Эпигенетика Y-хромосомы человека

О генетике (в том числе и о популяционной генетике)  Y-хромосомы написано немало статей — теперь пришла очередь эпигенетики. Полгода тому назад я постулировал наличие в Y-хромосоме гаплогруппно-специфичных сайтов метиляции, влияющих на экспрессию специфически мужских генов. Данная гипотеза позволила мне решить старую диллему — с одной стороны малая генетическая информативность Y-хромосомы (мало генов), c другой стороны слабая корреляция между поведением и гаплогруппой. И вот пару дней назад, китайские исследователи опубликовали статью на эту тему. Перефразируя расхожое, можно сказать: «О чем бы вы не подумали, китайцы уже написали про это статью».

Что поделать — таков закон больших чисел.

«According to the human reference sequence (hg19), the tested sites on the Y chromosome were distributed on 11 regions: TSS1500 (-1500 bp from the nearest TSS), TSS200 (-200 bp from the nearest TSS), 5’UTR, EXON1 (1st exon of genes), 3’UTR, Gene Body, CpG islands, NSHORE(-2 kb region flanking the CpG island), SSHORE (+2 kb region flanking the CpG island),NSHELF (-4 to -2 kb region flanking the CpG island), and SSHELF (+2 to +4 kb region flank-ing the CpG island) (S3 Table). The mean methylation level of all tested sites within eachregion was taken as this region’s methylation index.We found that the variation in gene body region was greater than in other regions by calcu-lating the standard deviation of each region among all samples (Fig 5A). Further, we assessed the overall methylation pattern of 53 tested genes. Result showed that the methylation patternof two genes was haplogroup O3a2b-specific (LOC100101116,TTTY1)(Fig 5C). However, wedid not find such a haplogroup-specific variation on the other 10 functional regions (Fig 5Band 5D,S5 Fig).Fig 5. The methylation pattern of functional regions on the Y chromosome.A) Box plots showing thestandard deviation of methylation level within each region. The median line indicates the average methylationlevel, the edges represent the 25th/75th percentile, and the whiskers represent the 2.5th/97.5th percentile. B−D). Heat map showing the methylation levels of 38 detected TSS1500 regions (B), 53 gene body regions(C), and 55 CpG island regions (D)»

 

Fig 5. The methylation pattern of functional regions on the Y chromosome. A) Box plots showing the standard deviation of methylation level within each region. The median line indicates the average methylation level, the edges represent the 25th/75th percentile, and the whiskers represent the 2.5th/97.5th percentile. B − D). Heat map showing the methylation levels of 38 detected TSS1500 regions (B), 53 gene body regions (C), and 55 CpG island regions (D). 

Я пролистал статью китайских генетиков про консервативность эпигенетичских паттернов на Y-хромосоме. К сожалению, авторы ограничиваются только важными для юго-восточной Азии ветвями гаплогруппы O2 и O3 (особо выделяются когорты потомков разных императоров), а интересно было бы сравнить эпигенетические паттерны у носителей этой гаплогруппы с таковыми у других евразийских, американских и африканских гаплогрупп и изучить животрепещущие вопросы:

  1.  Дает ли преимущество разница в профилях метиляции ДНК Y-хромосом?
  2. Если дает, то какого рода c учетом мужской специфики? Возможные варианты: разница в фертильности спермы, отличия в уровне выработки тестостерона — и влияние на сопутствующие мужские признаки телесной конституции и поведения?
  3.  Помогает ли понимание разницы метилирования ДНК мужской половой хромосоомы объяснить разницу в физических, гендерных, функциональных, эмоциональных и интеллектуальных чертах мужчин разных гаплогрупп?

Вот о чем надо было рассуждать, а не о эволюционной консервативности метиляции Y-хромосомы. Это и так понятно любому думающему человеку.

Реклама

Подготовка к анализу новых образцов палеогеномов

Несколькими постами ранее ув. Сергей Козлов подготовил замечательный по своей глубине русскоязычный обозор новой статьи Allentoft et al. 2015 (еще раз выражаю свою благодарность). В этом обзоре были затронуты преимущественно технические вопросы, в то время как в аналогичном разборе на сайте генофонд.ру было пересказано общее содержание статьи:  » Cтатья большого международного коллектива, опубликованная 11 июня в журнале Nature, посвящена исследованию геномов популяций Евразии в бронзовом веке (изучен период от 3000 до 1000 лет до н.э.). Первый автор Мортен Aллентофт (Morten E. Allentoft) и ведущий автор Эске Виллерслев (Eske Willerslev) представляют Центр географической генетики Музея естественной истории Университета Копенгагена, Дания. Эта статья вызвала огромный интерес у специалистов по истории популяций человека — ведь в ней представлен анализ самого большого массива древних геномов из разных археологических культур эпохи бронзы. На основании анализа древних геномов авторы пробуют реконструировать древние миграции и распространение археологических культур во времени и пространстве. В бронзовом веке, начало которого датируют временем 3500-3300 лет до н.э., в производстве орудий и оружия камень все больше уступает место металлу. Это сопровождается   радикальными культурными и социальными изменениями в жизни людей. Они касаются не только хозяйственного уклада – возникает новое понимание имущественных отношений, семьи и личности. Основной вопрос, на который попытались ответить авторы статьи — были ли эти изменения результатом передачи культурных навыков или результатом миграций населения. Иными словами, «была ли это циркуляция людей или идей». Важнейший вопрос — связаны ли эти события с распространением индоевропейских языков, на которых сейчас говорит большая часть человечества.»

