Citizen scientists определили терминальный снип индейского мальчика

В феврале было опубликовано замечательное исследование Rasmussen et al., наглядно доказавшее взаимосвязь древней индейской популяции (вернее одного из ее представителей — мальчика, получившего «научное» имя Anzick1) с современными популяциями Америки и Евразии. Захоронение, обнаруженное в Западной Монтане, было отнесено археологами к культуре Кловис (Clovis) и соответствующим образом датировано (12,6 kya).

The genome of a Late Pleistocene human from a Clovis burial site in western Montana

Rasmussen et al., 2014
Nature 506, 225–229 (13 February 2014) doi:10.1038/nature13025
Received 03 November 2013 Accepted 14 January 2014 Published online 12 February 2014

Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 14C years before present (BP) (13,000 to 12,600 calendar years BP)1, 2. Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology3. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans2. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum4. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 14C years BP (approximately 12,707–12,556 calendar years BP) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal’ta population5 into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years BP. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.

http://www.nature.com/nature/journal/v506/n7487/full/nature13025.html

Приведу цитату из вышеуказанного исследования.

«Мы определили Y-гаплогруппу образца Anzick-1 как Q-L54* (хM3) и используя 15 ранее проанализированных последовательностями Y-хромосомы построили дерево, чтобы проиллюстрировать филогенетическое контекст, в рамках гаплогруппы Q. Используя данные об одиночных нуклеотидных полиморфизмах (SNP), мы использовала данные Anzick-1, чтобы оценить время дивергенции между субкладами Q-L54* (хM3) и Q-M3, двух из главных вариаций Y-хромосомы,  характерных для Америки. Нами получено время дивергенции примерно 16 900 лет назад (95% доверительный интервал: 13 000 — 19700 лет назад». 

nature13025-sf2

При этом сравнение  генома Anzick-1 с 52 современными индейскими популяциями выявило большую близость  к ним, чем к современным популяциям Евразии. Причем он оказался ближе к популяциям Центральной Америки, чем Северной.

nature13025-f2

Но, несмотря на явно прорывный характер этой работы для филогении гаплогруппы Q, авторы не пошли дальше определения L54 в качестве терминального снипа.

Отметим, что L54  достаточно «широкий» снип c географической точки зрения. Он распространен по обе стороны Берингова пролива.В частности, в Евразии остался субклад L54+ L330+, представители которого зафиксированы в ряде популяций: от коренных народов Сибири до евреев-романиотов в Греции. 

Исследование проведенное российскими сitizen scientists из группы YFull, занимающейся интерпретацией данных полного сиквенса Y-хромосомы, позволило заглянуть глубже. Anzick1 принадлежит к субкладу L54+ Z780+. Причем данные полного сиквенса его Y-хромосомы, приведенные в дополнительном материале к исследованию Rasmussen et al. (2014), позволили уточнить филогению гаплогруппы Q в целом и даже выделить ещё один субклад L54+ Y2816+

1618571_414955885305304_560427902_n

Еще раз о эволюции «динарской клады» гаплогруппы I2a1b и славянизации Балкан

Как известно моим постоянным читателям, я уже на протяжении почти 5 лет пытаюсь опровергнуть устоявшееся в популяционное генетике представление о том, что частотный пик распространения на Балканах гаплотипов так называемой динарской клады гаплогруппы I2a1b можно объяснить  непрерывной генетической приемственностью населения этого региона со времен палеолита. Даже само кодовое название «ветви» — «динарская» — носит условный характер. Вопреки популярной точки зрения,  на самом деле название восходит не к трудам Нордтведту (который его просто популяризировал), а к известной cтарой статье Barac et al.2003. Авторы описали Dinaric Modal Haplotype в его 5-маркерной форме «(DMH: 16–24–11–11–13) by DYS19–390–391–392–393, respectively». Позднее он был расширен до 17, 37,67 и 111 маркеров и обнаружен не только на Балканах, но и по всей Восточной Европе

К сожалению, большинство из моих убедительных аргументов остаются без должного внимания со стороны профильных популяционных генетиков.  На дворе уже 2014 год и что мы видим в свежих работах по популяционной генетике населения Восточной Европы? Собственно говоря, ничего нового. В статье В.С. Панкратова, О.Г. Давыденко «Структура генофондов населения двух регионов Белорусского Полесья» 2013, стр.46 читаем: «Различие частот гаплогруппы I2a2 между популяциями «Вичина» и Западного Полесья не является достоверным, соответственно, она могла попасть в «Вичин» из других регионов Западного Полесья, при этом не происходило событий, приводящих к сильному генетическому дрейфу. Напомним, что для данной гаплогруппы характерна более высокая частота в Полесье, чем в других частях Беларуси, что предположительно является результатом мигра- ции ее носителей из потенциального балканского ледникового рефугиума на территорию юга современной Беларуси. Таким образом, заселение «Вичина» носителями Y-хромосомы I2a2 произошло либо так же, как и заселение других регионов Западного Полесья (в результате миграции с Балкан), либо позже в результате миграции с прилежащих территорий).»  Что характерно — здесь эта гаплогруппа (а речь идет конечно же о печально известной динарской субкладе этой гаплогруппы) названа I2a2 по старой терминологии, а в таблице частот уже по более новой I2a1. Это обстоятельство указывает на то, что статья писалась (или дописывалась) в разные времена. Похоже это общее место всех работ в области популяционой генетики,  так или иначе затрагивающих проблематику балканского палеолитического рефугиума, уже никогда не устранить. И это несмотря на то, что открытие новых снипов и соответствующие изменения в филогенетическом дереве гаплогруппы I2a-P37.2  дают надежные доказательства верности моей первоначальной гипотезы. Вот так, например, выглядит разметка филогенетического древа I2a-P37.2 по состоянию на начало 2014 года.

Еще более глубокая структура субкладов I2a1b приведена в черновой рабочей схеме компании Yfull.

