I0104 Corded_Ware_LN    Esperstedt    2473-2348 calBCE (восточная Германия, земля Саксония-Анхальт)

4) От культуры колоколовидных кубков лишь один образец, это I0112 Bell_Beaker_LN    Quedlinburg XII    2340-2190 calBCE (как и в случае КШК, земля Саксония-Анхальт)

5) Лучше всего обстоит дело с охватом неолитических земледельцев из культуры линейно-ленточной керамики, их целых четыре — I0054 LBK_EN    Unterwiederstedt    5209-5070 calBCE , I0100 LBK_EN    Halberstadt-Sonntagsfeld    5032-4946 calBCE, а также два ранее уже известных палеогенома — Stuttgart и NE1

Результаты по выборкам, представленным двумя или более образцами, усреднялись. Кроме этого, производилось нормирование результатов для каждой из пяти палеовыборок в пределах +- 10% с целью наилучшим образом попадать в диапазон карт и убрать влияние разницы в качестве прочтения. Конечно, это искусственное искажение данных, но все же, как мне кажется, оно скорее пошло на пользу, чем нанесло вред. В целом же карты получились качественными и наглядными. Думаю, что метод анализа на IBD-сегменты даже лучше подходит для палеогеномов, чем для наших современников.

«Оленеостровец» I0061 принадлежит к выборке, названной авторами EHG (Eastern Hunter-Gatherers). Это палеоевропейские охотники-собиратели северной части Восточной Европы, предположительно не затронутые позднейшим притоком генов с юга (от неолитических земледельцев и из других источников). И действительно, среди наших современников наибольшее количество пересечений с ним нашлось у северных восточноевропейцев — как говорящих на индоевропейских языках, так и уральцев. В первую очередь выделяются вепсы и северные русские из каргопольской выборки HGDP. Прибалтийская выборка, обычно проявляющаяся у восточноевропейцев наиболее ярко, на этот раз видна чуть слабее. Единственные, кто несколько выбивается из закономерности — поляки. Сложно сказать, случайность это, или же нет. Однако из-за этого отклонения польская выборка временами смотрится странно и на дальнейших «разностных» картах.

Оленеостровец (картинки можно увеличивать):

Обращает на себя внимание пятно в Средней Азии и северной Индии. Особенно интересна значительная разница между высшими и низшими кастами штата Уттар-Прадеш (на карте представлены обе выборки). Напрашивается версия, что это связано с приходом индоевропейцев с севера. Или же, как минимум, с приходом носителей R1a. Кстати, оленеостровец тоже принадлежал к этой Y-гаплогруппе (предковая ветвь R1a1).

Впрочем, как мне справедливо заметили, в северо-западную Индию было немало миграций и в более поздние времена. Например, «кшатрии» на севере считаются многими исследователями потомками переселенцев первого тысячелетия нашей эры.

Следующие на очереди — «ямники». В работе использованы образцы ямников из-под Самары, представляющие их крайний восточный вариант. Авторы статьи смоделировали их как 50% EHG / 50% современные армяне. Как будет показано далее, для этого есть некоторые основания. Однако с точки зрения предковых компонентов Admixture такая модель — далеко не лучший вариант, «южный» ямный компонент скорее связывается с чем-то в промежутке между Восточным Кавказом и Средней Азией. Как и предполагалось, он коррелирует с бимодальным компонентом, условно называемым Gedrosia. Исходя из современных максимумов, его исторический центр находится где-то в южном Прикаспии, возможно, восточнее. Судя по всему, он представляет собой результат смешения «ближневосточного» компонента ENF и ANE, поэтому теоретически исторического центра может и вообще не быть.

Самарские ямники:

В отличие от оленеостровца, «ямное» пятно более широко распределено по всей Европе, а Кавказ и Средняя Азия выделяются сильнее. Впрочем, лучше это смотреть на карте, отображающей разницу между ямниками и оленеостровцем. Не следует думать, что выборки, выделенные на разностной карте одним цветом, обязаны быть схожи между собой — просто разница их «расстояний» до I0443/I0231 и I0061 близка. И не забываем, что разностные карты в большей степени, чем одиночные, подвержены влиянию «шума» и случайных отклонений.

Разница между «оленеостровцем» и «ямниками». Красным цветом обозначено, у кого больше общих сегментов с первым, зеленым — со вторыми.