Лавина публикаций древних геномов (кроме вышеупомянутых статей Allentoft et al. 2015, Haak et al. 2015, летом опубликовались статьи Pinhasi et al. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone,  и Fu et al.  An early modern human from Romania with a recent Neanderthal ancestor, однако к сожалению, количество снипов в большинстве образцов палеогеномов недостаточно для проведения развернутых анализов вместе с палеогеномами из других статей) заставила меня ускорить подготовку своей сводной выборки референсных образцов популяций (об этом я писал в предыдущих записях).

Я решил отказаться от полного импутирования древних геномов (очевидно бессмысленного занятия, так как у нас нет надежной референсной панели для импутирования выборочно секвенированных палеогеномв), и вместо этого ограничился импутированным (с помощью панели 1000 Genomes) набором снипов в контрольном наборе популяций лаборатории Райха (Affymetrix Human Origins Fully Public Dataset), этот набор использовался в статье Lazaridis et al. 2014.  

Разумеется, ни одна процедура «импутирования генома» (imputation of genome -сложнопереводимый на русский язык термин) не обходится без ошибок. Поэтому перед тем как приступить к самому анализу, я провел проверку качества выборки. На этот раз, я использовал  инструментарий Python — PyGenClean. Этот инструментий существенно облегчает стандартизацию генетических данных и  контроль качества выходных данных платформы генотипирования. Он минимизирует ошибки манипулирования данными, и ускоряет процесс очистки данных от потенциальных ошибок генотипирования,  а также позволяет составлять информативные графики и автоматически оценивать предварительные параметры последующего статистического анализа.

После отсеивания снипов c низким качеством и индивидов с низкой степенью генотипирования, а также снипов с существенным отклонением от равновесия Харди-Вайнберга, я посмотрел оставшиеся образцы на предмет наличия в выборке «оutliers» (так называемых «статистических выбросов»). До процедуры нахождения выбросов график главных компонент выглядел следующим образом:

И после нахождения выбросов (т.е образцов со стандартным отклонением больше 5 сигм)

Первоначально я планировал анализировать древние геномы вместе с геномами современных людей, однако (как видно из нижеприведенных графиков) палеогеномы гораздо в большей степени отклоняются от реперных точек, бессистемно разбиваясь на группы:

 

Поэтому такую очистку данных лучше проводить в два захода, один — для современных образцов, а другой — для палеогеномов. А затем полученные «качественные» выборки соединять в общую контрольную выборку.
В нашем случае, я так и поступил, получив выборку из 2250 этнопопуляционных образцов и 155 000 снипов.

Вот так выглядит взаимное расположение образцов геномов на PCA графике.

 

Caucasian, North-African, Afro-American, AG2, South-European, Alberstedt-LN, Native-American, Siberian, African, East-Asian, Near-Eastern, Atayal-Coriell, Native-Australian, Australian, Australian-ECCAC, East-European, Baalberge-MN, South-Asian, Volga-Ural, West-European, Bell-Beaker-LN, North-Indian, BenzigerodeHeimburg-LN, South-Indian, Ancient-African, American, Oceanian, South-East-Asian, Arctic, Corded-Ware, Near-East, Denisovan, Denmark-Carlstrup, Denmark-Falshoy, Denmark-Marbjerg, Denmark-Sebberskole, Esperstedt-MN, EuropeanIronAge, North-European, Halberstadt-LBA, Central-Asian, Hixton, Href, HungaryGamba-BA, HungaryGamba-CA, HungaryGamba-EN, HungaryGamba-HG, HungaryGamba-IA, Iceman, Karelia-HG, Karsdorf-LN, Kostenki14, LaBrana1, LateDorset, LBK-EN, WHG, MA1, Mezmaiskaya, MiddleDorset, North-Greek, South-Italian, Piramalai-Kallars, Poland-Polwice, Poland-Szczepankowice, Poland-Unetice, Poland-Chociwiel, Samara-HG, Saqqaq, East-Aasian, Spain-EN, Spain-EN-relative-of-I0410, Spain-MN, Starcevo-EN, Stuttgart, Sweden-Abekas, Sweden-Angamollan, Sweden-Visby, SwedenSkoglund-MHG, SwedenSkoglund-MN, SwedenSkoglund-NHG, Thule, Unetice-EBA, Ust-Ishim, Vindija, Yamnaya

Именно эту выборку я положил в основу своего нового тестового калькулятора K13 (о его создании я расскажу позже) — предназначенный для анализа «глубокого» происхождения популяций. Как всегда, модель нового калькулятора основана на базовой модели известного DIYDodecad калькулятора. Впервые я остался более или менее удовлетворен полученными результатами. Думаю, что от этой модели можно плясать дальше. И хотя модельная кластеризация с помощью алгоритма Mclust дает основание полагать, что используемая мной выборка из 2230 геномов наилучшим образом (т.е без неизбежного при больших значениях K вырождения компонентов) описывается моделью из 8 кластеров, я остановился на K=13 т.е 13 кластерах:

  1. Amerindian — модальный компонент американских индейцев

 

 

  • ANE — модальный компонент северных евразийцев, изолирован из общего с WHG кластера — наивысшие значения в древнесибирских образцах MA1, AG2, а также у андроновцев, синаштинцев, представителей ямной культуры, шнуровиков и т.д. Из ныне живущих популяций самый высокий процент у калашей. Практически совпадает с ANE в статье Lazaridis et al. 2014

 

 

  • Arctic — модальный компонент с пиком в популяциях коряков, чукчей, ительменов и эскимосов

 

 

  • ASI — модальный компонент южноиндийских популяций, у современных популяций наивысший процент у онге, идентичен ASI в работе Reich et al. 2009.