I2_M423_20140203

Несмотря на интуитивно понятную структуру организации информации в филогенетических деревьях (кладограммах), они не могут быть использованы в качестве окончательного аргумента при строгом логическом доказательстве какой бы то ни было гипотезы.
Так уж повелось, что при аргументировании своей позиции в попгенетике надо оперировать языком сухой статистики и математики. Выводы и модели могут быть верными, частично неверными или даже полностью неправильными. Но если они выражены в формально-математическом виде, они имеют полное легитимное право на принятие к обсуждению в ситуации рациональной и конструктивной дискуссии. Поэтому статья (с рабочим названием » ‘Динарская субклада’ I2a1b: маркер славянской экспансии на Балканы?»)  должна  включать в себя, к примеру,  графическое отображение графа филогенетической сети гаплотипов динарской клады, но традиционными методами эту задачу решить крайне сложно. Я наткнулся на интересную альтернативу для тех случаев, когда вместо филогенетической схемы гаплотипов нужно строить гаплотипные сети (haplotype networks), но из-за больших объемов данных построить их в стандартной попгенетической программе Fluxus-Network в течении разумного времени не получается.

Вместо классического, но медленного FN можно использовать бесплатное программное обеспечение Arlequin > HapStar > Graphviz/Gephi/R-Graphviz. Первая попытка визуализации в Gephi:

1526576_10202941657572217_2008628619_n
Поскольку с эстетитческой точки зрения эта попытка была не очень удачной, то я решил повторить эксперимент с визуализацией MST динарского кластера гаплогруппы I2a — на этот раз в цветном исполнении.  В самом центре белоруские гаплотипы, окруженные украинскими гаплотипами. Ветвь Вереничей (Belarus19) в кластере гаплогруппы I2a: Belarus32->Bulgaria68->Poland365->Belarus 19, и очень близко к центру.

1048962_10202961233661607_1211213762_oЗатем я  частично переработал граф сети гаплотипов динарского кластера гаплогруппы I2a1b. Алгоритм Force Atlas 2, хотя и позволяет разглядеть мелкие детали размещения отдельных гаплотипов, — в конечном итоге дает уникальную структуру графа, и эта структура существенным образом отличается от привычной структуры сети гаплотипов в работах попгенетиков. Исходя из этого, я решил ограничиться применением Force Atlas, а затем сгруппировал перекрывающиеся узлы графа в одну группу. Благодаря этому незамысловатому трюку, на выходе я получил гораздо более приемлимый с точки зрения академического стандарта графический вариант. Это, конечно же, не штейнеровское MP-дерево гаплотипов в Fluxus Network, однако и оно дает неплохое представление о характере развития динарского кластера.

Задача: как вы думаете, где находится визуальный центр равновесия графа?

Подсказка: Иногда люди ошибочно полагают, что предковые гаплотипы — это гаплотипы в самом большом кластере. Например, в данном случае — в оранжевом метаузле. Однако это предположение работает только в том случае, если в популяции не было быстрого роста и экспансии. В противном случае может статься так, что носитель маргинального гаплотипа способен, в силу случайных и неслучайных причин вызвать эффект основателя, породив множество потомков. В таких случаях мы можем наблюдать картину характерную для данного графа. И это далеко не единственный случай

1555325_10202973979300240_689832560_n

Еще немного покопался в графе (MST) гаплотипов динарского кластера I2a1b. На полпути зум в Gephi сломался, и процесс «причесывания» начального графа пришлось заканчивать уже в Adobe Illustrator и Adobe Photoshop. Но надеюсь, что теперь-то граф представлен в удобоваримом формате:


1536644_10202976299438242_1824667689_nВ процессе подготовки материала к своей статье о динарской субкладе I2a1b, я сделал график многомерного шкалирования по вычисленной в Арлекине матрице Fst-расстояний между 42 популяционными группировками гаплотипов динарской субклады.

1656113_10203040706128369_1678657762_n

Примечательно что скорректированный коэффициент детерминации R2 в данном случае негативный (что редкость), впрочем этого можно было ожидать так как сам коэффициент детерминации R2 достаточно близок к нулю (R2=0.015), то есть данная модель — разбивка носителей по этногеографическим группам — объясняет 1.5% всей статистической вариативности всей выборки. Кроме того, p-value=1, а это означает, что мы должны принять нулевую гипотезу (отсутствие корреляции). Это близко к полученным значениям AMOVA, согласно которым на генетическое разнообразие между этническими группами приходится только 1% всего генетической разнообразия выборки. 98% приходится на разнообразие между отдельными гаплотипами. Говоря простыми словами, в выборке динариков-I2a1b отсутствует значимая кластеризация по этническому признаку.

Более надежное доказательство вышеозвученного вывода было получено при выполнения теста Мантеля, в котором определялась наличие и надежность корреляции между матрицнй географических расстояний и матрицы попарных Fst между группами популяций. Значения p-value c двухсторонним критерием (two-tailed p value) значительно больше 0.05, что означает  только одного — значимой корреляции не наблюдается, несмотря даже на приличный размер выборки — 774 гаплотипа.

Разумеется, если бы моя статья сопровождалось только схемами и результатами вычислений, то тогда это было бы статья стандартного формата популяционной генетики. Однако, как мне представляется, гораздо интереснее рассмотреть вопрос эволюции и миграции носителей «динарской клады» I2a1b в интердисциплинарном ключе. В этой связи необходимо посмотреть на эту проблему глазами историка, тем более что время экспансии  «динарцев» отлично накладывается на временной интервал экспансии славян на Балканы.

Как я уже отмечал ранее, в журнале Studia Slavica et Balcanica Petropolitana cодержится немало интересных статьей, в которых освещается современное состояние вопроса о так называемой славянизации Балкан во второй половине первого тысячелетия нашей эры.
По непонятной причине, в этом вопросе задают тон те слависты-историки, которые занимаются изучением проблем хорватского этногенеза. По этой причине в журнале представлены сразу 4 альтернативные взгляда на происхождение хорватов, которые представляют собой не столько развитие традиционных конкурирующих теорий автохтонности хорватов (Иван Лучич, Фердо Шишич, Франьо Рачки и пр.) versus миграционной модели (кульминировавшей в дискурссе иллиризма в середине 19 века), сколько новый тренд постмодернистского переосмысления многих традиционных понятий обеих теорий и исторических источников в виде идеологических конструктов и дискурссивных формантов.