Как видно, наибольшая разница в пользу оленеостровца у представителей народов из уральской языковой семьи, причем тех, у кого силен «сибирский» вклад. Кроме жителей Западной Сибири, это марийцы (и родственные им тюрки-чуваши) в Поволжье, а также саами. Думаю, это неплохой довод в пользу ямников (или тесно связанной с ними группы), как распространителей индоевропейских языков. Наибольшая же разница «связь с ямниками» минус «связь с оленеостровцем» оказалась у уже упоминавшихся армян (и в целом зеленое пятно Кавказ-Малая Азия выражено сильнее всего). Таким образом, у армян хорошо выражены компоненты, имеющиеся у ямников, но отсутствующие у EHG. Но значит ли это, что модель «ямники=EHG+армяне» оптимальна? Я так не считаю. И при PCA-анализе, и при раскладке на компоненты Admixture мы видим, что «вторая половинка» должна быть где-то восточнее. На карте это проявляется в том, что взаимосвязь ямников с районом Пакистан-северная Индия (а особенно, что представляет отдельный интерес, с уйгурами. Уж не след ли это древних миграций индоевропейцев, например, тохаров, на восток?) выражена сильнее, чем у оленеостровца. Но модель считает, что это взято в основном от него, отсюда и заблуждение. Впрочем, и сами авторы пишут, что более адекватным видится вариант «третья группа, повлиявшая как на ямников, так и на современных армян».

Кроме уже перечисленных, явственно более сильную связь с ямниками проявляет выборка из Йемена (возникла мысль, что мы видим влияние небезызвестных Basal Eurasians — предположительно, именно йеменцы наиболее близки к ним из современных народов) и северо-западные европейцы. Это хорошо укладывается в предложенную авторами статьи модель, согласно которой северные европейцы в очень заметной мере являются потомками связанной с «ямниками» группы, которая мигрировала с востока и по большей части заместила предшествующее население. Кстати, у немцев (и германских народов в целом) необычно сильно проявляется все тот же компонент Gedrosia, которого не было у мезолитических охотников и неолитических земледельцев Западной Европы. И действительно, у восточногерманских образцов, принадлежащих к культуре шнуровой керамики, этот компонент появляется.

Карта для представителей КШК:

Очень похоже на «ямную» карту, не так ли? Но должны существовать и различия, попробуем их увидеть на разностной карте «самарцы» (красное) минус «шнуровики» (зеленое):

SamaraYamnayaMinusCWCIBDext

Картинка отнюдь не настолько контрастна, как было в случае сравнения ямников с оленеостровцем. Видимо, это связано с тем, что разница между сравниваемыми выборками в данном случае слабее. И все же некоторые взаимосвязи проявляются. Во-первых, заметно сильнее связь со шнуровиками у жителей острова Сардиния — как считается, они наиболее хорошо сохранили генофонд неолитических земледельцев Европы. Кроме этого, лучше связаны со шнуровиками, чем с ямниками, люди из района Белоруссия-Польша-Западная Украина. И наоборот, «ямные» пятна выделяются вокруг Удмуртии (уж не там ли живут потомки «самарцев»?), в районе «Средняя Азия-Индия» (включая уже упоминавшихся выше уйгуров), и в Закавказье/Малой Азии. Можно предположить, что шнуровики получились в результате смешения неолитических земледельцев и группы, родственной «самарцам», но более западной, сильнее связанной с «белорусским» пятном (и слабее — с тремя «ямными»).

Намного более наглядна разностная карта представителей культуры линейно-ленточной керамики (неолитических земледельцев) и шнуровиков:

LBKMinusCWCIBDext

Два мира — красным выделены народы, в большей степени связанные с неолитическими земледельцами (в отличие от предыдущей карты, сардинцы здесь сильнее связаны с противоположной шнуровикам стороной), зеленым — связанные с заместившими и поглотившими их пришельцами, носителями компонентов WHG и ANE. Обратите внимание, что армяне здесь ярко-красные — это еще раз доказывает ошибочность модели «ямников» как смеси EHG и армян в пропорции 50/50. Ведь тогда «армянский» вклад у «шнуровиков» был бы заметно сильнее.

А вот разница с «оленеостровцем»:

Здесь мало что можно добавить к тому, что уже писалось про разницу «оленеостровец»-«самарцы». Разве что Западное Средиземноморье стало более зеленым, а Средняя Азия-менее.