 

 

  • Caucas(us)-Gedrosia — идентичен кластеру, открытому в 2011 году Диенеком Понтикосом

 

 

  • EastAsian — модальный компонент жителей восточной Азии

 

 

  • ENF — компонент древних европейских земледельцев неолита, пик в образцах палеогеномов культуры линейно-ленточной керамики. Тождественен аналогичному компоненту в работах популяционных генетиков (Lazaridis et al. 2014, Haak et al. 2015). В современных этнопулах — наивысшие значения у сардинцев, корсиканцев и басков.

 

 

  • NearEast — модальный компонент жителей ближнего Востока

 

 

  • Oceanian — модальный компонент аборигенных жителей Океании, Австронезии, Меланезии и Микронезии — пик у современных папуасов и австралийских аборигенов

 

 

  • Paleo-African — модальный компонент африканских пигмеев и бушменов

 

 

  • Siberian — модальный компонент народностей юго-восточной Сибири

 

 

  • Subsaharian — второй африканских компонент — пик в популяциях мандинка, йоруба и ишан

 

 

  • WHG-UHG — компонент древних европейских мезолитических охотников-собирателей, пик в образцах палеогеномов мезолитических популяций европейских охотников-собирателей. Тождественен аналогичному компоненту в работах популяционных генетиков (Lazaridis et al. 2014, Haak et al. 2015). Из современных популяций — наивысший процент в популяциях эстонцев, литовцев, финнов и др.

 

 

MDS plot - K13 ancestral population

Как я и предполагал, модель калькулятора оказалась особенно хороша в применении к анализу древних геномов. И на самом деле, на нижеприведенном графике PCA (пространстве 2 главных компонент результатов анализа древних геномов в моем бета-калькуляторе K13) видны замечательные вещи. Расположение геномов хорошо вписывается в треугольник, один из углов которого образуют геномы древних «ямников» (из работы Haak et al. 2015), причем геномы «русских»ямники из работы Allentoft at al.2015 чуть-чуть сдвинуты в сторону древних мезолитических геномов древних европейских охотников-собирателей. За ними (в направлении «неолитического» угла) следуют представители шнуровой культуры, еще дальше — геномы представителей геномов унетицкой культуры и т.д. Второй угол треугольника образован неолитическим геномами, причем если более поздние неолитические геномы сдвигаются ближе к представителям линейно-ленточной культуры (англ. Linear Pottery culture, фр. Culture rubanée, нем. Linearbandkeramische Kultur, LBK — наиболее распространенная неолитическая культура Центральной Европы 5500—4500 гг. до н. э.), то более ранние геномы — геном представительницы более ранней фазы этой культуры (Stuttgart-LBK), а также геномы представителей балканских неолитических культур — Старчево и Винча — очень близки к палеогеному из Barcin (культура Чатал-Хююк, cамые ранние найденные культурные слои относятся к 7400 г. до н. э.). Таким образом генетика подтверждает утверждения археологов о близости неолитических культур Балкан и Анатолии. Более того — данные генетики свидетельствуют о том, что во времена т.н «неолитической революции» происходила не только и не столько миграция технологий (как считали некоторые археологи), но и миграция населения (из Анатолии на Балканы). Причем, судя по моему графику PCA, миграция происходила в несколько, хронологически удаленных, этапов, и — скорее всего — из разных мест. Крайную точку в этому угле треугольника я обозначил как «анатолийские земледельцы» (ближайший к этой точки геном — геном «земледельца» из культуры Старчево — взят из работ Haak et al. 2015).

Для людей, интересующихся вопросами происхождения индоевропейцев, разумеется будет более интересна другая сторона треугольника, которая скорее всего отражает градиент увеличения градиента частот так называемого ANE — «компонента древних северных евразийцев».

Образно говоря, вектор градиента начинается в геномах ямников (больше половины генома которых состояла из этого компонента) и затем идет к геномам представителей синташтинской, афанасьевской, андроновской, окуневской и карасукской культур.
Пару слов об этих культурах (положение геномов представителей которых можно посмотреть на графике).
1) Синташтинская культура формировалась из древнеямных и катакомбных племён и местного населения. Синташтинцев связывают с индоиранскими племенами.
2) Андроновская культура также развивается на базе ямной. На западе она доходила до района Урала и Волги, где контактировала со срубной культурой. На востоке андроновская культура распространилась до Минусинской котловины, частично включив в себя территорию ранней афанасьевской культуры. Андроновцев (также как и синаштинцев) относят к индоиранской сообщности.
3) Афанасьевская культура была создана мигрантами из Восточной Европы, в частности, носителями древнеямной культуры, ассимилировавшими местное население. Сменилась карасукской и окуневской культурами.Наследниками афанасьевцев были племена тагарской культуры, дожившей до III в. до н. э., по другой версии, тагарцы были скифами, а потомки афанасьевцев — тохарами, которых именно скифы-тагарцы вытеснили в Синьцзян.Большинство исследователей ассоциируют афанасьевскую культуру с (прото-)тохарами.
4) Окуневская культура — фнтропологический тип населения этой эпохи был смешанного европеоидно-монголоидного происхождения, с преобладанием монголоидного. Как отмечает А. В. Громов, бросается в глаза их морфологическая разнородность — встречаются как чисто монголоидные черепа, так и типично европеоидные, не обнаруживающими никаких следов монголоидной примеси. Проведя обстоятельный анализ антропологических особенностей населения неолита и ранней бронзы, А. А. Громов пришел к выводу, что физический тип окуневцев сложился в результате смешения местного неолитического населения с выходцами из территории Средней Азии и Казахстана (афанасьевцами)
5) Карасукская культура — развилась на основе окуневской культуры под влиянием андроновской культуры.