  1. Алимов Д. Е. В поисках «племени»: этногенетическая модель «Венской школы» и проблема появления хорватской этничности.
    Алимов отвергает примордиалистский подход к хорватской этничности, в которой далмацкие хорваты виделись осколками первичной хорватской этничности. Термин «хорват» гентилистский, а не этнический: в Аварском каганате этот термин обозначал одну из (много) этно-социальных групп gentes разного происхождения, объединенных не родовыми связями, а принадлежностью к общей воинской группе.Может ли хорватский гентилизм служить свидетельством неславянского характера хорватской этничности или его следует понимать как закономерный социальный продукт миграции со свойственным этому процессу выдвижением на передний
    план — в том числе и в процессах групповой идентификации — воинского дружинного элемента? В свое время Х. Л овмяньский, размышляя над путями формирования так называемых «больших племен» в славянском мире, предположил, что в условиях славянских миграций и колонизации новых пространств закрепить название старого «большого племени» на новом месте, образовав новое «большое племя» со старым названием, могли только хорошо организованные воинские группы [34, Подобным же образом рассуждает и М. Анчич, полагая, что под хорватами и сербами Константина Багрянородного следует разуметь правящие слои соответствующих политий, состоявшие из знатных родов. Во время распада Аварского каганата разные группы хорватов укрылись кто в горах Карпат, кто в Судетах, кто в Восточных Альпах, кто на Динарском нагорье. Поскольку обозначение хорват обозначал лишь принадлежность к определенной социальной группе аварского каганата, то между карпатскими, силезскими, альпийскими и далматскиим славянами нет родства. То есть хорватская идентичность есть продукт трансформации соционима в этноним.
  2. Известная работа Флорина Курты «Создание Славян».
    Если выразить смысл этой работы одним предложением, то автор отрицает самое существование славян до их встречи с византийцев. Само слово славяне и понятие славянства есть продукт византийского имперского дискурса, и первоначально включал в себя не только славян в собственном смысле этого слова, но и германцев, иранцев, фракийцев и так далее.Заключительный раздел труда Ф. Курты суммирует выводы исследования. Особенно важным представляется вывод о том, что раннеславянская этничность не основывалась на языковой общности. (При этом, автор совершенно справедливо замечает, что сам этноним словене появляется гораздо позднее и лишь на периферии славянского ареала.) «Создание славян, — пишет Ф. Курта, — явилось не столько результатом этногенеза, сколько итогом инвенции, воображения и систематизации византийских авторов. … Это была… Самобытность сформированная в тени Юстиниановых крепостей… Имеются существенные основания утверждать, что эта самобытность была значительно более сложной, чем дублет «cклавены — анты» навязанный византийской историографией. … Первое отчетливое утверждение «мы — славяне» происходит из Повести временных лет XII в. Этой летописью завершается процесс создания славян…» (с. 349-350).
  3. Мягкий вариант синтеза «готской теории» и «автохтонтизма» в статьях Мужича. На основании источников, содержащих информацию о переселениях на современную хорватскую территорию, автор приходит к выводу, что именем Sclavi(ni) в принципе назывались полиэтничные переселенцы на Балканах. Суммируя результаты антропологических и генетических исследований, автор заключает, что современные хорваты по преимуществу являются потомками автохтонного населения Балкан. Автор доказывает, что хорватский народ возник как новая этническая общность на Балканах этническим соединением и социальным взаимодействием пришедших с севера воинских контингентов «гото-склавинов» и проживавших здесь различных популяций более многочисленных автохтонов.
  4. Постмодерниcтский-постколониальный этнодискурс австралийского исследователя Дэниела Дзино — книга «Becoming Slav, becoming Croat: identity transformations in post-Roman and early medieval Dalmatia» (Leiden; Boston: Brill, 2010). В книге на методологической платформе постмодернизма и конструктивистского подхода к этничности рассматриваются этносоциальные процессы, протекавшие на территории Далмации (Хорватия) в период поздней античности и раннего Средневековья.

<

p>Попробуем подвести промежуточные выводы этих моделей. Ведущие хорватские историки-слависты, а также некоторые российские «хорватоведы» рассматривают процесс генеза славян в виде некоего подобия черного ящика. Напомню: черный ящик — это система, в которой внешнему наблюдению доступны лишь входные и выходные величины, а ее внутреннее устройство и протекающие в ней процессы не известны. В этом смысле, Аварский кагант действительно хорошо подходит на роль «черного ящика». Большинство исторических сведений об Аварском каганате касается лишь его внешней политики (прежде всего, военных действий). Что касается внутреннего устройства этой кочевой империи, то оно по-прежнему остается terra incognita для историков в силу скудности, фрагментарности и противоречивости имеющихся источников о государственно-административном устройстве этого государства. Поэтому приходится либо интерпролировать имеющиеся сведения о социально-политической структуре других кочевых империй (тюрков, гуннов, монголов), либо просто фантазировать.
Согласно мнению Курты и его сторонников, процесс этногенеза славян протекал следующим образом. Где-то в середине 6 века нашей эры некие ещенеславянские сообщества людей попадают в «черный ящик» Аварского каганата. Спустя несколько поколений «инкубации» славянства из черного ящика Аварского каганата выходит некая, как говорили марксисты, «новая сообщность людей». Эта «новая сообщность», nihilnominus Sclavi («ничтожные именем склавины», как выразился один франкский летописец) внезапно (!) появляется в поле зрения византийцев, «выходя из-за тени построенных Юстинианом на Дунае крепостей» (Ф.Курта). Именно им византийцы и дают имя «славян», имя которых потомки разнесут по всей восточной Европе.

Я конечно же понимаю, что перед хорватскими историками перед самым кануном вступления Хорватии в ЕС, был поставлен политический заказ воскресить старые идеи неславянского происхождения хорватов времен младонационалистического иллирического романтизма в новом, постмодернистском исполнении. Перефразируя вышеупомянутого Д.Дзино, суть этого идеологического заказа можно выразить следующим девизом: «Перестанем быть славянами -станем европейцами!». Но зачем так ненавидеть свои корни, cвое происхождение и свои истоки — это мне непонятно.

Этот конструктивистский подход к вопросу этнической идентичности, согласно которому Аварский каганат выступил в роле катализатора этноформирующей реакции, в результате которой миру была явлена славянская идентичность, мне представляется сомнительным. Здесь уместно вспомнить этническую ситуацию в более поздних империях, например в империи Габсбургов, СССР, ту же Югославию времен Броза Тита. Пример СССР особенно поучителен, особенно если мы учтем тот факт, что СССР существовал примерно столько же лет, сколько и власть Аварского каганата на территории современной Хорватии (не больше 70-80 лет). Хорошо известно, что одной из основной задач национальной политики CCCР было создание новой общности людей — «homines sovetici» («советские люди»). Однако как показала история, в процессе крушения империи (также как и в Югославии) этноцентробежные силы не только не исчезли, но скорее даже усилились. Нет никакого основания полагать, что во времена падения Аварского каганата все могло выглядеть иначе.

При сопоставлени этих моделей мы неизбежно сталкиваемся с закономерным вопросом: а что генетика или ДНК-генеалогия могут прояснить в хитросплетениях исторических фактов?  К счастью, многие историки начинают всерьез интересоваться методами популяционной генетики и ДНК-генетика применительно к вопросам этногенеза и миграции отдельных исторических этносообществ. К несчастью, нейтральные выводы генетики зачастую искажаются или подгоняются историками под те априорные модели, которых эти историки придерживаются. Вот, в свете этой переводной статьи хорвата Ивана Мужича, становится ясно, каким образом происходят злостные манипуляции с интерпретацией данных популяционно-генетического анализа. Этот автор придерживается комбинированной модели происхождения хорват (смешивание автохтонов и готов), поэтому он интерпретирует выкладки популяционной генетики по структуре Y-хромосомного генофонда хорват исключительно в свете предпосылки антропологической и генетической приемственности населения Балкан со времен палеолита.

1743460_10203015436016632_1110433635_n
Такие манипуляции нуждаются в опровержении — и именно эту задачу я считаю главной в своем исследовании.

Общие вопросы филогенетики

Согласно общепринятому определению, филогене́тика, или филогенети́ческая система́тика — область биологической систематики, которая занимается идентификацией и прояснением эволюционных взаимоотношений среди разных видов жизни на Земле, как современных, так и вымерших. Эволюционная теория утверждает, что сходство среди индивидуумов или видов часто указывает на общее происхождение или общего предка. Потому взаимоотношения, установленные филогенетической систематикой, часто описывают эволюционную историю видов и их филогенез, исторические взаимоотношения между ветвями организмов или их частей, например, их генов. Филогенетическая таксономия, являющаяся ответвлением, но не логическим продолжением филогенетической систематики, занимается классификацией групп организмов согласно степени их эволюционных отношений.

В понятийный аппарат ДНК-генеалогии филогенетика вошла в виде одного из своих направлений — кладистики. Характерные особенности кладистической практики состоят в использовании так называемого кладистического анализа (строгой схемы аргументации при реконструкции родственных отношений между таксонами), строгом понимании монофилии и требовании взаимно-однозначного соответствия между реконструированной филогенией и иерархической классификацией. Кладистический анализ — основа большинства принятых в настоящее время биологических классификаций, построенных с учётом родственных отношений между живыми организмами. Разумеется, кладистический анализ в ДНК-генеалогии не подразумевает анализ родственных отношений между таксонами-биологическими видами. Тем не менее, в силу схожести филогенетической схемы и привычной генеалогу схемы родственных отношений (генеалогического дерева), некоторые методы кладистики были взяты на вооружение и в ДНК-генеалогии. В-первую очередь, это касается филогений Y хромосомы и митохондриальной ДНК, восходящих к Y-хромосомному Адаму и митохондриальной Еве.

При этом нужно помнить, что генетические «Адам» и «Ева» -это своего рода фантомы, созданные масс-медиа. Под ними понимается скорее некая условная точка коалесценции всех существующих hic et nunc генетических линий; кроме этого, следует помнить они  в определенном смысле асинхроничны и смещаются по временной шкале по мере вымирания той или иной генетической линии. Можно конечно вычислять общего предка до первейшего организма, только встает вопрос в самоценности такого анализа. А так — «генетические Адам и Ева» — весьма хороший символ общего происхождения человечества, особенно для современной евроцентричной цивилизации, во многом построенной на библейско-христианском  символизме.

Теоретически можно стоить подобные филогении и по снипам в аутосомах. И хотя в последнее время много пишут  про «атавистические» снипы и малорекомбинантные локусы в аутосомах, они все же не дают столь же убедительной филогении, как Y и mtDNA. Но мне кажется, что для людей, которые верят в происхождение современного человечества из Костенок, не имеют значения ни гомозиготность, ни гетерозиготность, также как и рекомбинантность/нерекомбинантность локусов.

Эксперимент номер 1

В течении периода между 2008-2010 гг., я усиленно занимался проблематикой филогенетики в применении к ДНК-генеалогии. Например, еще в далеком 2009 году я построил по известной выборке гаплотипов из статьи Роевера 2008  года «быстрое» дерево с гаплотипами гаплогруппами I. Модальные гаплотипы не вводил, корень получен мурковской (здесь и далее речь идет о замечательной программе Валерия Запорожченко MURKA) опцией MIDPOINTGROUP. Гаплотипы идут в том же порядке, что и гаплотипы I в файле у Рувера (название области +порядковый номер  гаплотипа по области).  Было найдено всего около 60 деревьев, из них я выбрал около 15 вариантов. Соотношение субкладов абсолютно иное, нежели в статье известного шарлатана Клесова, например I2b всего 8 штук (вместо 22 у Клесова), правда возраст клада такой же как у Клесова -в пределах статистической погрешности 10 000 лет. I2a всего около 70 гаплотипов.

Penzen-9

14,21,15,10,15,16,13,12,31,15,10,12,14,20,14,21,11

Smolen-2

15,23,15,10,15,15,14,12,32,15,10,11,14,20,15,21,11

Orlov-3

15,23,15,10,15,15,14,12,31,16,10,11,14,20,15,22,11

Nowgorod-3

14,23,15,10,13,17,14,12,32,18,10,11,14,20,13,21,11

Brian-4

15,23,15,10,15,15,14,12,30,16,10,11,14,19,16,22,11

Brian-5

15,23,15,10,15,16,14,12,32,17,10,11,14,20,22,21,11

Penzen-16

15,23,16,9,15,16,14,12,30,15,10,11,14,20,23,21,11

Tambov-6

15,24,15,9,15,16,14,12,30,16,10,11,14,20,14,21,11

Поскольку разрешение файлов огромное 9543*7672, то я не могу их выложить. Добавил всего 5 основных модалов из двух десятков, и результат оказался намного лучше, поскольку дерево было перестроено с учетом модальных гаплотипов всех субкладов I. Структура построенного дерева проиллюстрировала известный парадокс — хотя сама гаплогруппа I считается «старой», все ее  густонаселенные ветви (или в терминах кладистики — клады ) — «молодые». Старых ветвей практически не осталось, что свидетельствует о древности I.

Возраст я не считал, хотя значение ро получилось равным 14 (а это достаточно много). И поскольку древо считалось быстро, значение 1 ро была взято равным 1000 годам. Возраст меня особо не интересовал, задача была другая — выявить в древе наличие трех ветвей.  Кроме того, в ходе анализа я пытался определить место, где произошло разделение ветвей. Если самые старые  ветвим I2 на Кавказе (допустим такой вариант), то разделение на I1 и I2 было именно там или раньше; но это не объясняет того, почему I1 в циркумкавказской зоне практически не видно.  Видимо, c этих позиций популяционные генетики и рассматрыва Балканы, как предпочтительное место начала экспансии расселения I в Европу. Однако тут возможна масса альтернативных объяснений. Например, протопопуляция могла разделиться на 2 группы — первая  ушла на Кавказ пошла, а вторая на Балканы. Или с Кавказа ушла часть людей, еще до разделения, и в ней произошло выделение линии I1.

Структура дерево выявила еще ряд актуальных проблемы, например гаплотипы I2b оказались гораздо ближе к корню по медианно сети, чем I1  и I2а. Этому имеется свое объяснение. В 2008 году уважаемый программист Вадим Урасин провел несколько недель в попытках доработать параметры median-joining таким образом,  чтобы он корректно распределял гаплотипы в соответствии со снипами. Одним из способов улучшение топологии было использование так называемх весов маркеров.  Однако, Поскольку расстояние между I2b*, I2b1 и I2b2больше, чем между I1 и I2a, все проги давали сбой.

В поисках решения проблемы я обратился к программе TNT, известной своей быстродействием.

Формат входного файла в TNT выглядит следующим образом

xread

‘optional title, starting and ending with quotes (ASCII 39)’

nchar ntax

Taxon0   1011110000

Taxon1   1111111000

Taxon2   1011110000

Taxon3   1111111000

;

Альтернативные «веса» маркеров, предложенные Урасином

DYS 393 0,00138 54

DYS 390 0,00235 50

DYS 19/394 0,00209 51

DYS 391 0,00164   53

DYS 385a 0,00252 49

DYS 385b 0,00372 46

DYS 426 0,00014 73

DYS 388 0,00103 56

DYS 439 0,00285 48

DYS 389-1 0,00194 51

DYS 392 0,00071 60

DYS 389-2 0,00397 45

DYS 458 0,00464 44

DYS 459a 0,00077 59

DYS 459b 0,00108 56

DYS 455 0,00028 67

DYS 454 0,00048 63

DYS 447 0,00345 47

DYS 437 0,00081 58

DYS 448 0,00150 53

DYS 449 0,00660 41

DYS 464a 0,00234 50

DYS 464b 0,00293 48

DYS 464c 0,00278 48

DYS 464d 0,00281 48

DYS 460 0,00251  49

GATA H4 0,00210  51

YCA IIa 0,00115  56

YCA IIb 0,00155  53

DYS 456 0,00376  46

DYS 607 0,00249  49

DYS 576 0,00593  42

DYS 570 0,00610  42

CDY a 0,00703    41

CDY b 0,00843    39

DYS 442 0,00299    48

DYS 438 0,00077  59

DYS 531 0,00063  61

DYS 578 0,00025  68

DYS 395S1a 0,00054 62

DYS 395S1b 0,00076 59

DYS 590 0,00017 71

DYS 537 0,00146 54

DYS 641 0,00051 62

DYS 472 0,000006 99

DYS 406S1 0,00198 51

DYS 511 0,00156 53

DYS 425 0,00132 54

DYS 413a 0,00287 48

DYS 413b 0,00244 49

DYS 557 0,00361 46

DYS 594 0,00067 60

DYS 436 0,00020 70

DYS 490 0,00032 66

DYS 534 0,00520 43

DYS 450 0,00029 67

DYS 444 0,00324 47

DYS 481 0,00478 44

DYS 520 0,00241 49

DYS 446 0,00361 46

DYS 617 0,00112 56

DYS 568 0,00087 58

DYS 487 0,00141 54

DYS 572 0,00132 54

DYS 640 0,00048 63

DYS 492 0,00052 62

DYS 565 0,00081 58

Программа TNT также принимает  файл в формате Нексус. Для преобразования ych -> Nexus был написан конвертер уважаемого А.Лифанова. Изначально автором Мурки планировался свой собственный конвертер RDF <-> Nexus, однако по ряду причин он так и не был реализован. В этой связи стоит отметить, что TNT единственная программа наряду с MURKA, которая дозволяет вычисления по произвольной матричной метрике. В поисках обходных путей и в связи с трудностями с поддержкой форматов, мне пришлось воспользоваться командой  prepare из дистрибутива MURKA (опции MX BINARIZE). С ее помощью, я сделал state matriх, немного отредактировал ее в родной формат .tnt, вставив файл снипы со значением 1 и 0, и загрузил ее в прогу. Затем возникал другая проблема, как сохранить в графическом формате филограммы, которые находит TNT. Я пробывал сохранять в .nex, tre и в метафайлы emf, однако они нигде не открываются. Я посмотрел формат .tre TNT, в отличие от читаемого Мегой файла с одним древом, в TNT-овском файле прописываются все древа.

Интересен тот факт, что формат в TNT, чем-то напоминает datamatrix в бинарном RDF, однако между ними нет совместимости.  Вадим У. показал скрипт вызывающий Мурку, но, к сожалению, частая смена Валерием Запорожченко параметров сделала свое нехорошее дело. В скрипте потерялась опция UBRSPH — она не делает ничего нового, просто в последних трех версиях вызов с ней эквивалентен тому что было раньше без нее. Валерий также рекомендовал использовать BNDREPEATS2 и даже BNDREPEATS3 вместо BNDREPEATS1, но это уже дело вкуса и не столь жестко — эффект заметен не вcегда.

Эксперимент номер 2

После печального эксерзиса с построением «быстрого» дерева гаплогруппы I я несколько поостыл к методу MJ, и интуитивно склонился к методу Вадима Урасина. Тогда мне казалось, что если оптимизировать метод Урасина, то его применение откроет новые перспективы. Возможно даже, что реконструируемые с его помощью филогении кладограммы можно будет исторически объективно верифицировать за счет привлечения исторических и археологических данных. В ожидании усовершенствований программы, я воспользовался известным в биоинформатике программным пактом Арлекин (главным образом встроенным анализом AMOVA). Также, как и в прошлый раз, z не ставил в данном случае перед собой задачу выявления возраста I*, за значение одного ро в годах я брал некое приемлемо большое число (2000 лет), поэтому узел с возрастом в «45000 лет» в данном случае соответствует узлу последнего общего предка I* и J*. Меня больше интересовала задача, поставленная ув. А.Штруновым.  Напомню,он попросил меня установить субкладную принадлежность 17 маркерных гаплотипов группы I с помощью филогенетических реконструкций. То есть, «разделить» ветви на дереве. Первая попытка была, как видно из вышенаписаного, неудачной. Поэтому я решил обкатать метод на более надежном 17 маркерном наборе модальных гаплотипов всей группы I. По способу, предложенному Урасином, ветви-клады «закреплял» введение в ych.файл SNP мутаций (через значений 1 и 0). Для большой надежности, использовал прием, который отлично себя показал на 67 маркерах, т.е укоренял через модал ближайшей к I гаплогруппы J.

Результаты подобного опыта лучше согласовались с данными номенклатуры субкладов I. Почти все субклады легли где им полагается (внутри родительских кладов), хоть и не в прогнозируемом номенклатурой порядке. Тем не менее, на 17 маркерах эксперимент не дал удовлетворительного результата даже после «читового» введения в ych. файл данных о снип-мутациях и применения «мощного» укоренения через предковый гаплотип соседней гаплогруппы J*. Из этого следуют следующие выводы:

1.База данных 17 микросателлитных YSTR гаплотипов, определенных по снипу, как I-M170, недостаточна для определения субкладовой принадлежности гаплотипов.

2. Без указания снипов и укоренения через ответвление другой гаплогруппы, выявленные топологии древа носят случайный характер.

3. Выделение ветвей I и I2a/I2b  в 17-маркерной филогении даже после описанной выше «оптимизации» происходит способом, противоречащей данным о снип-мутационном схеме гаплогрупп I.

4. Принадлежность гаплотипов I в 17 маркерной записи к субкладу невозможно выявить с помощью методов филогенетических реконструкций. Это касается не только медианных сетей и МP деревьев Нетворка/Мурки, но и филограмм, построенных по методу NJ , Фич-Марголиаса и т.д.

5. Следовательно, «выделение молодой ветви и старой ветви» » гаплогруппы I2″ на 17 (sic!) маркерных гаплотипах, произведенное псевдоученым Клесовым в своей псевдонаучной статье  о гаплотипах европейской части РФ, не является методологическим верным. В результате выявляются не реальные в филогенетическом смысле ветви, а некие фантомные объединения гаплотипов по некоторым мат.статистическим критериям.  Таким образом, уже тогда Клесов  показал свой дилетантизм на примере «разделения» I2a и I2b в своей статье о гаплотипах выборки Рувера. В свое оправдание, вместо четкого и грамотного ответа на вопрос, Клесов привел туманный и бессмысленный набор предложений общего характера: «мой подход — строить деревья гаплотипов, выделять и идентифицировать ветви, анализировать каждую ветвь отдельно, а затем сопоставлять базовые гаплотипы для всех ветвей и находить возрасть пра-предка. При этом получаются часто совершенно новые вещи. Техника счета — дело десятое, она уже отработана и выверена. Я просто выбираю нечетный индекс, как того требует программа. Я выбираю 9. Могу выбрать 7, 5, 3, другой — дерево перестроится, но останется по сути тем же.»  Топология в Phylip нужна только для определения «выдающихся групп». О родстве между гаплотипами о них судит нельзя. Кстати, именно поэтому академик Клесов использует Филип и Мегу для «причесывания» выборки. Несмотря на настойчивые советы перейти на Мурку, ну или хотя бы для начала — Fluxus Network, так  как в обеих программах используется концепция медианных сетей, — самозваный «академик» так и не смог перейти на следующий уровень.  Мой спор с Клесовым начался из-за проблем с филогенетическим древом, реконструированном на основании 17-маркерных гаплотипов. Выяснилось, что  «ветви» этого древа не соответствуют снип-разметке гаплогруппы I. В ответ на это Клесов посетовал, что я заранее загнал себя в тупик утверждением, что 17-маркерные гаплотипы ни при каких обстоятельствах не могут быть использованы. Действительно, в филогении — нет, не могут. Выше показывал примеры с цифрами и расчетами, почему это так. Для других целей — наверное можно хоть однолокусные брать. Смотря для чего. Например, в той же Меге можно  найти 1000 разных топологий деревьев по одной и той же выборке.  В MrBayes, с помощью байесовской  интерференции — 50000  равновозможных (equiprobable ) филограмм, то есть деревьев  17-маркерной выборки.  И каждая из них будет равноценной  филогенетическим построениям Клесоа в Меге, поскольку, также как и у Клесова она не отражает объективной информации о сниповых партициях древа I.

В Mesquite есть хорошая опция сравнения частотности между ветвями консенсусного дерева и ветвями всего множества филогенетических политомных филогенетических деревьев. Так вот, средняя частота повторения отдельных ветвей во всех деревьях не превышает 0.0001-0.00005 (то есть, в среднем частота совпадения не превышает 0.01-0.005 процента от объема деревьева). Это свидетельствует о случайности разбиения ветвей, и ненадежности филогении. Все, что можно определить по таким деревьям — это визуально продемонстрировать удаленность/близость гаплотипов по матричной дистанции от корня.  Кстати, совершенно неудивительно, что удаленность от корня значительна. Расчеты величины ро — среднего количества накопленных мутаций на каждый гаплотип — показывают, что в среднем на каждый гаплотип выборки по «мутационному» пути от «базового» гаплотипа накопилось 14-15 мутаций (из 17!). Поэтому и неудивительно, что гаплотипы сгруппировались подобным образом. Разбивать ветви и определять базовые гаплотипы по таким выборкам — то же самое, что строить медианные сети по раскладу карт Таро. Нам уже известно, что никакая программа не делает эту работу на 17 локусах хорошо. По прошествии 4 лет, Клесов так и не ответил на косвенный вопрос Валерия Запорожченко, заданный подчеркнуто мягко и ненавязчиво в ходе дискуссии: какова цель построения деревьев? Поиск предковых гаплотипов? Но при неправильном положении предков друг относительно друга это приведет к ошибке. Возраст всей I? Но зачем Вам для этого деревья? Может, просто кластеризация ветвей? Нельзя ли ясно указать, зачем запускалась программа? Фраза Клесова «программа рассматривает возможную последовательность перехода» имеет ясный смысл только если таких возможностей в принципе мало, ограниченное число. При гигантской гомоплазии 17 локусов вариант найденный Клесовым — один из миллиардов (и даже миллиардов миллиардов) потенциально возможных. Нет здесь «объективного отражения». На каком основании Клесов выбирает только один вариант, если возможна масса их, без дискуссии чем он лучше? Клесов сам говорил неоднократно, что применяемый им метод расчета возрастов зависим от разделения на ветви («считать чохом» vs «не считать чохом»).

6. Даже после построения дерева модалов I с использованием советов Урасина ( применение комбинированного метода, а такж вычисление стоимости байесовского древа ), cовершенно очевидна недостаточность 17 маркерных гаплотипов для построения филогении (в случае I гаплогрупп необходимо минимум 30-35 маркеров), о чем собственно писали Валерий З. и Вадим У.

Здесь нужно сделать важное замечание. Достаточность или недостаточность длины гаплотипов диктуется исключительно целями исследования. Ведь любой вменяемый человек понимает, что надежное и достоверное парсимонистское или байесовское разделение гаплотипов (без знания субклады и соответствующего снипа) в соответствии с истинным мутационным древом затруднительно и на выборке гаплотипов с бОльшей, нежели 67 маркеров, длиной гаплотипной записи. Однако если выборка сформирована по генеалогическому способу (как например в исследованиях по ирландским кланам) или в выборках однофамильцев (те же исследования ирландцев о корреляции фамилии/гаплогрупп, проект «Однофамильцы» и так далее), то 17 маркерных гаплотипов достотаточно для кластеризации и оценки статистического соответствия фамилий и гаплогруппы. Однако для генеалогического масштабирования/позиционирования ветвей в филогенетическом дереве и большего количества маркера недостаточно, так как выявляемые ветви носят случайный характер, особенно когда выборка «чоховая», то есть включает несколько кладов или субкладов гаплотипов общей гаплогруппы. Все что можно сделать — это кластеризовать в филогенетечиском древе/сети наиболее устойчивые гаплотпы (правда, это можно сделать и без построения сетей) и при этом помнить, что из-за мощной гомоплазии таких выборок (например в той же руверовской выборке I, где среднее количество накопленных мутаций от предкового гаплотипа составляет 14 мутаций из изначальных 17), в кластеры неизбежно попадут «посторонние» гаплотипы. Затем нужно выделять те ветви, которые особенно выделяются и по ним заново строить дерево, и в больших выборках нужно делать так так до самого мелкого уровня. В этом случае надо увеличивать не значение эпсилона (он нужен для оценки гомоплазии, то есть сколько параллелизмов в сети), а использовать опцию Post-processing>MP. Тогда можно в структуре сети выявить деревья — которые грубо говоря, представляют собой кратчайшее расстояние между узлами сети (то есть междк реальными гаплотипами, которые в исходном файле обозначены фамилиями или номерами, а также «реконструированными» гаплотипами «предков», они обозначены как mv). Есть еще один метод, обратный вышеописанному. Он называется  bootstrap analysis, только в нем не добавляют гаплотипы в выборку, а наоборот, изымают из выборки произвольные гаплотипы. Этот метод реализован, в частности, в одной из филоутилит в пакете Phylip.  С его помощью оценивают надежность той или иной ветви древа. В 2009-2010 годах я каждый день занимался подобным методом на практике с реальными гаплотипами.

Примечание.  Для понимание некоторых технических деталей необходимо вкратце объяснить суть методов программ. Например, в Phylip при построении деревьев используется один из трех дистантно-матричных методов: метод Фитча-Марголиаша, метод ближайшего соседа или метод с использованием группировки. Как правило, применяется метод Ф-М или метод «взвешенных»  минимальных корней. В отличие от метода ближайщего соседа, где в качестве метрики используются та самая матрица генетических расстояний (которую любители ДНК-генеалогии получают в YUtility) Этот метод удобен для кластеризации «близких» гаплотипов, так как в расчет принимаются линеарные генетические расстояния (дистанции), таким образом, что наиболее близким гаплотипам присваиваются более высокие «веса», тем самым понижается степень неаккуратности расчета измерения дистанций между более удаленными гаплотипами. Хотя, как это не странно, бывает и так, что не-взвешенное дерево ближе к верифицируемому с точки зрения генеалогии древу. Расчет ведется  от первого гаплотипа, которым в YUtility является условный предковый гаплотип — так называемый модальный гаплотип. Предполагается, что этот модальный гаплотип (или гаплотип с медианными значениями соответсвующих маркеров всех гаплотипов выборки) совпадает с гаплотипом «общего предка», хотя на практике это зачастую не так. Я как то специально проверял эти модальные гаплотипы в Мурке на предмет их совпадения с филогенетическим «мидпойнтом», и в половине случаев гаплотип мидпойнта и модальный гаплотип не совпадали.  Часто встречающийся у новичков конфуз с ветвьями дерева вызван тем, что новички путают понятия генетической дистанции и сходства гаплотипов. Дистанция считается в этом случае от модала, например гаплотип A ближе к модальному гаплотипу (то есть в нем накоплено меньше мутаций от предкового гаплотипа, и поэтому дистанция меньше),  гаплотип B  — мутаций больше и поэтому он дальше. Это вовсе не исключает вероятность того, что по числу совпадающих маркеров B ближе к A и, например, к C.  В этой связи необходимо напомнить определение гомоплазии: гомоплазия — однотипная изменчивость признаков и свойств у организмов различных таксономических групп при параллельных, но независимых эволюционных процессах. То есть тут идет речь о возможных параллелизмах, когда (в применении к Y-STR анализу на мельчайшем, близком к генеалогическому уровню филоанализу) в параллельных ветвях могут возникать сходные признаки ( в нашем случае — одинаковое число аллелей в локусных маркерах), при этом их генеалогическое родство по патрилинейной или если угодно -игрек-хромосомной линии — намного глубже.

 

Эксперимент номер 3

В том же 2009 году я открыл для себя новую замечательную программу — MrBayes -программу для анализа филогений с помощью байесовской инференции. Так как программа понимает формат Nexus, то я конвертнул поправленный  ych файл в формат nex, немножко поправил файл согласно примерам, и запустил марковскую цепочку по методу Монте-Карло. Рабочий цикл программы прошел нормально, но медленно — на 145 гаплотипов примерно 3500 циклов за 20 минут. На выходе после «прожига» деревьев были получены деревья в формате Newick. На графике соотношения RI (индексов ретенции) между выявленными в MrBayes 2100 (!) вероятными деревьями группы из 145 43-маркерных гаплотипов, cреднеарифметическое значение индекса составило: 0.17967889; медианное: 0.17454545  (n=2001 деревьев). Под индексом ретенции в кладистике понимается доля очевидной синаморфии значений (в нашем случае локусных значений), которая присутствует в качестве синаморфии в построенном дереве). Формула расчета: RI= (g-s)/(g-M), где g-верхний порог значения, принимаемого локусом в любом построенном дереве, s- минимальное количество шагов изменения значения локуса в дереве, M-число шагов которое требуется в конкретном дереве.

R моюму удивлению, полученные деревья относительно быстро загрузилась как в SplitsTree, так и в Меге и TreeView (причем, в Меге они грузились дольше всего). Есть такая фича во всех этих программах (а также Mesquite), которая позволяет строить по всем имеющимся вариантам «компромиссное» consensus-tree по двум разными методикам (в том числе и UPMGA).

MrBayes еще хорош тем, что высчитывает апостериорные вероятности каждой ветви каждого древа. Для 17 маркерной выборки вероятность «самого точного» дерева (то есть при SD < 0.001) не превышает 53%.

 

К концу 2009 года я начал склоняться в пользу более сложного трехступенчатого анализа:

1)Постройка всех возможных вариантов деревьев и оценка их вероятности с помощью байесовской инференции (программа Mr.Bayes). Затем сортировка наиболее вероятных деревьев и их визуализация в Меге, СплитсТри, ТриВью, Мескит.  Оценка каждого наиболее вероятного дерева, а также консенсусного дерева этих вариантов. Предварительная группировка и предпредварительная корректировка с использованием знаний о генеалогических группах, а также с данными о вероятности той или иной ветви. Дальше нужно смотреть мутировавшие позиции, и если подходить к вопросу методично, просчитывать, какое из двух деревьев более вероятно. Тут лучше всего использовать байесовский метод. То есть брать абсолютные скорости мутаций и перемножать их на скорости (точнее вероятности) не-мутаций.

2) MJ-анализ каждой группы отдельно, постройка сети с использованием маркерных «весов», затем нахождение субоптимальных и MP деревьев в медианной сети (Murka). Анализ полученных результатов с использованием гипотез о генеалогических группах, использование данных о партициях дерева  и т.д.(статистические данные по деревьям в MURKA)

3) Расчет с помощью Байеса по  данным о априорных вероятностях n-мутациях (n*число маркеров*вероятность мутации локуса*вероятность немутаций) и по данным о  взвешенных партициях (апостериорная вероятность ветви). Выбирается наиболее вероятный результат. Данные сверяются с генеалогическими (историческими, генеографическими и т.д.) данными.