Наконец, для полного комплекта добавлю карту сравнения с представителем более западного варианта охотников-собирателей, Loschbour:

LoschbourMinusCWCIBDext

Родство с WHG преобладает лишь в дальнем северо-восточном углу Европы. Таков печальный итог нескольких волн миграций с замещением предыдущего населения.

Результаты для представительницы культуры колоколовидных кубков очень близки предшествующей «шнуровой» выборке. Поэтому разностная карта между ними еще более невразумительная, чем при сравнении шнуровиков и самарцев. Дело усугубляется еще и тем, что образец ККК лишь один, а значит, случайные отклонения и прочий «шум» выше.

ККК минус КШК:

BellBeakerMinusCWCIBDext

Судя по всему, у шнуровиков неколько выше доля вклада «охотников-собирателей» и «ямного» компонента в целом. В то же время «средиземноморский» компонент выглядит чуть сильнее у ККК. Но все это тонет в шуме.

Не вижу смысла приводить сравнения представительницы ККК с окружающими, аналогичные КШК, поскольку они выглядят практически так же. А следовательно, мой обзор закончен. Что ж, можно с глубоким удовлетворением отметить, что палеогеномы из работы Haak et al действительно проливают свет на процессы, происходившие в Европе на рубеже каменного и бронзового веков — естественно, уточняя и дополняя уже известное специалистам.

LAMP: инструмент для анализа «локального происхождения» геномных сегментов

В этом посте мы продолжим обсуждение существующих методик и инструментов анализа т.н «локального происхождения» отдельных сегментов хромосом в человеческом геноме (под локальным происхождением здесь подразумевается предпологаемое географическое происхождение дискретного сегмента одной их двух парных аутосомных хромосом в геноме человека).

Ранее эта тема поднималась в описании программы SupportMix, а также в сжатом изложении методологии оценки происхождения хромосомных сегментов (инструмент PCAdmix).  Данная заметка будет посвящена третьему инструменту — LAMP (Local Ancestry in adMixed Populations) (Sankararaman et al.2008).

Очевидно, что алгоритмы определения локального происхождения отдельных сегментов человеческих хромосом могут дать неплохие результаты при комбинированном использовании программ PLINK /ADMIXTUIRE/LAMP: например, комбинация этих программ позволяет довольно точно определить не только стратификацию отдельных этно-популяционных групп,  но также и уровень «адмикса» у отдельных людей. Поскольку одна из задач нашего проекта MDLP состояла в определении практических и теоретических преимуществ и/или ограничений конкретных методологий биоинформатического анализа полных генома, я провел эксперимент, позволяющий прояснить ряд ограничений, которые значительно уменьшают уровень достоверности результатов  субструктуры аутосомного генофонда населения Европы.

В качестве инструмента контроля качества комбинированного набора данных (аутосомных SNP-ов 22 хромосом) я использовал Plink, с помощью которого я выбрал для последующего анализа только качественные снипы (99% генотиприрования),  частоты минорных аллелей которых превышают 1%.

Поскольку этно-популяционный фон неравновесного линикиджа марекеров (LD) может существенным образом влиять на основные компоненты субструктуры популяции, я исключил из выборки маркеры, характеризующиеся статистически значимым уровнем LD (с коэффициентом попарной корреляции r2 Пирсона > 0,4) в «скользящем окне» из 100 снипов  с пошаговым сдвигом на 10 снипов. Кроме этого, я также использовал  другие методы Plink для получения однородной выборки  — например, кластеризации на основе IBS для обнаружения пары индивидов (outliers) с  уровнем «родства», значительно более высоким, чем у пары выбранных случайным образом индивидов в однородной популяции.  Под более высоким родством здесь понимается  резко отклоняющиеся значения (более 3 стандартных отклонений) парных значнений IBS по отношению к остальной части выбаки, а также случаи с высоким значения PIHAT (более 0,05) и  высокой степень инбридинга (гомозиготности*). Индивиды с подобными аномальными значениями («выбросы») были удалены из  «обучающего» подмножества нашей выборки .


* В программе Plink степень инбридинга определяется через вероятностную функцию гомозиготности.