Интересно, что геном мальчика с южносибирской палеолитической стоянки MA-1 как раз проецируется между центроидами геномов представителей синташтинской, афанасьевской, андроновской, окуневской и карасукской культур. Эти геномы (вернее их центроиды) занимают на графике значительное место. Самый дальний из них — геном алтайца из эпохи железного века (примерно 50 год до нашей эры). Сразу за ним идут все из имеющихся у меня палеогеномов жителей Америков (палеоэскимосы — в том числе и Saqqaq; и «палеоиндейцы» — Clovis, древние жители Перу и палеогеномы Botocudo). Любопытно что последние — геномы Botocudo — хотя и являются самыми современными (1600 год нашей эры), однако в них хорошо заметен «океанский компонент», именно поэтому они смыкаются на графике с палеогеномом австралийского аборигена. В этой связи я вспоминаю оригинальную теорию Тура Хейердала о наличии доисторических контактов между жителями островов Тихого океана и жителями Южной Америки.

Особое место на графики занимают «живые реликты» — онге, один из коренных андаманских народов (адиваси), геномы так называемого «усть-ишимца» (возраст 45000 лет), костенковца (Kostenki-14, возраст 38 700 -36 200 лет), и недавно опубликованный палеогеном Oase из Румынии (возрастом 37000-42000 лет). Они образуют отдельную группу (особенно близки друг к другу румынский палеогеном Oase и усть-ишимец), однако я терясь в догадках о том, что именно означает столь заметная близость этих геномов.

 

 

Eurasian and American paleogenomes

2014 год — год палеогенетики и эпигенетики

Оглядываясь назад на события и открытия, коими в уходящем 2014 году ознаменовалась область исследований генетики человека, можно смело сказать что уходящий год был годом прорыва в двух принципиально различных направлениях — в палеогенетике, изучающей геномы популяций древних людей прошлого, и  в эпигенетике,  с помощью которой можно прогнозировать будущее (здоровье и качество жизни) отдельных людей.


Палеогенетика

В самом начале 2014 года, на руках немногочисленных исследователей  палеогеномов было менее десятка древних геномов человека, опубликованных в предыдущие года. К концу 2014 года опубликован ряд работ, посвященных попыткам генотипирования останков древних людей — от живших несколько тысячелетий назад до «усть-ишимца» с предположительным возрастом около 45 тысяч лет, неандертальцев и «денисовки». Количество таких расшифровок растет все быстрее, что не может не вызывать оптимизма.  Вторая половина 2014 года особенно примечательна как количеством подобных публикаций, так и числом полных геномных NGS-сиквенсов древних людей, размещенных в публичных репозиториях (банках геномных данных). Так, в сентябре в Nature была опубликована окончательная версия работы Lazaridis et al. 2014  «Ancient human genomes suggest three ancestral populations for present-day Europeans». Работа получила широкое освещение в СМИ, поскольку аналитическая выборка сэмплов в этом исследовании включала значительное количествао заново генотипированных (на чипе Affymetrix HumanOrigin) образцов ДНК из древних палеолитических стоянок Сибири (Афонтова Гора, Малта), представителя древней индейской культуры Кловис и палеоэскимоса Cаккак. В работе был представлен  целый  ряд образцов древней ДНК представителей европейских мезолитических и неолитических культур, опубликованных в более ранних работах 2012-2014 годов: Skoglund et a. 2014 «Genomic Diversity and Admixture Differs for Stone-Age Scandinavian Foragers and Farmers»(шведские земледельцы и охотники собиратели эпохи неолита); Olalde et al. 2014 «Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European» (дДНК мезолитического населения Иберийского полуострова) и т.д.