 

homozyg
Стратификация образцев в соответствии с уровнями гомозиготности. Вдоль оси Х отображена общая сумма гомозиготных сегментов в килобазах; вдоль Y-оси — средний размер гомозиготных сегментов в килобазах

 

 

homozyg2
Уровни индивидуальной гомозиготности в выбороке: вдоль ости X отложено количество сегментов NSEG. Общая длина гомозиготных сегментов отображается осью Y

 

По окончанию описанных выше процедур фильтрации снипов и удаления «выбросов», окончательный набор данных представлял собой набор данных из 90 455 снипов и 317 человек (289 мужчин, 82 женщин). Эти данные были использованы в последующем анализе.

Прежде всего, мы использовали программу ADMIXTURE (Alexandre, Novembre, Lange 2009), в которой реализована модель оценки максимального правдоподобия (ML), т.е алгоритм кластеризации и оценки структуры популяции в наборе генетических данных (снипов).

В целях сохранения совместимости с MDLP калькулятором, я остановился  на модели, в которой выборка представлена в виде комбинации 7 предковых компонентов (K=7).  Индивидуальные значения процентной составляющей каждого компонента в индивидуальном геноме (матрица Q), была визуализированы в R (ниже приведен график с результатами участников проекта MDLP, полный список  доступен в этой таблице).

Результаты K=7

Полученные предковые компоненты (K=7) я обозначил следующими названиями (с сопутствующей цветовой легендой)**:

  • Транс-кавказский — красный
  • Балканском / средиземноморском -желтый
  • Северо-кавказский -зеленый
  • Западно-европейский
  • Алтайский — светло-голубой
  • Балто-славянский — темно-синий
  • Прибалтийско-финский / Северо-европейский -фиолетовый

**Как обычно, названия компонентов условны и  предназначены для мнемонических целей:  исследователи должны быть осторожными при интерполяции предполагаемых компонентов в анализе этнической истории популяций.

 

 

 

 

MDLP v4 components

 

 

 

На следующем этапе, я разбил все 371 индивидуальных «геномов» выборки на 22 фрагмента (каждый из которой соответствует аутосомной хромосоме) и затем использовал  программное обеспечение Admixture для оценки структуры популяционного вклада в каждую из 22 хромосом. После этого я использовал пайплайн для перевода формата Plink  в формат BEAGLE и последующего поэтапного преобразования фазированных данных BEAGLE обратно Plink формат.

Я предположил, что все образцы в моей выборке (представленной образцами VID)  проекта MDLP возникли в в результате смешивание 7 отдельных предковых групп населения. Данное предположение означает, что «чистые» референсные группы населения тесно связаны с истинными предковыми популяциями. Исходя из этого предположения мы снова задействовали программное обеспечение Admixture,  на этот раз с целью определения предковых компонентов в фазированном наборе данных из отдельных неполовых (аутосомных) хромосом.

Только после этой процедуры я смог использовать программу LAMP для определения уровня адмикса у отдельных индивидов. На практике, определение индивидуального уровня адмикса  означает применение любой из указанных выше процедур, в которй используется либо модель «локус-специфического происхождения» (в случае, если предковые группы популяции априори  неизвестны), либо модель «локус-специфического происхождения» гибридного населения.  Затем полученные значения  локус-специфического происхождения» отдельных сегментов в индивидуальном геноме усреднеяются и   получаются значения долей адмикса в индивидуальном геноме.

Я  расчитал в программном обеспечении Plink частоты аллелей (в стратифицированных по этническим признакам кластерах), и добавил в файл фиксированные частоты рекомбинации (определяются отдельно для каждой из 22 хромосом). Для моделирования динамического процесса смешивания предковых компонентов, я использовал различное количество поколений G ( 5, 10,25 поколений),  предполагая 3 хронологически разных варианта, в которых при  K = 7  предковые популяции A1, …, Ak,  перемешивались в течение G = 5,10,25 поколений.

Результаты экспериментов для каждой из хромосом размещены в отдельные таблицы Excel, каждый из файлов Excel включает в себя следующие разделы:

1) результаты Admixture для фазированных генотипов хромосомы (Chr * -phased)
2) результаты Admixture для нефазированных генотипов хромосомы (Chr * -unphased)
3) результаты LAMP для G = 5 (Chr * -lamp-GEN5)
4) результаты LAMP для G = 10 (Chr * -lamp-GEN5)
5) результаты LAMP для G = 25 (Chr * -lamp-GEN5)

Образец этих выходных данных можно посмотреть в файле Excel с результатами анализа хромосомы 1 (Chr1).

PCAdmix: инструмент и методология для оценки происхождения хромосомных сегментов

В марте прошлого года  Сергей Козлов — один из соавторов данного блога, — опубликовал важную с точки зрения методологии генетико-генеалогического анализа заметку о принципах оценки вероятности определения времени жизни последнего общего предка при попарном сравнении аутосомных данных двух или более сравниваемых индивидов.  Действительно, в последние годы среди людей, интересующихся генеалогией, приобрели заметную популярность сервисы, производящие поиск генетических родственников по всем линиям, а не только по прямой мужской и прямой женской. В качестве примера можно привести Family Finder от FTDNA и DNA relatives от 23andMe. Участник получает достаточно длинный список так называемых «совпаденцев» — людей, имеющих с ним один или более участок половинного совпадения (УПС) на аутосомах (неполовых хромосомах). Если участок достаточно длинный (а его длина измеряется в сантиморганидах, обозначающих вероятность разрыва участка при каждой передаче в следующее поколение), то это говорит о наличии общего предка (от которого участок и получен).
Для значительной части клиентов сервисов персональной коммерческой геномики, интересующихся исключительно вопросами своего происхождения, вопрос о достоверном определении времени жизни общих предков имеет первостепенное значение. И вместе с тем, именно проблема с получением четкого ответа на этот краеугольный вопрос служит одной из главных причин недовольства и раздражения клиентов компаний вроде FTDNA или 23andme.

Действительно, изучив длинные сегменты генома, передававшихся от поколения к поколению и встречающиеся у многих людей, можно примерно определить степень и интенсивность предковых связей, берущих начало много тысяч лет назад.  Здравый смысл подсказыает — дальние родственники имеют такие длинные сегменты генома потому, что они унаследовали их от общих предков. У более далеких родственников длина сегментов общих геномов соответственно становится короче, поскольку происходит рекомбинация гомологичных хромосом, в результате чего с каждым следующим поколением происходит перемешивание всей совокупности генов или генотипа. Очевидно, что число и размер совпадающих общих по происхождению сегментов геномов у двоих произвольно взятых лиц из однородной метапопуляции коррелирует с географический дистанцией —  количество общих генетических предков резко уменьшается по мере увеличения географического расстояния.

Однако наряду с  географически близкими (в пределях 50-100 км)  «совпаденцами», нередко в списках «совпаденцев», предоставляемых в 23andme или FTDNA появляются совершенно экзотические «совпаденцы». Например, у финна может появится совпаденец из Италии, а у корейца — из  Великобритании. Совершенно очевидно, что подобные случаи очень сложно объяснить не только простым сопоставлением сведений о географическом происхождении предков, но даже и безотказной в простых случаях  моделью наложения «этнопопуляционного аутосомного фона в виде коротких реликтовых  IBD сегментов».

В этой связи возникает практический вопрос — как интерпретировать подобные случаи, при условии что подобные сегменты представляют собой не «ложно-позитивные», а вполне достоверные совпадения, указываюшие на существование в неопределенный момент прошлого некоего общего предка. И подобные случаи характерны не только для коммерческих «выборок», но и для вполне серьезных научных баз данных, например 1000 Genomes. В частности,  в этой базе данных при сравнении редких снипов у 89 британцев и 97 китайцев были обнаружены три англо-китайские пары с отдаленным генеалогическим родством ( в геноме этих пар были обнаружены идентичные по происхождению фрагменты (IBD сегменты) ДНК,  которые составляют 0,001%, 0,004% и 0,01%  их геномов).

Самое простое решение этой проблемы некоторые из любителей генетической генеалогии пытались найти в обращении к сервисам главного инструмента аутосомной генетической генеалогии  Gedmatch. В частности, как известно, данный сервер содержит онлайн-версии практически всех популярных среди любителей модификаций DIYDodecad калькуляторов. Например, выбрав разработанный мною калькулятор MDLP K23b в режиме Chromosome painting: Paint differences between 2 kits, 1 chromosome   и сравнив характер распределения предковых компонентов на гомологичных хромосомах у двух сравниваемых людей, можно получить примерное представление о географическом ареале, в котором мог жить общий предок этих людей (вероятно, на этот ареал будет указывать доминирующий на совпадающем сегменте компонент). Логика простая. Предположим, например, что мы сравниваем  сегменты хромосомы X в данных индивида A этнического происхождения D c данными индивида В этнического происхождения С. Здесь возможны три варианта

  • С-происхождение предка или предков индивида A
  • D-происхождение предка или предков индивида B
  • Y-происхождение подмножества предков обоих индивидов

Используя эту логику,  можно предположить что если в попарном сравнении  сегмента обозначится хорошо выраженное преобладание (по отношению к средним значениям) компонента, характерного для этнопопуляции С, то следует выбрать первый сценарий; аналогично, если обнаружится избыток компонентов характерных для этнопопуляции D, то следует выбрать второй сценарий; если будет замечено преобладание редких  для этнопопуляций С и D компонентов, то следует остановится на третьем варианте.