Опубликованные геномы так и остались бы достоянием небольшой группы ученых, и по-прежнему бы использовались бы только для сравнения с абстрактными и анонимизрованных данными референсных популяций человека, если бы усилиями пары любителей (прежде всего усилиям Чандракумара) палеогеномы не были преобразованы в привычные и удобные для популяционного анализа форматы  BAM, VCF и Plink binary, а также в стандартный формат геномных данных от FTDNA. По своей сути, преобразование состояло в сложной процедуре сборки генома из библиотек коротких геномных ридов (в формате sra., в котором эти риды хранятся в репозиториях крупных баз геномных данных). Полученные сборки геномов в формате sam/bam cравниваются с референсным геномом человека, и отличающиеся одиночные нуклеотидные полиморфизмы сохраняются в VCF файл. Здесь нужно помнить о том, что в этой процедуре не учитывался параметр качества сиквенса PHRED score. Традиционно рекомендуется использовать только те базовые пары, PHRED score которых превышает 30, т.е чья точность определения составляет 99.9% (или 1 ошибка на 1000 базовых пар). Кроме того, в этой процедуре разработчик не учел влияние постмортальных изменений ДНК. Cледует помнить, что ДНК, как и любая биомолекула, способна вступать в химические реакции с окружающим миром, тут-то и появляются различные модификации нуклеотидов (особенно по краям фрагментов древней ДНК). Наиболее частая постмортальная мутация — дезаминирование цитозинов (C), приводящая к возникновению урацилов (U) в последовательности древней ДНК, которые при проведении ПЦР многократно копируются «бездушным» ферментом ДНК-полимеразой как тимин (Т). Именно по этой причине, при оценке достоверности снипов в полученных из палеогеномов вариантах особое внимание требуется уделять транзициям C->T и  G->A.  Если при подсчете вариантов окажется, что такие транзиции встречаются чаще ожидаемого, то можно сделать вывод о существенном повреждении палео-ДНК.  И хотя по причине игнорирования этих ограничений, автором было получено большое количество снипов, в некоторых случаях, например при объединении полученных данных NGS c данными генотипирования с помощью классических технологий миркочипов, использование таких данных может существенно уменьшить качество интерпретации.

Тем не менее, благодаря этим усилиям, и не в меньшей степени, благодаря соотрудничеству с порталом Gedmatch и компанией  FTDNA, большинство клиентов ведущих компаний на рынке персональной геномики и генетической генеалогии (таких как 23andme, и FTDNA) могут сравнить свои данные с данными древних геномов либо путем сравнения частото аллелей, либо посегментно сравнивая свои хромосомы с гомологичными хромосомами древних геномов.  Более того, Феликс Чандракумар пошел дальше и разместил 10 наиболее качественных палеогеномов (т.е палеогеномов с наибольшим числом перекрывающихся разными микроматрицами снипов) на FTDNA. Таким образом, с помощью сервиса MyOrigins FTDNA, исследователи могут установить распределение «этно-популяционных составляющих» или «предковых этнопопуляционных компонентов» в этих древних геномов. Нужно помнить, конечно же, что в случае с наиболее древними геномами (геномами неандертальца, усть-ишимца и т.д.) полученное распределение более молодых компонентов (полученных из современных популяций) нельзя интерпретировать буквально.


Эту замечательную функцию дополняют калькуляторы Eurogenes, благодаря которым любой интересующийся человек может посмотреть, какой процент его/ее генома приходится на тот или иной древний геном. Для людей, озабоченных вопросами анонимности, Феликс разработал отдельное десктопное приложение  — калькулятор древней ДНК. Этот калькулятор  показывает, какой процент ДНК (составных сегментов) аутосомной ДНК клиента попадает в каждый из 30 образцов древней ДНК . Другими словами, он показывает  процент общих предков в сравнении современного ДНК и палеоДНК.

Подводя итоги года, можно сказать, что в области изучения древней ДНК все ожидания были оправданы.


Эпигенетика

Под эпигенетикой обычно понимают область знаний о совокупности свойств организма, которые не закодированы непосредственно в геноме, но могут и должны передаваться по наследству.Эпигенетика может быть определена как изучение механизмов контроля активности генов во времени и пространстве в процессе развития сложных организмов. К настоящему времени обнаружены и описаны различные механизмы контроля активности генов, однако в уходящем 2014 году особое внимание ученые уделяли  изучению одного из таких механизмов  — ферментативному (энзиматическому) метилированию самой генетической матрицы, то есть ДНК.

Метилирование — это изменение молекулы ДНК путем присоединения метильной группы (-СH3) к нуклеотиду C, причем необходимо, чтобы за С следовал нуклеотид G. Последовательность нуклеотидов -CG- называется СpG динуклеотидом, или CpG сайтом. Метилирование происходит не во всех клетках одновременно, поэтому говорят о проценте метилирования определенного CpG сайта.метилирование ДНК ощутимо сказывается на её взаимодействии (связывании) с различными белками. Во многих случаях метилирование по цитозиновым остаткам препятствует связыванию специфично реагирующих с ДНК ядерных белков (факторов), которые, собственно, и осуществляют разные генетические процессы, в том числе транскрипцию, репликацию и репарацию.Как известно, метилирование играет важнейшую роль в механизме экспрессии (т.е качественном и количественном проявлени) генотипа в фенотип. оказано, что с изменением профиля метилирования связаны такие заболевания, как различные виды рака, диабет первого и второго рода, шизофрения и т.д. Поэтому важно уметь анализировать профиль метилирования генома, и здесь перед энзимологией расскрываются огромные перспективы. Например, в 2014 году компания «СибЭнзайм» открыла новый фермент, на базе которого разработали новый метод детекции. Он позволяет определять, включен или выключен интересующий вас ген — э то управляющий механизм в организме, именно отключение отдельных генов ученые связывают с развитием рака:

С технической точки зрения, изучение метиляции ДНК происходит с использованием модифицированного варианта ChiPSeq (это комбинированный вариант иммунопреципитации хроматина (ChIP) и высокоэффективного секвенирования ДНК для определения участков связывания ДНК и белков). Не вдаваясь в биолого-химические подробности этого модифицированного метода, его можно кратко описать следующим образом. Каждый CpG сайт измеряется с помощью двух флуоресцентных проб. Флуоресцентный сигнал проб пропорционален соответственно количеству метилированных и неметилированных CpG сайтов в тестируемом образце.  Полученные данные образуют собой профиль метилирования, который удобно сравнивать с различными референсными образцами. Как уже говорилось выше, этот профиль можно использовать не только для медицинских целей (например, для изучения эпигенетических факторов развития различных заболеваний), но и для более общих целей. В недавном исследовании, проведённом специалистами из Калифорнийского университета (UCLA), выявило биологические часы, встроенные в геном человека и оно впервые определило, что внутренние часы в состоянии точно оценить возраст различных человеческих органов, тканей и клеток. Исследователи обратили свое внимание на метилировании – естественном процессе, изменяющем химический состав ДНК. Он изучил 121 набор данных, собранных ранее исследователями, изучавшими метилирование здоровых и раковых тканей человека. Проанализировав информацию по 8000 образцов из 51 типа тканей и клеток со всего тела, исследователи смогли определить, как возраст влияет на уровни метилирования с рождения до 101 года. Он определил, что метилирование работает на 353 участках ДНК, которые изменяются с возрастом. Таким образом, профиль метилирования ДНК представляет собой наиболее надежную метрику для расчетов биологического возраста как отдельных органов, так и всего организма.

Принимая это во внимание, можно сказать что и в последующие года эпигенетику ожидают радужные перспективы.

Неандертальские варианты генов метаболизма жиров у современного человека

Реконструированный геном неандертальца, опубликованный несколькими годами ранее, обеспечил исследователями генетических вариантов высших приматов богатым материалом для изучения на годы вперед. Уже при публикации чернового (драфт) варианта реконструированного генома неандертальца (вернее неандертальцев, поскольку при создании референсного генома неандертальца, также как и при реконструкции референсного генома человека, использовались совокупные геномы нескольких особей неандертальцев), было понятно, что сравнительный анализ геномов неандертальца и современного человека прольет свет на многие, ранее неразрешимые, вопросы эволюции человека.

Например, появился ряд работ, в которых были представлены убедительные доказательства того, что определенные генетически детерминированные варианты микроцефалии у людей появились в результате «вливания неандертальских генов». В другой работе авторы пришли к выводу о неандертальском происхождении ряда характерных аллельных вариантов генов гистосовместимости, распространенных в Европе. В новом исследовании, исследователи анализировали статистику представленности неандертальских вариантов генов в человеческой популяции. Доля таких генов у современных людей не-африканского происхождения в среднем составляет около 1–4 процентов генома. Она почти одинакова в разных популяциях за пределами Африки, однако при более тщательном анализе ученые обнаружили, что у европейцев существуют гены, которые как минимум в три раза обогащены именно неандертальскими вариантами.

Большая часть этих генов оказалась связана с метаболизмом жирных кислот, – веществ, которые входят в состав жира и составляют основу клеточных мембран. Статистический анализ говорит о том, что нендертальские варианты генов были предметом отбора, то есть накапливались у европейцев, а значит они давали некоторое эволюционное преимущество своим обладателям.

 

 

 

Дайджест новостей генетики, геномики и биоинформатки

Благодаря нашумевшему проекту «Геном человека» слов с суффиксом «-ом» становится все больше. Появление вслед за генóмом и протеóмом большого количества новых омов — свидетельство важной тенденции в мире современной биологии. Все больше проводится крупномасштабных исследований, результатом которых становится не описание отдельных молекул, а большие массивы сложно организованных данных. О том, какие новые дисциплины появились в эпоху большой биологии и какое развитие получили «классические» омики, рассказывается в статье ««Омики» – эпоха большой биологии».
Подробности:
http://biomolecula.ru/content/1387

Классические «омы»

Геном

В нашу «постгеномную» эру непросто найти того, кто не слышал о проекте «Геном человека» [1]. Если описать его коротко: 13 лет (1990–2003), три миллиарда нуклеотидов, три миллиарда долларов. Не все ожидания ученых оправдались (последовательность ДНК расшифрована, но не всегда понятно, что она кодирует), но технологическому прорыву в генетических исследованиях последнего десятилетия мы во многом обязаны именно работе над геномом человека. Вслед за ним стали активно секвенировать геномы других млекопитающих: 2002 — геном мыши, 2004 — крысы, 2005 — шимпанзе, 2007 — макаки [10] и так далее (в настоящий момент известны последовательности геномов почти 30 млекопитающих, а дальше это число будет только расти). Кроме этого, расшифровка генома человека привела к появлению специализированных геномных проектов, цель которых — описать работу определенной группы генов, связанных с работой отдельных систем органов или развитием какого-либо заболевания.

Транскриптом

Транскриптом — это совокупность всех молекул РНК, которые синтезируются в клетке, в каком-то органе или ткани. Интересно, что хотя транскриптом и является продуктом экспрессии нашего генома, ни один из них не обеспечивает полное описание другого. Это связано с тем, что, с одной стороны, в геноме немало так называемой «мусорной» ДНК, которая ничего не кодирует (по крайней мере, так кажется). С другой стороны, существуют процессы, которые изменяют РНК после транскрипции: например, процесс редактирования РНК, который, согласно недавним исследованиям [11], распространен очень широко и происходит на более чем 90% всех мРНК. Кроме того, нельзя забывать, что в составе транскриптома есть не только белок-кодирующие мРНК, но и другие виды РНК — начиная от тРНК и рРНК и до различных видов малых регуляторных РНК [12].

Последовательность генома является более-менее постоянной характеристикой организма (хотя есть и исключения — например, последовательности некоторых генов разительно отличаются друг от друга в ДНК лимфоцитов одного человека). Транскриптом же может являться постоянной характеристикой органа, ткани или отдельной популяции клеток, т.к. разные типы клеток выполняют разные функции и экспрессируют разные гены, причем он также может зависеть от условий окружающей среды и меняться во времени. Именно поэтому в последнее время ученые все больше занимаются исследованиями транскриптома клеток определенного типа (например, эмбриональных стволовых клеток) или отдельных органов (например, транскриптома мозга человека [13]).

Протеом

Так как разные клетки в разные моменты времени экспрессируют разные гены, то не только набор РНК не будет одинаковым во всем организме, но и набор белков будет различаться. Это соображение подтолкнуло ученых к исследованию протеома человека — созданию полного перечня белков, которые присутствуют в разных клетках и тканях человека в каждый момент времени. Ученые сформировали международную организацию Human Proteom Organisation (HUPO), которая возглавила проект «Протеом человека» (Human Proteom Project, HPP), запущенный в 2008 году (об этом событии Биомолекула уже писала [14]). Одна из сложностей этого проекта — невероятное разнообразие белков в организме человека, ведь один ген может обеспечивать синтез нескольких вариантов одного белка, которые в дальнейшем могут подвергаться дополнительным химическим модификациям. В результате HPP разделился на два проекта — C-HPP и B/D-HPP. В первом из них разные группы ученых изучаются белки, закодированные на той или иной хромосоме (хромосому 18 изучает группа российских ученых в НИИ биомедицинской химии им. Ореховича в Москве). Во втором проекте изучаются группы белков согласно их биологической роли или вовлеченности в развитие тех или иных заболеваний. К настоящему моменту исследование протеома человека все еще находится в своей начальной стадии, на которой научные группы ищут новые подходы к анализу белков и подбирают биоинформатические алгоритмы [15], однако можно надеяться, что не за горами и первые успехи этого проекта.

Метаболом

Словом «метаболом» описывают совокупность небольших молекул-метаболитов, которые можно найти в клетке, ткани или целом организме. К метаболитам относят молекулы молекулярной массой не более 1 кДа (это как небольшие пептиды, например, некоторые гормоны, так и другие биологически важные органические вещества — антибиотики, липиды и другие вторичные метаболиты). В настоящее время все результаты исследования метаболома собираются в единую базу данных — Human Metabolome Database. Сейчас в этой базе собраны данные по более чем 40 тысячам различных метаболитов. Для каждого из этих веществ создана учетная запись — MetaboCard — которая не только исчерпывающе описывает химические свойства метаболита, но и то, с какими белками или нуклеиновыми кислотами это вещество может взаимодействовать и какое значение оно имеет в клинической практике (связь с заболеваниями или лекарствами).

В настоящее время метаболомика помогает ученым исследовать как физиологию человеческого организма, так и обнаруживать или лечить различные болезни. Одно из широких применений метаболомных исследований — поиск биохимических маркеров различных заболеваний, например, для болезни Паркинсона [16]. В таких исследованиях ученые пытаются обнаружить вещества, изменение концентрации которых в крови может помочь поставить диагноз на ранней стадии и своевременно начать лечение [17].

Существуют множество технологических решений для создания машин для секвенирования ДНК. До недавнего времени самым экзотическим решением считалось решение китайских ученных из Пекинского университета — в своей машине он имплементировали сетки процессоров от известной игровой приставки Sony PS3. Но их превзошли израильские ученные, cоздавшие ДНК, которая считает ДНК. Ученые Израильского технологического института разработали компьютер, состоящий из живых молекул. В основе такого микропроцессора лежат ДНК и ферменты. Этот микропроцессор способен работать непосредственно с генетическим кодом и может его изменять.

Источник: http://www.sciencedaily.com/releases/2013/05/130523180318.htm

Ученые из Оттавы выдвинули теорию о том, как продвинутое математическое моделирование может оказать влияние различных видов терапии, генетических модификаций на терапию рака.

Разработана уникальная методика прогнозирования набора ДНК.

В результате последнего эксперимента, который был проведен американскими учеными из калифорнийского университета, была разработана уникальная методика, позволяющая расшифровать генетический материал человека и при этом точно определить, кому и какой ген достался от родителей.

В научном отчете исследователей говорится о том, что у каждого человека двойной набор хромосом. Исключением являются только половые хромосомы. Все дело в том, что эти копии не являются идеальными, следовательно они могут отличатся между собой.

 
Один из авторов эксперимента, профессор Бинг, в ходе презентации новой методики заявил, что значение технологии трудно переоценить. Все дело в том, что новый метод позволяет с высокой точностью определить предрасположенность к разным заболеваниям. Более того, методика также позволяет определить и сами болезни.

Необходимость такого исследования была обусловлена нынешней ситуацией. Ведь известно, что в последние годы количество передаваемых по наследству различных патологий сильно увеличилось. Следовательно, пришлось искать способы решения данной проблемы.

Научные сотрудники представили красочный пример, который имеет прямое отношение к развитию злокачественной опухоли. Недавно стало известно, что раковые заболевания — это ни что иное как результат генетических мутаций. И вот как раз новая методика позволила определить точное место расположения мутации, а также возможность ее развития. Смысл состоит в том, что в случае возникновения мутации в одной хромосоме, вторая хромосома способна полностью компенсировать все недостатки, а это ведет к полному выздоровлению человека.

Кроме того, стоит подчеркнуть, что при помощи данной методики существует возможность точного определения шансов приживания донорских органов после их трансплантации. Такая возможность является востребованной в том случае, когда необходима срочная операция по пересадке органов. Естественно, что в данной ситуации времени на проведение дополнительных тестов нет.

К слову, методика также позволяет выяснить миграционные пути человечества. Конечно, что этот вектор не мог не заинтересовать ученых. Исходя из этого, планируется проведение серии дополнительных экспериментов.

Ссылка sbio.info

Новости от сибирских генетиков

Как сообщают СМИ,  новосибирские учёные научились разрезать ДНК человека с помощью особого фермента

Составлять «экономный» геномный портрет человека научились учёные Новосибирского предприятия SibEnzyme с помощью особого метода подготовки ДНК. Об этом ИТАР-ТАСС в рамках Первого международного форума технологического развития «Технопром» рассказал гендиректор предприятия Евгений Дубинин.

«С помощью современной методики геномного секвенирования можно получить персональный генетический «паспорт». Изучив его, врач заранее выявляет предрасположенность человека к генетическим заболеваниям, возможные способы лечения и наиболее эффективные лекарства. Стоимость создания геномного портрета в настоящее время высока, она не позволяет внедрить эту технологию в массовую медицину», — отметил Дубинин.

Он заявил, что можно вдвое удешевлять этот процесс, заранее расщепляя ДНК с помощью особого фермента. В геноме человека за кодирование информации отвечает только 5-7% его последовательностей. Фермент разрезает ДНК на фрагменты определенной длины в строго определенных местах. Для анализа выбирают только несколько фрагментов, исключив ненужные, и именно эта «ферментная» подготовка ДНК удешевляет исследование. Дубинин подчеркнул, что, несмотря на то что рынок геномного секвенирования находится на начальном этапе формирования, в ближайшее время его ждет интенсивный рост. По оценкам экспертов, его прогнозируемый объём в течение пяти-десяти лет — 100 миллиардов долларов.

В другом сибирского городе — Томске — также находится примечательная лаборатория Томский НИИ медицинской генетики (возглавляемая известным генетиком В.Степановым), одного из ведущих медико-генетических учреждений России. НИИ был основан в 1982 году и является первым специализированным институтом в области медицинской генетики на территории Сибири и Дальнего Востока. Сегодня деятельность института включает осуществление специализированной медико-генетической помощи населению, научные исследования и профессиональное образование в области медицинской генетики.

В лаборатории работает множество замечательных ученных, из которых для ДНК-генеалогии наиболее важен Владимир Харьков.

Har-kov

Благодаря его научному рвению была не только определена структура мужского генофонда многих сибирских народов, но и раскрыта недавняя серия тягчайших преступлений на сексуальной почве (в ходе анализа Y-хромосомы, Владимир установил не только национальность маньяка-насильника, но и место вероятного происхождения/жительства с точностью до села). Ув. Валерий Запорожченко поделился подробностями этой истории, озвученной на одной из последних конференций.

Не так давно к Владимиру Харькову из Томского института медгенетики обратились следователи СК по Новосибирской области. Искали они маньяка насиловавшего девочек-дошкольниц. Насилуя, он никого не убивал, иногда просто мастурбировал на глазах детей, и как правило оставлял на месте преступления биологический материал — сперму. Девочки описали его как описывают кавказцев. Следователи ловили местных выходцев с Кавказа всех подряд, типировали, но тщетно, профили не совпадали. Судебные генетики не справились, пришлось обратиться к эволюционистам. Владимир довольно быстро понял, что владелец спермы не кавказец, а выходец из Бурятии, причем выборки собранные лабораторией позволили точно идентифицировать не только национальность извращенца, но даже определить происхождение мужской линии с точностью до двух соседних районов. Получив ориентировку, следователи первым делом изучили местные «висяки», и обнаружили, что незадолго до первого новосибирского эпизода было несколько преступлений аналогичного почерка в Улан-Удэ. Пришлось перетрясти всю базу прописки — кто из указанных районов ее сменил на новосибирскую в последние годы. И что же, работа была вознаграждена — появился подозреваемый, идеально соответствующий ориентировке. Его тормознули на дороге под видом гибдд. Скрутили. Отпирался. Наперли. Признался! Впрочем, даже если бы не признался, его приперли по образцу ДНК который оказался идентичен полученному из спермы. Кстати, преступник бурят только по отцу, от которого и получил выдавшую его У-хромосому.

Таким образом была еще раз продемонстрирована плодотворность и перспективность изучения игрек-хромосомы в ДНК-криминалистике.

Кроме того, Владимир не чурается общения в Интернете с любителями ДНК-генеалогии, и некоторое время даже участвовал в работе форума Молген.