 


Пример I.

В этом примере мы будем использовать свои данные и данные женщины, с которой у нас был обнаружен подтвержденный генеалогией общий предок, живший в середине 19 века.  При сравнении наших данных, алгоритм поиска достоверных генеалого-генетических совпадений обнаружил три сегмента с генетической дистанцией > 7 cантиморганов, cостоящих в блочной записи из более чем 700 последовательно совпадающих снипов

Start Location End Location Centimorgans (cM) SNPs
4 32232224 42421625 13.2 1115
7 8295405 13845989 9.8 885
11 36784445 45084878 8.0 881

Самый большой сегмент = 13.2 cM
Общий размер сегментов с сантиморганах > 7 cM = 30.9 cM
Приблизительное число поколений до общего предка  = 4.4

Задетектированные  сегменты хромосом идеографически отображаются при попарном сравнении в цветовой гамме — черный цвет означает несовпадающие сегменты, другие цвета — компонентную привязку к одному из компонентов моего калькулятора MDLP K23b.  Ниже приведены фрагменты идеографического отображения 2 из 3 вышеуказанных совпадающих сегментов на кариограмму 4 и 7 хромосомы.:

M051225_F298455_4_D64088
Сегмент на 4 хромосоме
M051225_F298455_7_BC1A38
Сегмент на 7 хромосоме

Самый значительный сегмент (13.2 сM) на 4 хромосоме имеют хорошо заметную привязку к северо-восточно-европейскому компоненту [зеленый цвет], в исторической перспективе связанному с наследием мезолитического населения этого региона. А вот сегмент на 7 хромосоме имеет более сложную структуру, в которой характерно преобладание кавказского компонента [голубой цвет]. Таким образом можно уверено утверждать, что общий предок (или предки) могли жить в регионе восточной Европы.

К сожалению, данный инструмент сегментного сравнения на  Gedmatch хотя и прост в обращении (в силу интуитивной понятности), однако  далек от совершенства. В первую очередь, на аккуратность определения «генографического»происхождения сегмента влияет отсутствие на сервере  гаплоидных фаз похромосомных данных. В результате, сравнение ведется не по конкретной фазе (т.е по конкретной хромосоме доставшейся ребенку от каждого из родителей), а по диплоидному составному блоку, т.е вместо настоящих IBD мы можем оперировать half-IBD (HBD), которые на слэнге русскоязычных любителей именуются УПС-ами. Во вторых, аккуратность генографического определения  зависит от аккуратности определения предковых компонентов в используемом варианте калькулятора, но это отдельная тема для разговора.


К счастью, парадокс «экзотических» совпаденцев имеет более точное решение с помощью одной из программ, позволяющих определять геногеографическую структуру или «локальное происхождение» совпадающих сегментов.  Можно использовать разные программы, HAPMIX, LAMP , HAPAA, ANCESTRYMAP — так как несмотря на ряд принципиальных отличий, все они используют алгоритмы моделнй скрытых марковских цепей (HMM) и поэтому выдают в целом схожие результаты. К этому же классу программ относится и более новая програма PCAdmix, которую я буду использовать в своем втором примере, в котором я задействую фазированные в BEAGLE генотипы.  В целях разжевывания принципов работы программы, следует вкратце описать рабочий процесс PCAdmix.
PCAdmix являет cобой метод, который оценивает локальное происхождение хромосомных сегментов с помощью анализа главных компонентов (PCA)  фазированных гаплотипов. В самом начале выполняется анализ главных компонентов в 2-3 референсных панелех, необходимых доя построения пространства главных компонентов, например, для хромосомы 22 . Поскольку метод использует фазированные данные, каждая копия хромосомы 22 в референсных панелях рассматривается как отдельная точка в пространстве главных компонентов. Первые две главные компоненты, как правило, представляют собой оси «предкового» расхождения популяций референсных панелей, что хорошо заметно на графиках. Если подобного рассхождения не наблюдается,  то скорее всего в популяциях референсных панелей «маскируется» присутствие неявной популяционной субструктуры. В построенное таким способом пространство главных компонентов в дальнейшем проецируется группа лиц «смешанного» происхождения, и затем определяется значение нагрузки главных компонентов для каждого снипа.  После этого метод переходит к анализу коротких «окон» снипов — для каждого из этих окон вычисляются  вероятности того, что данное окно в гаплотипе человека «смешанного» происхождения происходит от одной из референсных популяций. Вычисленные таким образоом вероятности различных вариантов происхождения каждого окна снипов, используются на заключительном этапе метода в  скрытой моделе Маркова (HММ) для сглаживания шума в определении происхождения «окон» снипов. Таким образом, данная скрытая модель Маркова НММ зависит от значений главных компонентов, доли каждого «компонента происхождения» на заданной хромосоме, а также матрицы перехода, которая, в свою очередь, зависит от числа поколений прошедших с момента смешивания популяций и генетического расстояния (сM) между двумя окнами снипов. В текущей версии метода, рекомбинаторные расстояния и число поколений определяются параметрами.
Конечным результатом рабочего процесса PCAdmix является матрица состяний скрытой модели Маркова, содержащая апостериорную вероятность каждого из возможных вариантов происхождения для данного «окна снипов», и эта вероятность обусловлена остальной частью данных для хромосомы. Важно отметить, что происхождение каждого окна снипов определяется только в том случае если апостериорная вероятность для одного из возможных происхождений > = 0,8. Любое окно, для которого максимальная апостериорная вероятность любого варианта происхождения <0,8, считается «неопределенным».


Пример 2

Данный пример основан на реальном случае, когда ко мне обратился человек, чьи предки происходят из центральных регионов Азии. Смущенный наличием в списке своих совпаденцев в сервисе Relative Finder 23andme  человека с корейскими и японскими корнями, а также  семейными легендами о «восточноазиатской»прабабушке, он попросил меня определить вероятность присутствия японцев в числе своих ближайших (в пределах 5 поколений) предков, опираясь исключительно на аутосомные данные.

В этом эксперименте, я решил скурпулезно следовать инструкциям разработчиков PCAdmix, и для начала произвел фазирование (биоинформатическую реконструкцию гаплотипных фаз аутосомных хромосом) в программе BEAGLE. Данные тестанта (ок 400 тыс. снипов) были фазированы в присутствии 3 контрольных референсных групп популяций — британцев GBR, китайцев CHB и японцев JPT — поскольку эти группы были позднее задействованы мной в качестве 3 референсных панелей. В целях уменьшения количества ошибок, которые неизбежно появляются в результате импутации пропущенных «генотипов» снипов, я использовал только те общие снипы, которые были определены как в аутосомных данных клиента 23andme, так и в трех референсных группах.

Затем фазированные данные тестанта были похромосомно обработаны в рабочих циклах программы PCAdmix. Программа отфильтровала cнипы с низким значением MAF и высоким значением LD, в результате чего число снипов уменьшилось почти вдвое. Оставшиеся снипы были разбиты на «окна снипов», каждое из которых состяло из 20 снипов.  При расчете по всем 22 хромосомах, общее количество полученных таким разбиением «окон» составило 11 997. В конце рабочего цикла (метод главных компонентов + HMM) программа выдала для каждой парной аутосомной хромосомы A и B  файл в формате bed, удобном для отображения дополнительной информации в аннотации генома (номер хромосомы, начало и конец сегмента, наиболее вероятный регион происхождения сегмента, cM, максимальная вероятность и апостериорная вероятность одного из трех вариантов происхождения — JPT, GBR, CHB, непоказана в таблице). В конечном отчете GBR используется как индикатор сегментов не-восточноазиатского происхождения (nEA), JPT — японского происхождения (JPA), CHB — неспецифичных сегментов восточноазиатского происхождения (EA) :

10 111955 468599 GBR 0.004885 0.134147 GBR* 0.636943
10 521723 811876 GBR 0.142147 0.582463 GBR* 0.646868
10 815149 1151723 GBR 0.585829 0.898724 GBR* 0.676252
10 1156487 1335849 GBR 0.901503 1.23673 GBR 0.925059
10 1337709 1449849 GBR 1.24246 1.60705 GBR 0.99999
10 1454864 1510208 GBR 1.61249 1.76798 GBR 0.999506
10 1512546 1623734 GBR 1.77039 2.12653 GBR 0.999647
10 1624900 1669347 GBR 2.13038 2.25357 GBR 0.999778


Выбор формата BED в качестве формата выходных в моем случае также был далеко неслучайным. C помощью одной из библиотеки платформы Bioconductor формат BED легко отображается в кариограмме 22 пар аутосомных хромосом человека (я использовал координаты геномного билда b37). Чтобы было понятно, что именно изображают эти «кариоплоты» (идеографические изображения хромосом), необходимо пояснить, что  «японское происхождение» (JPA) приписывалась 20-сниповому сегменту только в том случае, если апостериорная вероятность японского происхождения данного «окна из 20 снипов» составляла > = 0,8. Любое окно, для которого максимальная апостериорная вероятность любого варианта составляля <0,8, засчитывалось как окно  с «неопределенным» происхождением (UND).Chromosomes A

Chromosomes A

 

Chromosomes B
Chromosomes B

Эксперимент показал, что среди 11997 «окн» число  «окон» не-восточноазиатского (nEA) происхождения (7650) почти в два раза больше чем число «восточноазиатских» сегментов. Происхождение 2750 геномных «окон» снипов невозможно определеить, и только 965 «окна» могут быть определены как «японские по происхождению». Вместе с 617 окнами «китайского» (EA),  восточно-азиатские сегменты составляют меньше, чем 10% генома.
Не менее важно и то обстоятельства, что значительная доля этих сегментов-окон пришлась на низких «консервативные, низкорекомбинантные» области хромосом,  — такие, как  например, теломеры, центромеры и регионы с низкой плотностью снипов: сегменты в таких регионах могут переходить от одного поколения к другому фактически в неизменном виде. Наконец, те же закономерности распределения родословной были отмечены в обеих фазированных наборах аутосомных хромосом, что опровергает версию о недавной «восточноазиатской» примеси со стороны одного из родитедей и скорее  свидетельствует о древнем эпизоде смешивание определенных центрально- и юго-западноазиатских групп с группами восточноазиатского происхождения (например, в ходе монгольских или тюркских нашествий).

Разумеется, как и во многих других моделях анализа, основанных на вероятностях, наше заключение нельзя считать окончательным вердикторм. Вместо этого, лучше сказать, что шансы в пользу существования «недавнего японского предка» против шансов отсутствия такого, составляют 10 к 90. Другими словами, вариант с недавней японской «примесью» нельзя полностью исключить, поскольку вероятность такого сценария  составляет 11%.

 

Расширенные карты для палеогеномов

Обновлено 30.11.2014

Этот пост также продолжает один из предыдущих, а именно визуализацию суммы IBD-сегментов (а возможно, это и не IBD — вопрос остается открытым) двух палеоевропейцев и мальчика со стоянки Мальта с современными  выборками. С тех пор в открытом доступе появилось еще несколько обработанных палеогеномов — «усть-ишимец«, «Костенки-14» («человек с Маркиной горы») и два палеогенома хорошего качества из Венгрии.

Результаты собраны мной в онлайн-таблицу, а также отрисованы на расширенных картах. Поскольку усть-ишимец явно тяготел к восточноазиатам, пришлось добавить к сравнению выборки из Южной и Восточной Азии. Ну а после этого логика подсказывала, что неолитических земледельцев Европы неплохо бы сравнить с жителями Ближнего Востока. Таким образом, все карты перерисованы.

Напомню также, что результаты для «мальтинца» и «костенковца» получены при ослабленных настройках фильтра из-за низкого качества прочтения этих двух геномов. Напрямую сравнивать их с пятью другими нельзя. Для отрисовки Loschbour значения умножены на 1,5 в целях повышения контрастности.

«Неолитическая фермерша» )) Stuttgart/LBK

«Неолитический земледелец» NE1:

Усреднение по двум земледельцам дает более ровную картинку:

«Охотник-собиратель» Loschbour:

Разница между «охотником-собирателем» и усреднением по двум земледельцам. Красное — больше сегментов с Loschbour, зеленое — c Stuttgart и NE1

Европеец позднего бронзового века BR2 из Венгрии:

«Усть-ишимец»:

Костенки-14 (ослабленные настройки):

Мальтинец (аналогично):

И наконец, в качестве примера результата нашего современника, моя собственная карта: