LAMP: инструмент для анализа «локального происхождения» геномных сегментов

В этом посте мы продолжим обсуждение существующих методик и инструментов анализа т.н «локального происхождения» отдельных сегментов хромосом в человеческом геноме (под локальным происхождением здесь подразумевается предпологаемое географическое происхождение дискретного сегмента одной их двух парных аутосомных хромосом в геноме человека).

Ранее эта тема поднималась в описании программы SupportMix, а также в сжатом изложении методологии оценки происхождения хромосомных сегментов (инструмент PCAdmix).  Данная заметка будет посвящена третьему инструменту — LAMP (Local Ancestry in adMixed Populations) (Sankararaman et al.2008).

Очевидно, что алгоритмы определения локального происхождения отдельных сегментов человеческих хромосом могут дать неплохие результаты при комбинированном использовании программ PLINK /ADMIXTUIRE/LAMP: например, комбинация этих программ позволяет довольно точно определить не только стратификацию отдельных этно-популяционных групп,  но также и уровень «адмикса» у отдельных людей. Поскольку одна из задач нашего проекта MDLP состояла в определении практических и теоретических преимуществ и/или ограничений конкретных методологий биоинформатического анализа полных генома, я провел эксперимент, позволяющий прояснить ряд ограничений, которые значительно уменьшают уровень достоверности результатов  субструктуры аутосомного генофонда населения Европы.

В качестве инструмента контроля качества комбинированного набора данных (аутосомных SNP-ов 22 хромосом) я использовал Plink, с помощью которого я выбрал для последующего анализа только качественные снипы (99% генотиприрования),  частоты минорных аллелей которых превышают 1%.

Поскольку этно-популяционный фон неравновесного линикиджа марекеров (LD) может существенным образом влиять на основные компоненты субструктуры популяции, я исключил из выборки маркеры, характеризующиеся статистически значимым уровнем LD (с коэффициентом попарной корреляции r2 Пирсона > 0,4) в «скользящем окне» из 100 снипов  с пошаговым сдвигом на 10 снипов. Кроме этого, я также использовал  другие методы Plink для получения однородной выборки  — например, кластеризации на основе IBS для обнаружения пары индивидов (outliers) с  уровнем «родства», значительно более высоким, чем у пары выбранных случайным образом индивидов в однородной популяции.  Под более высоким родством здесь понимается  резко отклоняющиеся значения (более 3 стандартных отклонений) парных значнений IBS по отношению к остальной части выбаки, а также случаи с высоким значения PIHAT (более 0,05) и  высокой степень инбридинга (гомозиготности*). Индивиды с подобными аномальными значениями («выбросы») были удалены из  «обучающего» подмножества нашей выборки .


* В программе Plink степень инбридинга определяется через вероятностную функцию гомозиготности.

 

homozyg
Стратификация образцев в соответствии с уровнями гомозиготности. Вдоль оси Х отображена общая сумма гомозиготных сегментов в килобазах; вдоль Y-оси — средний размер гомозиготных сегментов в килобазах

 

 

homozyg2
Уровни индивидуальной гомозиготности в выбороке: вдоль ости X отложено количество сегментов NSEG. Общая длина гомозиготных сегментов отображается осью Y

 

По окончанию описанных выше процедур фильтрации снипов и удаления «выбросов», окончательный набор данных представлял собой набор данных из 90 455 снипов и 317 человек (289 мужчин, 82 женщин). Эти данные были использованы в последующем анализе.

Прежде всего, мы использовали программу ADMIXTURE (Alexandre, Novembre, Lange 2009), в которой реализована модель оценки максимального правдоподобия (ML), т.е алгоритм кластеризации и оценки структуры популяции в наборе генетических данных (снипов).

В целях сохранения совместимости с MDLP калькулятором, я остановился  на модели, в которой выборка представлена в виде комбинации 7 предковых компонентов (K=7).  Индивидуальные значения процентной составляющей каждого компонента в индивидуальном геноме (матрица Q), была визуализированы в R (ниже приведен график с результатами участников проекта MDLP, полный список  доступен в этой таблице).

Результаты K=7

Полученные предковые компоненты (K=7) я обозначил следующими названиями (с сопутствующей цветовой легендой)**:

  • Транс-кавказский — красный
  • Балканском / средиземноморском -желтый
  • Северо-кавказский -зеленый
  • Западно-европейский
  • Алтайский — светло-голубой
  • Балто-славянский — темно-синий
  • Прибалтийско-финский / Северо-европейский -фиолетовый

**Как обычно, названия компонентов условны и  предназначены для мнемонических целей:  исследователи должны быть осторожными при интерполяции предполагаемых компонентов в анализе этнической истории популяций.

 

 

 

 

MDLP v4 components

 

 

 

На следующем этапе, я разбил все 371 индивидуальных «геномов» выборки на 22 фрагмента (каждый из которой соответствует аутосомной хромосоме) и затем использовал  программное обеспечение Admixture для оценки структуры популяционного вклада в каждую из 22 хромосом. После этого я использовал пайплайн для перевода формата Plink  в формат BEAGLE и последующего поэтапного преобразования фазированных данных BEAGLE обратно Plink формат.

Я предположил, что все образцы в моей выборке (представленной образцами VID)  проекта MDLP возникли в в результате смешивание 7 отдельных предковых групп населения. Данное предположение означает, что «чистые» референсные группы населения тесно связаны с истинными предковыми популяциями. Исходя из этого предположения мы снова задействовали программное обеспечение Admixture,  на этот раз с целью определения предковых компонентов в фазированном наборе данных из отдельных неполовых (аутосомных) хромосом.

Только после этой процедуры я смог использовать программу LAMP для определения уровня адмикса у отдельных индивидов. На практике, определение индивидуального уровня адмикса  означает применение любой из указанных выше процедур, в которй используется либо модель «локус-специфического происхождения» (в случае, если предковые группы популяции априори  неизвестны), либо модель «локус-специфического происхождения» гибридного населения.  Затем полученные значения  локус-специфического происхождения» отдельных сегментов в индивидуальном геноме усреднеяются и   получаются значения долей адмикса в индивидуальном геноме.

Я  расчитал в программном обеспечении Plink частоты аллелей (в стратифицированных по этническим признакам кластерах), и добавил в файл фиксированные частоты рекомбинации (определяются отдельно для каждой из 22 хромосом). Для моделирования динамического процесса смешивания предковых компонентов, я использовал различное количество поколений G ( 5, 10,25 поколений),  предполагая 3 хронологически разных варианта, в которых при  K = 7  предковые популяции A1, …, Ak,  перемешивались в течение G = 5,10,25 поколений.

Результаты экспериментов для каждой из хромосом размещены в отдельные таблицы Excel, каждый из файлов Excel включает в себя следующие разделы:

1) результаты Admixture для фазированных генотипов хромосомы (Chr * -phased)
2) результаты Admixture для нефазированных генотипов хромосомы (Chr * -unphased)
3) результаты LAMP для G = 5 (Chr * -lamp-GEN5)
4) результаты LAMP для G = 10 (Chr * -lamp-GEN5)
5) результаты LAMP для G = 25 (Chr * -lamp-GEN5)

Образец этих выходных данных можно посмотреть в файле Excel с результатами анализа хромосомы 1 (Chr1).

PCAdmix: инструмент и методология для оценки происхождения хромосомных сегментов

В марте прошлого года  Сергей Козлов — один из соавторов данного блога, — опубликовал важную с точки зрения методологии генетико-генеалогического анализа заметку о принципах оценки вероятности определения времени жизни последнего общего предка при попарном сравнении аутосомных данных двух или более сравниваемых индивидов.  Действительно, в последние годы среди людей, интересующихся генеалогией, приобрели заметную популярность сервисы, производящие поиск генетических родственников по всем линиям, а не только по прямой мужской и прямой женской. В качестве примера можно привести Family Finder от FTDNA и DNA relatives от 23andMe. Участник получает достаточно длинный список так называемых «совпаденцев» — людей, имеющих с ним один или более участок половинного совпадения (УПС) на аутосомах (неполовых хромосомах). Если участок достаточно длинный (а его длина измеряется в сантиморганидах, обозначающих вероятность разрыва участка при каждой передаче в следующее поколение), то это говорит о наличии общего предка (от которого участок и получен).
Для значительной части клиентов сервисов персональной коммерческой геномики, интересующихся исключительно вопросами своего происхождения, вопрос о достоверном определении времени жизни общих предков имеет первостепенное значение. И вместе с тем, именно проблема с получением четкого ответа на этот краеугольный вопрос служит одной из главных причин недовольства и раздражения клиентов компаний вроде FTDNA или 23andme.

Действительно, изучив длинные сегменты генома, передававшихся от поколения к поколению и встречающиеся у многих людей, можно примерно определить степень и интенсивность предковых связей, берущих начало много тысяч лет назад.  Здравый смысл подсказыает — дальние родственники имеют такие длинные сегменты генома потому, что они унаследовали их от общих предков. У более далеких родственников длина сегментов общих геномов соответственно становится короче, поскольку происходит рекомбинация гомологичных хромосом, в результате чего с каждым следующим поколением происходит перемешивание всей совокупности генов или генотипа. Очевидно, что число и размер совпадающих общих по происхождению сегментов геномов у двоих произвольно взятых лиц из однородной метапопуляции коррелирует с географический дистанцией —  количество общих генетических предков резко уменьшается по мере увеличения географического расстояния.

Однако наряду с  географически близкими (в пределях 50-100 км)  «совпаденцами», нередко в списках «совпаденцев», предоставляемых в 23andme или FTDNA появляются совершенно экзотические «совпаденцы». Например, у финна может появится совпаденец из Италии, а у корейца — из  Великобритании. Совершенно очевидно, что подобные случаи очень сложно объяснить не только простым сопоставлением сведений о географическом происхождении предков, но даже и безотказной в простых случаях  моделью наложения «этнопопуляционного аутосомного фона в виде коротких реликтовых  IBD сегментов».

В этой связи возникает практический вопрос — как интерпретировать подобные случаи, при условии что подобные сегменты представляют собой не «ложно-позитивные», а вполне достоверные совпадения, указываюшие на существование в неопределенный момент прошлого некоего общего предка. И подобные случаи характерны не только для коммерческих «выборок», но и для вполне серьезных научных баз данных, например 1000 Genomes. В частности,  в этой базе данных при сравнении редких снипов у 89 британцев и 97 китайцев были обнаружены три англо-китайские пары с отдаленным генеалогическим родством ( в геноме этих пар были обнаружены идентичные по происхождению фрагменты (IBD сегменты) ДНК,  которые составляют 0,001%, 0,004% и 0,01%  их геномов).

Самое простое решение этой проблемы некоторые из любителей генетической генеалогии пытались найти в обращении к сервисам главного инструмента аутосомной генетической генеалогии  Gedmatch. В частности, как известно, данный сервер содержит онлайн-версии практически всех популярных среди любителей модификаций DIYDodecad калькуляторов. Например, выбрав разработанный мною калькулятор MDLP K23b в режиме Chromosome painting: Paint differences between 2 kits, 1 chromosome   и сравнив характер распределения предковых компонентов на гомологичных хромосомах у двух сравниваемых людей, можно получить примерное представление о географическом ареале, в котором мог жить общий предок этих людей (вероятно, на этот ареал будет указывать доминирующий на совпадающем сегменте компонент). Логика простая. Предположим, например, что мы сравниваем  сегменты хромосомы X в данных индивида A этнического происхождения D c данными индивида В этнического происхождения С. Здесь возможны три варианта

  • С-происхождение предка или предков индивида A
  • D-происхождение предка или предков индивида B
  • Y-происхождение подмножества предков обоих индивидов

Используя эту логику,  можно предположить что если в попарном сравнении  сегмента обозначится хорошо выраженное преобладание (по отношению к средним значениям) компонента, характерного для этнопопуляции С, то следует выбрать первый сценарий; аналогично, если обнаружится избыток компонентов характерных для этнопопуляции D, то следует выбрать второй сценарий; если будет замечено преобладание редких  для этнопопуляций С и D компонентов, то следует остановится на третьем варианте.

 


Пример I.

В этом примере мы будем использовать свои данные и данные женщины, с которой у нас был обнаружен подтвержденный генеалогией общий предок, живший в середине 19 века.  При сравнении наших данных, алгоритм поиска достоверных генеалого-генетических совпадений обнаружил три сегмента с генетической дистанцией > 7 cантиморганов, cостоящих в блочной записи из более чем 700 последовательно совпадающих снипов

Start Location End Location Centimorgans (cM) SNPs
4 32232224 42421625 13.2 1115
7 8295405 13845989 9.8 885
11 36784445 45084878 8.0 881

Самый большой сегмент = 13.2 cM
Общий размер сегментов с сантиморганах > 7 cM = 30.9 cM
Приблизительное число поколений до общего предка  = 4.4

Задетектированные  сегменты хромосом идеографически отображаются при попарном сравнении в цветовой гамме — черный цвет означает несовпадающие сегменты, другие цвета — компонентную привязку к одному из компонентов моего калькулятора MDLP K23b.  Ниже приведены фрагменты идеографического отображения 2 из 3 вышеуказанных совпадающих сегментов на кариограмму 4 и 7 хромосомы.:

M051225_F298455_4_D64088
Сегмент на 4 хромосоме
M051225_F298455_7_BC1A38
Сегмент на 7 хромосоме

Самый значительный сегмент (13.2 сM) на 4 хромосоме имеют хорошо заметную привязку к северо-восточно-европейскому компоненту [зеленый цвет], в исторической перспективе связанному с наследием мезолитического населения этого региона. А вот сегмент на 7 хромосоме имеет более сложную структуру, в которой характерно преобладание кавказского компонента [голубой цвет]. Таким образом можно уверено утверждать, что общий предок (или предки) могли жить в регионе восточной Европы.

К сожалению, данный инструмент сегментного сравнения на  Gedmatch хотя и прост в обращении (в силу интуитивной понятности), однако  далек от совершенства. В первую очередь, на аккуратность определения «генографического»происхождения сегмента влияет отсутствие на сервере  гаплоидных фаз похромосомных данных. В результате, сравнение ведется не по конкретной фазе (т.е по конкретной хромосоме доставшейся ребенку от каждого из родителей), а по диплоидному составному блоку, т.е вместо настоящих IBD мы можем оперировать half-IBD (HBD), которые на слэнге русскоязычных любителей именуются УПС-ами. Во вторых, аккуратность генографического определения  зависит от аккуратности определения предковых компонентов в используемом варианте калькулятора, но это отдельная тема для разговора.


К счастью, парадокс «экзотических» совпаденцев имеет более точное решение с помощью одной из программ, позволяющих определять геногеографическую структуру или «локальное происхождение» совпадающих сегментов.  Можно использовать разные программы, HAPMIX, LAMP , HAPAA, ANCESTRYMAP — так как несмотря на ряд принципиальных отличий, все они используют алгоритмы моделнй скрытых марковских цепей (HMM) и поэтому выдают в целом схожие результаты. К этому же классу программ относится и более новая програма PCAdmix, которую я буду использовать в своем втором примере, в котором я задействую фазированные в BEAGLE генотипы.  В целях разжевывания принципов работы программы, следует вкратце описать рабочий процесс PCAdmix.
PCAdmix являет cобой метод, который оценивает локальное происхождение хромосомных сегментов с помощью анализа главных компонентов (PCA)  фазированных гаплотипов. В самом начале выполняется анализ главных компонентов в 2-3 референсных панелех, необходимых доя построения пространства главных компонентов, например, для хромосомы 22 . Поскольку метод использует фазированные данные, каждая копия хромосомы 22 в референсных панелях рассматривается как отдельная точка в пространстве главных компонентов. Первые две главные компоненты, как правило, представляют собой оси «предкового» расхождения популяций референсных панелей, что хорошо заметно на графиках. Если подобного рассхождения не наблюдается,  то скорее всего в популяциях референсных панелей «маскируется» присутствие неявной популяционной субструктуры. В построенное таким способом пространство главных компонентов в дальнейшем проецируется группа лиц «смешанного» происхождения, и затем определяется значение нагрузки главных компонентов для каждого снипа.  После этого метод переходит к анализу коротких «окон» снипов — для каждого из этих окон вычисляются  вероятности того, что данное окно в гаплотипе человека «смешанного» происхождения происходит от одной из референсных популяций. Вычисленные таким образоом вероятности различных вариантов происхождения каждого окна снипов, используются на заключительном этапе метода в  скрытой моделе Маркова (HММ) для сглаживания шума в определении происхождения «окон» снипов. Таким образом, данная скрытая модель Маркова НММ зависит от значений главных компонентов, доли каждого «компонента происхождения» на заданной хромосоме, а также матрицы перехода, которая, в свою очередь, зависит от числа поколений прошедших с момента смешивания популяций и генетического расстояния (сM) между двумя окнами снипов. В текущей версии метода, рекомбинаторные расстояния и число поколений определяются параметрами.
Конечным результатом рабочего процесса PCAdmix является матрица состяний скрытой модели Маркова, содержащая апостериорную вероятность каждого из возможных вариантов происхождения для данного «окна снипов», и эта вероятность обусловлена остальной частью данных для хромосомы. Важно отметить, что происхождение каждого окна снипов определяется только в том случае если апостериорная вероятность для одного из возможных происхождений > = 0,8. Любое окно, для которого максимальная апостериорная вероятность любого варианта происхождения <0,8, считается «неопределенным».


Пример 2

Данный пример основан на реальном случае, когда ко мне обратился человек, чьи предки происходят из центральных регионов Азии. Смущенный наличием в списке своих совпаденцев в сервисе Relative Finder 23andme  человека с корейскими и японскими корнями, а также  семейными легендами о «восточноазиатской»прабабушке, он попросил меня определить вероятность присутствия японцев в числе своих ближайших (в пределах 5 поколений) предков, опираясь исключительно на аутосомные данные.

В этом эксперименте, я решил скурпулезно следовать инструкциям разработчиков PCAdmix, и для начала произвел фазирование (биоинформатическую реконструкцию гаплотипных фаз аутосомных хромосом) в программе BEAGLE. Данные тестанта (ок 400 тыс. снипов) были фазированы в присутствии 3 контрольных референсных групп популяций — британцев GBR, китайцев CHB и японцев JPT — поскольку эти группы были позднее задействованы мной в качестве 3 референсных панелей. В целях уменьшения количества ошибок, которые неизбежно появляются в результате импутации пропущенных «генотипов» снипов, я использовал только те общие снипы, которые были определены как в аутосомных данных клиента 23andme, так и в трех референсных группах.

Затем фазированные данные тестанта были похромосомно обработаны в рабочих циклах программы PCAdmix. Программа отфильтровала cнипы с низким значением MAF и высоким значением LD, в результате чего число снипов уменьшилось почти вдвое. Оставшиеся снипы были разбиты на «окна снипов», каждое из которых состяло из 20 снипов.  При расчете по всем 22 хромосомах, общее количество полученных таким разбиением «окон» составило 11 997. В конце рабочего цикла (метод главных компонентов + HMM) программа выдала для каждой парной аутосомной хромосомы A и B  файл в формате bed, удобном для отображения дополнительной информации в аннотации генома (номер хромосомы, начало и конец сегмента, наиболее вероятный регион происхождения сегмента, cM, максимальная вероятность и апостериорная вероятность одного из трех вариантов происхождения — JPT, GBR, CHB, непоказана в таблице). В конечном отчете GBR используется как индикатор сегментов не-восточноазиатского происхождения (nEA), JPT — японского происхождения (JPA), CHB — неспецифичных сегментов восточноазиатского происхождения (EA) :

10 111955 468599 GBR 0.004885 0.134147 GBR* 0.636943
10 521723 811876 GBR 0.142147 0.582463 GBR* 0.646868
10 815149 1151723 GBR 0.585829 0.898724 GBR* 0.676252
10 1156487 1335849 GBR 0.901503 1.23673 GBR 0.925059
10 1337709 1449849 GBR 1.24246 1.60705 GBR 0.99999
10 1454864 1510208 GBR 1.61249 1.76798 GBR 0.999506
10 1512546 1623734 GBR 1.77039 2.12653 GBR 0.999647
10 1624900 1669347 GBR 2.13038 2.25357 GBR 0.999778


Выбор формата BED в качестве формата выходных в моем случае также был далеко неслучайным. C помощью одной из библиотеки платформы Bioconductor формат BED легко отображается в кариограмме 22 пар аутосомных хромосом человека (я использовал координаты геномного билда b37). Чтобы было понятно, что именно изображают эти «кариоплоты» (идеографические изображения хромосом), необходимо пояснить, что  «японское происхождение» (JPA) приписывалась 20-сниповому сегменту только в том случае, если апостериорная вероятность японского происхождения данного «окна из 20 снипов» составляла > = 0,8. Любое окно, для которого максимальная апостериорная вероятность любого варианта составляля <0,8, засчитывалось как окно  с «неопределенным» происхождением (UND).Chromosomes A

Chromosomes A

 

Chromosomes B
Chromosomes B

Эксперимент показал, что среди 11997 «окн» число  «окон» не-восточноазиатского (nEA) происхождения (7650) почти в два раза больше чем число «восточноазиатских» сегментов. Происхождение 2750 геномных «окон» снипов невозможно определеить, и только 965 «окна» могут быть определены как «японские по происхождению». Вместе с 617 окнами «китайского» (EA),  восточно-азиатские сегменты составляют меньше, чем 10% генома.
Не менее важно и то обстоятельства, что значительная доля этих сегментов-окон пришлась на низких «консервативные, низкорекомбинантные» области хромосом,  — такие, как  например, теломеры, центромеры и регионы с низкой плотностью снипов: сегменты в таких регионах могут переходить от одного поколения к другому фактически в неизменном виде. Наконец, те же закономерности распределения родословной были отмечены в обеих фазированных наборах аутосомных хромосом, что опровергает версию о недавной «восточноазиатской» примеси со стороны одного из родитедей и скорее  свидетельствует о древнем эпизоде смешивание определенных центрально- и юго-западноазиатских групп с группами восточноазиатского происхождения (например, в ходе монгольских или тюркских нашествий).

Разумеется, как и во многих других моделях анализа, основанных на вероятностях, наше заключение нельзя считать окончательным вердикторм. Вместо этого, лучше сказать, что шансы в пользу существования «недавнего японского предка» против шансов отсутствия такого, составляют 10 к 90. Другими словами, вариант с недавней японской «примесью» нельзя полностью исключить, поскольку вероятность такого сценария  составляет 11%.

 

Публикации и работа с палеогеномами

Как я уже отмечал в своих предыдущих записях, за последние годы был опубликован ряд работ, посвященных попыткам генотипирования останков древних людей — от живших несколько тысячелетий назад до «усть-ишимца» с предположительным возрастом около 45 тысяч лет, неандертальцев и «денисовки». Количество таких расшифровок растет все быстрее, что не может не вызывать оптимизма.  Вторая половина 2014 года особенно примечательна как количеством подобных публикаций, так и числом полных геномных NGS-сиквенсов древних людей, размещенных в публичных репозиториях (банках геномных данных). Так, в сентябре в Nature была опубликована окончательная версия работы Lazaridis et al. 2014  «Ancient human genomes suggest three ancestral populations for present-day Europeans». Работа получила широкое освещение в СМИ, поскольку аналитическая выборка сэмплов в этом исследовании включала значительное количествао заново генотипированных (на чипе Affymetrix HumanOrigin) образцов ДНК из древних палеолитических стоянок Сибири (Афонтова Гора, Малта), представителя древней индейской культуры Кловис и палеоэскимоса Cаккак. В работе был представлен  целый  ряд образцов древней ДНК представителей европейских мезолитических и неолитических культур, опубликованных в более ранних работах 2012-2014 годов: Skoglund et a. 2014 «Genomic Diversity and Admixture Differs for Stone-Age Scandinavian Foragers and Farmers»(шведские земледельцы и охотники собиратели эпохи неолита); Olalde et al. 2014 «Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European» (дДНК мезолитического населения Иберийского полуострова) и т.д.

В этой связи необходимо также отметить статью Carpenter et al. 2013 «Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries»в которой целый авторский коллектив представил результаты исследований древних образцов ДНК найденных в захоронениях бронзового века II тыс. д.н.э (Болгария и Дания).  В следующей работе опубликованной в конце октября, Gamba et al. 2014. «Genome flux and stasis in a five millennium transect of European prehistory»,  читателям была представлена хронологическая перспектива на процесс изменения генофонда населения популяций живших на территории  Паннонской равнины на протяжении 5000 лет (с эпохи неолита до конца железного века), проиллюстрированная на примере изучения 13 образцов древней ДНК. Параллельно вместе с этим Wellcome Trust Sanger Institute разместил геномные «риды» геномов древних англосаксов и бриттов (сама статья еще находится в процессе пре-публикации, презентация статьи была представлена на последней конференции AJHG).

Более важные публикации появилась совсем недавно. В частности, таковой публикацией является статья Fu et al. 2014 «Genome sequence of a 45,000-year-old modern human from western Siberia» о  геноме так называемого «усть-ишимца» (возраст останков которого датируются 45 000 д.н.э) и статья Seguin-Orlando et al. 2014 «Genomic structure in Europeans dating back at least 36,200 years», посвященная обсуждению результатов анализа ДНК знаменитого «папусоида»  с палеолитической стоянки Костенки-14.Тело мужчины, жившего 37 тыс. лет назад и найденное в 1954 г. на юго-западе России, оказалось источником старейшей европейской ДНК. Анализ его генома, опубликованный на прошлой неделе, показывает, что большинство разнообразных европейских генетических комбинаций существуют более 30 тыс.лет и пережили последний ледниковый период. Генетики обнаружили что ДНК Костенки-14 является близкородственным по отношению к раннеевропейским охотникам-собирателям, современным европейцам и жителям Сибири.
В то же время другой древний геном, данные о котором были опубликованы несколько недель назад, принадлежащий сорокапятитысячелетнему западному сибиряку, известному как Усть-Ишим, имел родство как с европейцами, так и с азиатами.  Любопытно, что в этой статье подтверждается то о чем я говорил гораздо раньше: процент неандертальских генов у древних евразийцев был выше чем у современных (о чем я упоминал в одной из своих заметок в этом блоге).

Трудами известного геномного блоггера Феликса Чандракумара большинство из них было переведено в простой и доступный формат, аналогичный файлам raw data от FTDNA и 23andMe. В GEDMatch можно поиграть с этнокалькуляторами и даже попытаться сравнить свой геном с геномами древних людей.Для этого следует взять из таблицы (кот. видна, если пройти по ссылке) номера, которыми обозначены древние геномы.

Sample Name Sample Location GEDMatch Sex Y-DNA Mt-DNA Approx. Age by authors My Analysis or Comments
Altai Neanderthal Denisova Cave, Siberia F999902 Female 50,000 years
Denisova Denisova Cave, Siberia F999903 Female 30,000 years
Palaeo-Eskimo Qeqertarsuaq, Greenland F999906 Male Q1a D2a1 4,000 years Palaeo-Eskimo 2000 BC DNA
Clovis-Anzick-1 Montana, North America F999919 Male Q-Z780 D4h3a 12,500 years Matches Living people.
Mal’ta South-Central Siberia F999914 Male R U 24,000 years Matches Living people on X Chromosome.
La Braña-Arintero León, Spain F999915 Male C-V183 U5b2c1 7,000 years Analyzing La Braña-Arintero Ancient DNA
Motala-12 Östergötland, Sweden F999917 Male I-L460 U2e1 7,000 years My Analysis of Motala-12 ancient DNA
LBK Stuttgart, Germany F999916 Female T2c2 7,500 years Matches Living people
Loschbour  Loschbour, Luxembourg F999918 Male I-L460 U5b1a 8,000 years Matches Living people
Ajvide58 Sweden F999924 Male I-CTS772 U4d 5000 years Ajvide58 DNA Analysis
Gökhem2 Sweden F999934 Female H1c 5000 years Gökhem2 Ancient DNA Analysis
Hinxton-2 Cambridgshire, UK F999921 Female H2a2b1 1300 years Hinxton-2 Analysis
Hinxton-3 Cambridgshire, UK F999922 Female K1a4a1a2b 1300 years Hinxton-3 Analysis
Hinxton-4 Cambridgshire, UK F999925 Male R-DF25 H1ag1 2000 years Hinxton-4 has X-Matches with living people
Hinxton-5 Cambridgshire, UK F999926 Female H2a2a1 1300 years Hinxton5 Ancient DNA Analysis
KO1 Tiszaszőlős-Domaháza, Hungary F999931 Male I-L68 R3 5650-5780 cal BC Analysis of Neolithic KO1 genome
NE1 Polgár-Ferenci-hát, Hungary F999937 Female U5b2c 5070-5310 cal BC NE1 Ancient DNA Analysis
NE5 Kompolt-Kigyósér, Hungary F999927 Male C-F3393 J1c 4990-5210 cal BC Ancient Hungarian Genome NE5 Analysis
NE6 Apc-Berekalja I., Hungary F999932 Male C-P255 K1a3a3 4950-5300 cal BC Analysis of Hungarian genome-NE6
NE7 Apc-Berekalja I., Hungary F999928 Male I-L1228 N1a 4360-4490 cal BC Ancient Hungarian genome — NE7
CO1 Apc-Berekalja I., Hungary F999930 Female H 2700-2900 cal BC Analysis of Copper age genome CO1
BR2 Ludas-Varjú-dűlő, Hungary F999933 Male J-M67 K1a1a 1110-1270 cal  BC Ancient BR2 matches living people
IR1 Ludas-Varjú-dűlő, Hungary F999929 Male N-M231 G2a1 830-980 cal BC Ancient Hungarian genome — IR1
Tyrolean Iceman
(ERP001144)
Tisenjoch Pass, Oetztal Alps Male 5300 years Pending
Ust’-Ishim Ust’-Ishim, Siberia F999935 Male K-M526 R 45,000 years Ust’-Ishim matches with living people!
Kostenki14 European Russia F999936 Male C-V199 U2b 38,700-36,200 years Kostenki14 Ancient DNA Analysis
Sample Name Sample Location Sex Y-DNA Mt-DNA Approx. Age by authors
Mezmaiskaya Neanderthal Mezmaiskaya Cave Female 29,000 years
Tianyuan Tianyuan Cave, China R 40,000 years
Afontova Gora-2 South-Central Siberia Male R1? R 17,000 years
Motala-1 Östergötland, Sweden Female U5a1 7,000 years
Motala-9 Östergötland, Sweden Female U5a2 or U5a1f1a1 7,000 years
Motala-6 Östergötland, Sweden Male U5a2d 7,000 years
Motala-2 Östergötland, Sweden Male F-P139 U5e1 7,000 years
Motala-4 Östergötland, Sweden Female U5a2d 7,000 years
Motala-3 Östergötland, Sweden Male I-M258 U2e1 7,000 years
Hinxton-1 Cambridgshire, UK Male R-L151 K1a1b1b 2000 years
Ajvide53 Sweden Female U4d 5000 years
Ajvide59 Sweden Male I-PF3796 U5b2c1 5000 years
Gökhem7 Sweden Female H 5000 years
Ire8 Sweden Male I-CTS6343 U4d 5000 years
StoraFörvar11 Stora Karlsö, Sweden Male I-CTS4077 U5a1f1a 7500 years
Gökhem4 Sweden Male CF-M3690 H 5000 years
Gökhem5 Sweden Female K1e 5000 years
Ajvide52 Sweden Male HIJK-F929 HV0a 5000 years
Ajvide70 Sweden Female U4d 5000 years
NE4 Polgár-Ferenci-hát, Hungary Female J1c 5050-5290 cal BC
NE3 Garadna, Hungary Female X2b 5010-5210 cal BC
BR1 Kompolt-Kigyósér, Hungary Female K1c1 1980-2190 cal BC
KO2 Berettyóújfalu-Morotva-liget, Hungary Female K1 5570-5710 cal BC
NE2 Debrecen Tócópart Erdõalja, Hungary Female HV 5060-5290 cal BC
V2 Vratitsa, Bulgaria Male U2e1’2’3 1500-1100 BC
M4 Borum Eshøj, Denmark Male B2 1350 BC
K8 Krushare, Bulgaria Male R 450-400 BC
NA43 Laguna de los Condores, Peru Male B4b’d’e 1000-1500 AD
AusAboriginal Western Austalian Male F-M235 O1a 100 years
NA41 Laguna de los Condores, Peru Male L3 1000-1500 AD
P192-1 Svilengrad, Bulgaria Male U3b 800-500 BC
T2G2 Stambolovo, Bulgaria Male H1c9a 850-700 BC
NA42 Laguna de los Condores, Peru Male D1 1000-1500 AD
NA50 Laguna de los Condores, Peru B4b’d’e 1000-1500 AD
NA47 Laguna de los Condores, Peru L3 1000-1500 AD
NA40 Laguna de los Condores, Peru L3 1000-1500 AD
NA39 Laguna de los Condores, Peru Male B2 1000-1500 AD
Feld1 Neanderthal Neander Valley, Germany 42,000 years
Sid1253 Neanderthal El Sidron cave, Asturias, Spain 49,000 years
Vi33.16 Neanderthal Vindija cave, Croatia Female 38,310 years
Vi33.25 Neanderthal Vindija cave, Croatia Female
Vi33.26 Neanderthal Vindija cave, Croatia Female 44,450 years

В своем блоге Феликс размещает аналитические отчеты по каждому из проведенных анализов, отчеты включают графическое отображения «состава различных геномных компонентов происхождения» каждого из образцов в калькуляторах Gedmatch (включая мой последний калькулятор K23b), фенотипические признаки (предположительный цвет кожи и глаз), возраст на момент смерти и т.д.
Пытаясь ответить на вопрос,  насколько  правдоподобны (в смысле реального генеалогического родства) результаты совпадения сегментов древних и современных людей, Феликс приводит замечательные вычисления оценки правдоподобия совпадений в геномах современных людей и древних образцов. К сожалению, рассуждения замечательные, но вызывающие определенные вопросы, которые я озвучу в другой заметке.

Так или иначе, поставленная Феликсом на поток и практически полностью автоматизированная работа с древними геномами заслуживает безусловного признания, поскольку в силу разделения труда позволяет другими исследователям-любителям полностью сконцетрировать свое внимание на процессе непосредственного анализа полученных данных, вместо того чтобы тратить свои ресурсы на процесс извлечения снипов из «сырых» геномных данных. Благодаря этому разделению труда,  Давид Веселовский из проекта Eurogenes провел ряд замечательных экспериментов с этими данными (включая PCA, Treemix и вычисление генного дрейфа с помощью f3). В основном выводы этих экспериментов повторят то, что было написано в статьях профильных генетиков, за исключением одного интересного вывода на основании графа Treemix, в котором отображено направление процессов обмена генами между различными древними популяциями:

«В отношении Kostenki14, графики  Treemix  подтверждают один из основных выводов работы Seguin-Orlando et al. 2014, согласно которой  главны компонент образца  Kostenki-14  является базальным «предковым» компонентом более поздних европейцев (Basal_Eurasian). Тем не менее, два последних графика показывают, что этот базальный «компонент» не тот же самый «базальный» компонент в геноме неолитического образца из Штутгарта, связанного с базальным евразийским  компонентом, который был описан  в работе Lazaridis et al. 2013″.

Другой геномный блоггер, Сергей Козлов, использовал те же самые данные палеогеномов (взятые с сайта Ф. Чандракумара) для создания замечательных карт, иллюстрирующих количество и интенсивность общих IBD-сегментов палеогеномов и геномов современных популяций.

Я решил не оставаться в стороне и провел собственный анализ PCA и кластеризации популяций по значениям компонентов генетического разнообразия.

Ниже приведены иллюстрации к моему опыту кластеризации собственного генома с геномами древних жителей Евразии. В качестве входных данных алгоритма ward-кластеризации в программе R, я использовал собственные значения 4 векторов главных компонентов (PC) разнообразия. Эти векторы, в свою очередь, были получены путем вычислений в большом массиве (2024 образца) генетических данных (примерно 110 тысяч снип-полиморфизмов) представителей современных и древних популяций. Мой геном (обозначенный как Vadim) представляет собой набор, полученныq в ходе импутации по датасету Human Origin значения снипов информативных с точки зрения эволюционного происхождения, и используется в качестве контрольной группы.

Для начала график PCA, и положение палеогеномов на этом графике.

10805810_10205228379818844_2683994891484833194_n

В аналитической выборке я задействовал снипы геномов высших и низших приматов (дендрограмма выборка укоренена на геноме мармозетки), древних гоминидов (денисовского человека и неандертальцев). Остальное — как я и упоминал выше — представляет собой совокупность снипов современных и древних популяций.

Благодаря характеру выборки и характеру используемых снипов, я могу взглянуть на свое происхождение с наиболее широкой перспективы, позволяющей проследить индивидуальный эволюционный путь от древнейших людей до наших современников.
Можно сказать, что я проделал самое далекое (из всех предыдущих) генеалогическое путешествие в собственное прошлое. Разумеется, без предыдущего выделения обработки образцов древнего ДНК новейшими биохимическими методами, а также публикации данных — это путешствие длинной в сотни тысяч лет не могло бы просто состоятся. Так что огромное спасибо всем биохимикам, генетикам и биоинформатиков работавшим с образцами древней ДНК.

Полученные мной кластерные дендрограммы вышли очень большого разрешения. В силу этого, имеет смысл изучить топологию, структуры и расположение популяционных групп-кластеров в полномасштабном варианте, иначе могут возникнуть интересные вопросы.

1557253_10205127321932460_4975988878575720296_o 10801887_10205156832150197_5471832914364777784_n (1) 10801887_10205156832150197_5471832914364777784_n 247121_10205156832710211_7030394711716209950_n 1235004_10205156831950192_4536397005560655073_n 1379610_10205156832350202_753531489446222277_n 10411811_10205156831710186_6596784203743263163_n

Поэтому — я подготовил соответствующие файлы PDF и разместил ссылки на эти файлы для удобного просмотра.

tree1

tree2

tree3

tree4

tree5

tree6

tree7

tree8

tree9

tree10

tree11

tree12

tree13

tree14

tree15

tree16

Здесь их опубликовать не представляется возможным, и по этой причине я ограничу себя размещением тех фрагментов трех вариантов кластерных диаграмм, на которых присутствуют древние образцы.
Забегая вперед, можно заметить, что образцы ДНК древних людей (т.е людей современного анатомического типа — homo sapiens sapiens), строго говоря, разбиваются на три органические суперкластера — древних сибириков (или евразийцев), древних европейских охотников-собирателей, и ранних неолитических европейских земледельцев. В основной своей части состав и топология популяционных кластеров стабилен в разных вариантах, наибольшие видоизменения заметны у тех образцов, чье множество снипов имеет меньшее пересечение с общим набором снипов. Отсюда довольно таки тривиальный вывод: чем меньше общее число снипов — тем больше флуктуаций наблюдается в расположении древних образцов внутри ветвей кластерной дендрограммы.

Кластер древних евразийцев наиболее стабилен (т.к. там всего два древних генома Afontova Gora 2 (AG2) и знаменитый мальчик с сибирской стоянки Malta (MA1); причем оба образца взяты из одного источника данных). Из современных популяций к этому кластеру наиболее органично примыкают различные группы населения центральной Азии — от таджиков до гуджаратов, и от калашей до пуштунов.

Кластер древних охотников-собирателей Европы наиболее неустойчив, и это объясняется прежде всего разным числом снипов в образцах, а также тем что сами образцы взяты из разных исследований. Тем не менее тенденция наглядна — древнейшие европейцы (охотники-собиратели мезолита) наиболее близки по своим аутосомным снипам к жителям современной западной и северной Европы — особенно Британских островов, Скандинавии и Балтийского региона. Практически во всех вариантах прибалтийцы близки к древним жителям Швеции (Готланда), а также мезолитическим образцам La Brana, Motala и Loshbour. Последние также близки к финнам, эстонцам и северным русским. Из более поздних и географически удаленных образцов к ним близки древние образцы из Венгрии неолитического периода, бронозового и железного веков (BR1, NE2 и KO1).

Интересно, что в этот же кластер входят как современные популяции западной Европы (британцы, норвежцы, французы и др.), так и современные жители центральной Европы — чехи хорваты и венгры. Является ли это наследием древних времен (гальштатской общности связываемой с древними кельтами) — трудно сказать. Не этим ли объясняется тот факт, что образцы древних англо-саксов и бриттов (обозначенные здесь как Hixton) иногда кластеризируются с (современными!) венграми, хорватами, иногда с современными англичанами из Кента и корнуэлльцами. При этом некоторые из образцов Hixton остаются близки (в смысле схожести генома) к скандинавам, оркнейцам, шотландцам, и даже литовцам.

Мой собственный «геном» (Vadim) также входит в эту группу, причем в разных вариантах он определенно близок одновременно и древним мезолитическим и эпинеолитическим шведам, а также более поздним образцам из Венгрии (киммерийского мальчика IR1, а также самый «балтийский» из всех древних венгерских обрацов — KO1). Интересно что IR1 («аутосомный геном» «киммерийского » мальчика Y-гаплогрупы N1a из захоронения паннонской культуры бронзового века Mezőcsát примерно 900 год до нашей эры) в первых четырех главных компонентах кластеризируется с моим собственным «аутосомным геномом»). Это наверное объясняет почему мой собственный геном дает хорошие комбинации (fit) к комбинации трапезундских турков и древних жителей Балтийского региона.

Как известно, попгенетики готовят к публикации большую статью, в которой подводятся итоги нескольких лет исследования генофонда представителей древних культуры шнуровой керамики* (известной также как культура боевых топоров) и ямной культуры** (другое название — древнеямная культурно-историческая общность). Безусловно, это исследование обещает пролить свет на некоторые темные места генетических связей жителей этих культур с современным населением Восточной Европы (особенно Польши, Украины, Беларуси и юго-западной части России).

Пока все детали исследования неизвестны, однако благодаря настойчивости некоторых энтузиастов генетической генеалогии (Веселовского и пр.) удалось выяснить, например, что генофонд древние образцы представителей Ямной культуры в рамках формальных тестов (f3 и D-статистик) наилучшим образом аппроксимируются как результат смешения древнего мезолитического населения севера Европы (в работе их представляют карельские образцы, очевидно из известных захоронений Палеострова) и населения, близкого к современным закавказским популяциям (лучший результат дали армяне из Еревана).

Признаюсь, эти сведения приободрили меня. Дело в том, что последние несколько недель я занимался изучением эволюции аутосомного генофонда беларусов (и своего тоже) из недавно опубликованного набора лаборатории Райха (это одна из усеченных версии их знаменитого кураторского набора Human Origin Dataset).
Как и раньше, для анализа я использовал инструменты разработанные программистами той же лаборатории (Admixtools), а также Alder — программу написанную на основе открытого кода Admixtools, и оптимизированную под более детальный анализ процесса смешивания различных предковых групп.

Так вот, до получения сведений о предварительных результатах попгенетиков, я был немного смущен полученной картиной. У меня получилось вот что. С точки зрения формальной оценки (f3-статистки, аналога более известной p-статистки) лучшие пары адмикса для беларусов (с отрицательным значением Z) представляли собой либо комбинацию мезолитического населения Европы (Loshbour) и современного населения современной Анатолии и ближнего Востока, либо комбинацию ‘генов’ неолитических жителей Европы (LBK380, а также современных сардинцев) и современных америндских популяций (происходящих, как нам известно, из восточной Сибири).
Вот начало списка значимых пар:

Mixe Sardinian Vadim -11.811
Sardinian Mixe Vadim -11.811
Karitiana Sardinian Vadim -11.757
Sardinian Karitiana Vadim -11.757
Zapotec Sardinian Vadim -11.638
Sardinian Zapotec Vadim -11.638
Loschbour Georgian_Megrels Vadim -11.599
Georgian_Megrels Loschbour Vadim -11.599
Piapoco Sardinian Vadim -11.482
Sardinian Piapoco Vadim -11.482
Loschbour Turkish_Trabzon  Vadim -11.434
Turkish_Trabzon Loschbour Vadim -11.434
Loschbour Assyrian_WGA Vadim -11.395
Assyrian_WGA Loschbour Vadim -11.395
LBK380 Piapoco Vadim -11.354
Piapoco LBK380 Vadim -11.354
Surui Sardinian Vadim -11.346
Sardinian Surui Vadim -11.346
Loschbour Abkhasian Vadim -11.293
Abkhasian Loschbour Vadim -11.293
Bolivian_LaPaz Sardinian Vadim -11.232
Sardinian Bolivian_LaPaz Vadim -11.232
Loschbour Iranian_Jew Vadim -11.231
Iranian_Jew Loschbour Vadim -11.231

Я выбрал около сотни значимых пар и проверил их достоверность «адмикса) с помощью инструментов D-статистки (qpDstat) в попарном сравнении каждой из значимых комбинаций (начало таблицы):

Vadim Italian_Tuscan : Loschbour Palestinian 0.0293 8.141 best
Vadim Iranian : LBK380 GujaratiC_GIH 0.0245 7.319 best
Vadim Motala12 : Druze Sardinian 0.0125 7.285 best
Vadim Loschbour : Palestinian Albanian 0.0146 7.17 best
Vadim Sardinian : GujaratiC_GIH Iranian 0.0121 7.151 best
Vadim Palestinian : Spanish_Pais_Vasco_IBS GujaratiC_GIH 0.0145 7.126 best
Vadim Egyptian_Comas : Basque_Spanish GujaratiC_GIH 0.0137 7.016 best
Vadim Sardinian : Loschbour Egyptian_Comas 0.0251 6.962 best
Vadim Sardinian : Loschbour Tunisian_Jew 0.0251 6.789 best
Vadim Palestinian : Basque_Spanish GujaratiC_GIH 0.013 6.758 best
Vadim Sardinian : Loschbour Palestinian 0.0237 6.69 best
Vadim Basque_Spanish : Balkar Palestinian 0.0076 6.601 best
Vadim GujaratiC_GIH : Tunisian_Jew Egyptian_Comas 0.0094 6.493 best
Vadim Spanish_Pais_Vasco_IBS : Balkar Palestinian 0.0079 6.458 best
Vadim Loschbour : Druze Italian_WestSicilian 0.0135 6.443 best
Vadim Loschbour : Iranian Albanian 0.0159 6.385 best
Vadim Palestinian : Sardinian Iranian 0.0083 6.344 best

Как видно, лучшая достоверность (обмена генами) у тех пар которые представляют собой комбинацию мезолитических популяций (Loshbour и Motala), популяций Кавказа, южной Европы и центральной Азии.

Это особенно хорошо заметно в тесте f4ratio. Вот например сравнение 2 квадропул, три популяции в каждой из которых идентичны (беларусы, кумыки и Losbour), а четвертая популяция отличается (балкарцы vs. Motala). Результат означает что кроме мезолитического компонента Loshbour (из западной Европы), у беларусов наблюдается эксцесс (28+-0.1%) дополнительного источника мезолитических «генов» (типично для балтийских популяций мезолита вроде Motala)

Vadim Kumyk Loschbour Motala12 : Vadim Kumyk Loschbour Balkar 0.285678 0.096194 2.97

Крайне любопытны и результаты проведенного мной в Alder исследования источников «древного» адмикса у беларусов.
Я выбрал только те пары, в которых амплитуда угасания LD в двух гипотетических популяциях-донорах была сопоставима с амплитудой угасания LD в популяции-реципиенте (т.е у беларусов). Интересно, что только две пары (пенджабцы + Motala) и (иракские евреи + чукчи) дали консистентную попарную подгонку кривой угасания LD с незначительным разбросом амплитуды (15-25%). К слову, комбинация Armenian+Motala-merge (примерно идентичная наиболее устойчивой модели адмикса у жителей ямной культуры) тоже присутствует в списке «успешных» комбинаций, однако кривые угасания LD имеют разную скорость угасания (их амплитуда отличается уже на 55% и поэтому они не консистентны, т.е несовместимы) в попарном режиме сравнения

DATA: success_consistent 0.0042 Belarusian Punjabi_Lahore_PJL Motala_merge 4.49 2.76 2.78 15%
DATA: success_consistent 0.0098 Belarusian Iraqi_Jew Chukchi 4.31 2.2 3.01 25%
DATA: success 0.0065 Belarusian Mongola Motala_merge 4.4 2.64 2.78 28%
DATA: success 0.011 Belarusian Yi Papuan 4.29 2.26 4.66 28%
DATA: success 0.00037 Belarusian Lebanese Papuan 4.98 2.69 4.66 38%
DATA: success 0.041 Belarusian Kusunda Motala_merge 3.98 2.61 2.78 41%
DATA: success 0.013 Belarusian Hezhen Motala_merge 4.25 2.17 2.78 49%
DATA: success 0.037 Belarusian Motala_merge Tu 4.01 2.78 3.13 51%
DATA: success 4.20E-06 Belarusian Kalmyk Motala_merge 5.79 2.36 2.78 54%
DATA: success 0.0086 Belarusian She Motala_merge 4.34 2.58 2.78 54%
DATA: success 0.0019 Belarusian Armenian Motala_merge 4.66 2.14 2.78 55%
DATA: success 0.048 Belarusian Daur Motala_merge 3.94 2.11 2.78 56%
DATA: success 0.0042 Belarusian Motala_merge Miao 4.49 2.78 3.5 59%
DATA: success 0.041 Belarusian Oroqen Motala_merge 3.98 2.28 2.78 59%
DATA: success 0.013 Belarusian Thai Motala_merge 4.25 2.13 2.78 65%
DATA: success 0.043 Belarusian Motala_merge Lahu 3.97 2.78 3.56 71%
DATA: success 0.0049 Belarusian Motala_merge Japanese 4.46 2.78 3.53 72%

Примечательно что для пары Belarusian Armenian Motala_merge  Admixtools датирует смешение 114.67+/-20.5 поколений тому назад. А вот датировка адмикса для двух первых пар (последняя колонка это датировка адмикса
Belarusian Punjabi_Lahore_PJL Motala_merge 4.49 2.76 2.78 15% 142.4+/-27.54
Belarusian Iraqi_Jew Chukchi 4.31 2.2 3.01 25% 43.28+/-9.45 То есь самое позднее 3500 лет до нашего времени.Итак, выводы: в эволюционной перспективе, костяк аутосомного генофонда беларусов составляет субстрат мезолитического генетического компонента Европы, к которому примешиваются два потока — один с юга, с наиболее значимым вливанием во времена неолита (земледельцы из Анатолии и ближнего Востока), другой — видимо более поздний (т.к. он отсутствует у ямников) из Сибири.


*Культура боевых топоров, культура шнуровой керамики (нем. Schnurkeramik) — археологическая культура медного и бронзового веков, распространенная на обширных территориях Центральной и Восточной Европы и датированная 3200 г. до н. э./2300 до н. э. — 2300 г. до н. э./1800 г. до н. э. Племена культуры боевых топоров часто считают первыми индоевропейцами на территории Средней Европы
**Я́мная культу́ра (точнее — Древнея́мная культу́рно-истори́ческая о́бщность) — археологическая культура эпохи позднего медного века — раннего бронзового века (3600—2300 до н. э.). Занимала территорию от Южного Приуралья на востоке до Днестра на западе, от Предкавказья на юге до Среднего Поволжья на севере.В рамках ранней версии курганной гипотезы Марии Гимбутас ямная культура связывалась с поздними протоиндоевропейцами.

 

Кластер древних жителей по своей устойчивости занимает промежуточное место между кластерами древних северных евразийцев и западных европейских охотников-собирателей.
В этот кластер, иерархически близкий популяциям Кавказа и ближнего Востока, предсказуемо входят предстаители самых классических популяции южной Европы — от греков и болгар, до басков и сардинцев. Как уже стало обычным, сардинцы кластеризуются с образцом тирольского человека Этци и женщины из линейноленточной культуры («LBK380»). В большинстве вариантов (2 из трех опубликованных) к этой подгруппе примыкают представители древнейших неолитических культур на территории современной Венгрии — CO1, H4, H3, NE5, NE7). Жители бронзового века (на графике они ошибочно обозначены как Europe оказались посередине между раннеевропейскими охотникам-собирателями и земледельцами.

Добавление к выборке древних геномов «усть-ишимца» и «костенковца» позволило пролить свет на некоторые особенности эволюции популяций центральной и восточной части Евразии. В кластерном анализе (вардовская кластеризация) по 4 первым компонентам PCA усть-ишимец у меня получился в одном кластере с киргизами и кажется селькупами. По первым двум компонентам в том варианте рейховского набора популяций, где нет андаманцев Onge — он попадает в один кластер с австралийскими аборигенами.
Думаю, что onge все же ближе, да к тому же во всех калькуляторах у усть-ишимца максимум «генома» приходится на сочетание южно-индийских и юго-восточноазиатских компонентов.  А вот «костенковец» оказывается ближе всего к чувашам и саамам. Что характерно — в предыдущих вариантах, в которых я не использовал костенковца, место костенковца часто занимал AG-2 (Afontova Gora).  Также заметна разница между кластерными схемами PC1-2 и PC-1-2-3-4.В первом случае костенковец в одном кластере с индусами, а во-втором с с чувашами и саамами. Характерно, что восточноевразийские палеогеномы Тяньюань и Усть-Ишим входят в один кластер (их положение не сильно меняется), а MA1 нет.

Визуализация уровня гомозиготности и генетического разнообразия у народов Евразии

Обновлено 30.11.2014

После составления при написании предыдущего поста таблицы уровня гомозиготности в выборках Евразии, мне, конечно же, захотелось визуализировать его на карте (дополнив рядом новых выборок) .  Можно считать, что эта карта показывает уровень генетического разнообразия у каждого народа (ведь чем ниже количество гомозиготных снипов, тем разнообразие выше), но с одной оговоркой. Дело в том, что это число сильно зависит от используемого набора снипов. Таким образом, если в наборе много снипов, более часто встречающихся у европейцев, то разнообразие у них автоматически окажется завышенным, а у жителей других частей света — заниженным. А поскольку чипы для генотипирования предназначены в первую очередь для европейцев, такое вполне возможно.

Но все же мне кажется, что этот эффект либо не повлиял на результаты, либо повлиял незначительно. Наиболее разнообразными выборками получились отнюдь не европейские, а жители районов, прилегающих к Красному Морю. Это выглядит вполне объяснимо, поскольку где-то там и находится прародина всех не-африканцев. Другие результаты смотрятся тоже очень логично — по мере удаления от прародины разнообразие постепенно терялось.

Update от 21.01.2015. Для оценки эффекта можно сравнить с подсчетами из работы Fu et al:

FuHomosyg

Как можно увидеть, результаты по неафриканским популяциям хорошо коррелируют с моими. Однако по африканским выборкам результат прямо противоположный. Очевидно, евразийские снипы у них менее распространены, зато имеются свои собственные. Таким образом, метод (с данным набором снипов) можно использовать для выборок за пределами Черной Африки.

На карте зеленым цветом выделены выборки с наибольшим разнообразием, красным — с наименьшим:

HomosygIBDext

Как я уже писал, наивысшим разнообразие получилось у жителей Египта, Эфиопии, Йемена. Наинизшее из присутствующих на карте — у народов Северо-Восточной Сибири и Южного Китая. Однако у не попавших на карту есть и гораздо более экстремальные значения гомозиготности. Наибольшей она оказалась у южноамериканских индейцев и выборки папуасов. Чуть отстали африканские пигмеи, а вот обычные африканцы (йоруба и кенийские банту) вышли примерно на уровне восточноазиатов. Возможно, их реальное разнообразие еще выше (с учетом эффекта, описанного в первом абзаце).

Видно снижение разнообразия у народов-изолятов — калашей и бедуинов. И наоборот, у народов смешанного происхождения разнообразие выше. Например, на границе Европы и Азии выделяются ногайцы, башкиры, татары, коми-зыряне. В целом в Европе разнообразие плавно снижается с юга на север, за исключением выборок-изолятов — басков и сардинцев. А, допустим, в Индии все наоборот — понижение идет с северо-запада, откуда шли вторжения пришельцев, на юг и восток, к дравидам и австроазиатам.

При подсчете суммы IBD-сегментов уровень гомозиготности в выборке играет заметную роль. Например, «экстремалы» эвенки и эвены всегда разделяют меньше сегментов с европейцами, чем их соседи, но зато больше — с восточноазиатами.

В заключение приведу обновленную таблицу среднего процента гомозиготных снипов по используемым выборкам (и по используемому набору снипов):

Yemenite 65,20%
Egyptian 65,31%
Ethiopian 65,33%
Nogay 65,49%
Moroccan 65,52%
BR2 65,61%
Tatar-Kazan 65,65%
Azerbaijani 65,66%
Tatar-Crimean 65,67%
Kumyk 65,71%
Uttar-Pradesh-HC 65,72%
Bashkir 65,73%
Balkarian 65,78%
Komi 65,88%
Gujarati 65,92%
Tadjik 65,92%
UAE 65,92%
Turkmen 65,95%
Uzbek 66,00%
Uygur 66,00%
Greek_Azov 66,01%
Ashkenazi 66,03%
Ossetian 66,04%
Spanish 66,05%
Burusho 66,05%
Chuvash 66,05%
Croatian 66,05%
Abkhazian 66,09%
Iranian 66,09%
Russian-North-East 66,10%
Lezgin 66,10%
German 66,10%
Armenian 66,13%
Bulgarian 66,13%
Russian-South 66,14%
Italian-South 66,15%
Romanian 66,16%
Ukrainian-West-and-Center 66,16%
Sicilian 66,16%
Russian-North-Kargopol 66,17%
Greek 66,17%
Cypriot 66,18%
Swedish 66,19%
Palestinian 66,19%
Chechen 66,20%
Belarusian 66,20%
Hungarian 66,23%
Hazara 66,23%
Moksha 66,23%
Erzya 66,24%
Udmurt 66,25%
Georgian 66,26%
Ukrainian-East-and-Center 66,26%
Sephard 66,27%
Italian 66,29%
Ust-Ishim 66,29%
Kazah 66,29%
Tatar_Lithuanian 66,30%
Kurd 66,32%
Jordanian 66,33%
Turkish 66,33%
Mari 66,33%
Polish 66,34%
Adygei 66,35%
Norwegian 66,35%
Russian-West 66,36%
French 66,36%
Estonian 66,42%
Balt 66,45%
Karelian 66,45%
Kol 66,47%
NE1 66,49%
Veps 66,50%
British 66,51%
Finnish 66,51%
Tunisian 66,52%
Uttar-Pradesh 66,53%
Mansi 66,60%
Sindhi 66,61%
Brahui 66,68%
Kanjar 66,71%
Pathan 66,75%
Syrian 66,78%
Kirgiz 66,79%
Saud 66,91%
Makrani 67,02%
Basque 67,02%
Druze 67,08%
LBK 67,08%
Sardinian 67,08%
Andhra-Pradesh 67,09%
Bedouin 67,27%
Karnataka 67,33%
Hakas 67,33%
Altaian 67,33%
Balochi 67,36%
Saami 67,55%
Mongol 67,56%
Kalash 67,59%
Shor 67,63%
Munda 67,75%
Kerala 67,88%
Burmese 67,97%
BantuKenia 68,08%
Tuvinian 68,08%
Dolgan 68,24%
Tamil-Nadu 68,27%
Buryat 68,48%
Selkup 68,49%
Ket 68,54%
Xibo 68,54%
Cambodian 68,61%
Mongola 68,63%
Tu 68,65%
Yoruba 68,68%
Yakut 69,01%
Daur 69,11%
Han-North 69,14%
Nivh 69,25%
Naxi 69,31%
Evenk 69,32%
Hezhen 69,34%
Oroqen 69,39%
Yi 69,40%
Han 69,48%
Dai 69,62%
Japanese 69,67%
Miao 69,73%
Tujia 69,80%
She 69,88%
Naga 70,06%
Lahu 70,14%
Nganassan 70,37%
Even 70,64%
BiakaPygmy 70,69%
Maya 71,08%
MbutiPygmy 72,80%
Melanesian 73,03%
Loschbour 73,79%
Papuan 75,67%
Karitiana 76,17%
Kostenki-14 85,96%
Motala12 90,19%
Malta 94,41%

Генетические следы экспансии тюркоязычных номадов в Евразии

В самом конце июля,  на  известном ресурсе bioRxiv наконец-то появился препринт давно ожидаемой статьи тартуских генетиков  в составе Баязита Юнусбаева, Майта Метспалу и др., предметом исследования которой является важный вопрос, — оставили ли многочисленные волны экспансии и миграций древних тюрков в структуре генофонда тюркоязычных народов? Следует отметить, что Баязит Юнусбаев и ранее занимался изучением вопроса характера, состава и происхождения генетических компонентов ряда современных тюркских популяций, однако ареал исследований и используемые методы в его предыдущих исследованиях носили ограниченный характер. Свежая работа коллектива тартуских генетиков замечательна уже тем, что в ней было уделено серьезное мнение разработке точного статистико-математического аппарата для определения статистически достоверных геномных cигналов свидетельствующих о определенном характере, направленности и экстенсивности демографических процессов в среде предков современных тюркских популяций.
Наверное, именно по этим причинам работа над подготовкой данных и текста публикации велась довольно долго, не менее 3-4 лет, при том что средний цикл проведений таких исследований на уже готовых генетических данных составляет максимум год-полтора.
Существенным отличием от других подобных работ последнего времени является и заметно явное смещение акцента исследования со ставших уже традционными  методов анализа генетических компонентов (кластеров аллельных частот, которые более или менее коррелируют с географией расселения человеческих популяций), таких как PCA, Admixture) на анализ так называемых IBD сегментов и блогов, имеющих общее генетическое происхождение.  Как недавно показал на убедительных примерах ув. Сергей Козлов, зачастую правильно распланированный и тщательно выверенный анализ IBD дает более точную, в сравнении с Admixture, генетическую картину происхождения человека. Этот метод основан на метрике IBD и принципиально отличается от Admixture. У него есть свои преимущества, часто он дает лучшую прорисовку кластеров предковых популяций, построенных на основе матрицы разделяемых общих сегментов. Есть и свои недостатки — которые объясняются консервативным характером сохранения некоторых участков. Я бы рекомендовал удалить такие сегменты из анализа — в первую очередь большой мультимаркерный гаплотип региона MHC-HLA на 6 хромосоме, а также ряд участков с высоким уровнем LD. Это значительно улучшит результатЭто наблюдение особенно применимо к относительно гомогенным, однородным популяциям северо-восточной Европы.

Возвращаясь к обсуждаемой статье,  можно сказать,  что  краеугольным рабочим методом в этой статье является  расширенный fastIBD анализ большого количества геномных образцов представителей практически всех тюркских народов. В работе присутствуют и более привычные результаты Admixture и PCA анализов структуры генофонда тюркских популяций; однако, на мой личный взгляд, они менее важны в силу тривиальности результатов и легкой повторяемости эксперимента.

Выводы авторов, вынесенные в абстракт статьи, вряд ли вызовут сомнение в своей правильности у большинства историков:

1) Большинство тюркских народов изученых в данной статье, (за исключением тюрков Центральной Азии), генетически напоминают своих географических соседей,  что хорошо согласуются с моделью языковой экспансии, в которой тюркские языки — как языки доминирующей элиты -распространялись  кочевой элитой.

 

Turkic-Speaking Nomads_small
2) 2) Западные тюркские народы в выборке Западной Евразии характеризуются эксцессом длинных хромосомных сегментов, которые идентичны по своему происхождению (IBD) с большей частью населения современной Южной Сибири и Монголии (SSM),  т.е в той области, где историки отмечают концетрацию серию ранних тюркских и не -тюркских степных политических  объединений. При всем этом, наблюдаемый избыток длинных  общих по генеалогическому происхождению IBD сегментов (> 1 сентиморгана) между популяциями из региона Южной Сибирии и Монголии и тюркских народов всей Западной Евразии была статистически значимой.
Untitled
3) Примененные в исследовании методы датировки событий генетического смешения групп популяций (метод ALDER и SPCO) показали у тюрских народов присутствие сигнала смешивания различных предковых группы в интервале между ~ 9-17-ыми векми нашей эры. Несмотря на принципиальную разницу между этими методами, они дали идентичные результаты, что придает дополнительную надежность вычисленному интервалу И этот интервал перекрывается интервалом тюркских миграций с 5-го по 16 века.

Примечание 1. Мой комментарий

Как я уже отмечал выше, несмотря на всю тривиальность результатов,  эту публикацию Юнусбаева et al. 2014 следует отнести к важным работам, поскольку впервые методы оценки времени слияния популяция — ALDER и SPCO были использованы для анализа популяций без явного намека на смешения, расширявшихся в уже историческое время. Ранее эти методы использовались либо при изучении древних доисторических процессов (например, смешивания неолитического и мезолитического населения Европы). либо с использованием классических «смешанных» популяций (мозабитов, пуэрто-риканцев, карибцев и так далее).
В этой связи, заслуживает внимание результаты ALDER для группы тюркских популяций Центральной Азиии (Table 3 в сапплементе к статье), в третьей колонке которой показана датировка событий «смешивания» в поколениях (которые пересчитаны в 4 колонке на года), и это событие приходится на интервал между 13 и 14 веками нашей эры, то есть во времена Золотой Орды :

Kazakhs Italians (North Italy) Tujia 23.72±1.61 1288±48 0.00039184±0.00002155
Kyrgyz Orcadians Japanese 22.02±1.00 1339±30 0.00035833±0.00001271
Uzbeks Italians (North Italy) Tujia 22.07±1.47 1338±44 0.00036534±0.00001432
Karakalpaks Italians (North Italy) Naxi 22.69±1.89 1319±57 0.00044112±0.00001912

Однако не все просто. Еще в ноябре 2012 года при обсуждении характерных особенностей митохондриальных гаплогрупп жителей Евразии (в статье Клио дер Саркиссян), я решил проверить, насколько эта модель гаплоидной вариативности находит свое подтверждение в анализе диплоидных аутосомных маркеров.

Для этих целей я использовал программу ALDER: Admixture-induced Linkage Disequilibrium for Evolutionary Relationships,  специально разработанную для формального обнаружения в анализируемой популяции сигнала смешивания двух и более  исходных популяций.В качестве эксперимента я выбрал две современные популяции — казахов и узбеков.

Как видно, полученные мной результаты оказались очень похожи на результаты из более поздней статьи Юнусбаева et al. 2014

Из полученных результатов были отобраны только те успешные результаты, которые прошли формальные критерии отбора (статистический значимый уровень экспонентного угасания неравновесного сцепления маркеров(LD curve is significant) и наличие двухсторонней корреляции между кривыми угасания неравновесного сцепления маркеров в обеих референсных популяциях(decay rates are consistent)).

Результаты по узбекам

DATA: success 3.7e-18 Uzbek Italian-Center Mongol 9.54 9.15 5.18 13% 22.94 +/- 2.41 0.00024041 +/- 0.00001438 23.78 +/- 2.60 0.00006319 +/- 0.00000406 26.14 +/- 5.05 0.00006772 +/- 0.00000894
DATA: success 5.8e-33 Uzbek Sicilian Kyrgyz 12.59 8.51 4.94 19% 23.50 +/- 1.87 0.00015817 +/- 0.00001067 25.77 +/- 3.03 0.00005899 +/- 0.00000443 28.44 +/- 5.76 0.00003069 +/- 0.00000506
DATA: success 6.9e-25 Uzbek Sicilian Mongol 11.03 8.51 5.18 7% 24.49 +/- 2.22 0.00024382 +/- 0.00001210 25.77 +/- 3.03 0.00005899 +/- 0.00000443 26.14 +/- 5.05 0.00006772 +/- 0.00000894
DATA: success 4e-23 Uzbek Sicilian Kalmyk 10.66 8.51 5.56 16% 24.46 +/- 2.29 0.00022326 +/- 0.00001473 25.77 +/- 3.03 0.00005899 +/- 0.00000443 28.67 +/- 5.16 0.00006591 +/- 0.00000891
DATA: success 0.00077 Uzbek Sicilian Nogai 5.12 8.51 2.26 10% 23.79 +/- 4.56 0.00001986 +/- 0.00000388 25.77 +/- 3.03 0.00005899 +/- 0.00000443 23.24 +/- 10.27 0.00001138 +/- 0.00000317
DATA: success 9.8e-21 Uzbek Sardinian Kyrgyz 10.14 9.82 4.94 17% 23.96 +/- 2.36 0.00016455 +/- 0.00001038 27.67 +/- 2.82 0.00007013 +/- 0.00000589 28.44 +/- 5.76 0.00003069 +/- 0.00000506
DATA: success 2e-20 Uzbek Sardinian Mongol 10.07 9.82 5.18 10% 25.15 +/- 2.50 0.00025559 +/- 0.00001310 27.67 +/- 2.82 0.00007013 +/- 0.00000589 26.14 +/- 5.05 0.00006772 +/- 0.00000894
DATA: success 6e-13 Uzbek Sardinian Kalmyk 8.20 9.82 5.56 19% 23.64 +/- 2.88 0.00022058 +/- 0.00001440 27.67 +/- 2.82 0.00007013 +/- 0.00000589 28.67 +/- 5.16 0.00006591 +/- 0.00000891
DATA: success 0.00011 Uzbek Sardinian Nogai 5.48 9.82 2.26 17% 24.99 +/- 4.56 0.00002279 +/- 0.00000367 27.67 +/- 2.82 0.00007013 +/- 0.00000589 23.24 +/- 10.27 0.00001138 +/- 0.00000317
DATA: success 1.5e-28 Uzbek German Kyrgyz 11.77 9.19 4.94 25% 22.14 +/- 1.88 0.00012893 +/- 0.00000925 24.85 +/- 2.70 0.00004544 +/- 0.00000443 28.44 +/- 5.76 0.00003069 +/- 0.00000506
DATA: success 6.9e-21 Uzbek German Mongol 10.17 9.19 5.18 7% 24.40 +/- 2.40 0.00021733 +/- 0.00001182 24.85 +/- 2.70 0.00004544 +/- 0.00000443 26.14 +/- 5.05 0.00006772 +/- 0.00000894
DATA: success 2.8e-16 Uzbek German Kalmyk 9.08 9.19 5.56 22% 23.04 +/- 2.54 0.00018456 +/- 0.00001210 24.85 +/- 2.70 0.00004544 +/- 0.00000443 28.67 +/- 5.16 0.00006591 +/- 0.00000891

Результаты казахов:

DATA: success 4.7e-17 Kazakh Italian-Center Kalmyk 9.27 7.06 2.63 17% 22.06 +/- 2.38 0.00022347 +/- 0.00001893 25.42 +/- 3.60 0.00012981 +/- 0.00001327 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 3.5e-18 Kazakh German Kalmyk 9.54 6.39 2.63 18% 21.71 +/- 2.27 0.00021450 +/- 0.00001602 23.54 +/- 3.68 0.00012169 +/- 0.00001026 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 2.6e-23 Kazakh Russian_Center Kalmyk 10.70 6.64 2.63 17% 22.19 +/- 2.07 0.00023388 +/- 0.00001645 21.86 +/- 3.29 0.00012520 +/- 0.00001320 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 2.1e-22 Kazakh Russian_South Kalmyk 10.50 7.12 2.63 25% 20.31 +/- 1.93 0.00021745 +/- 0.00001580 20.82 +/- 2.93 0.00012386 +/- 0.00001116 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 0.019 Kazakh Slovakian Mari 4.48 8.09 3.45 17% 17.26 +/- 3.86 0.00002773 +/- 0.00000574 19.08 +/- 2.36 0.00011870 +/- 0.00001088 16.06 +/- 4.65 0.00003481 +/- 0.00000667
DATA: success 1.6e-29 Kazakh Ukrainian Kalmyk 11.95 6.93 2.63 23% 20.58 +/- 1.41 0.00021665 +/- 0.00001813 20.75 +/- 3.00 0.00011940 +/- 0.00001005 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 1.5e-14 Kazakh Ukrainian-East Kalmyk 8.63 5.90 2.63 23% 20.58 +/- 2.38 0.00022215 +/- 0.00001803 21.97 +/- 3.72 0.00012517 +/- 0.00001419 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 0.0014 Kazakh CEU_V Nogai 5.02 5.49 3.30 17% 20.84 +/- 4.16 0.00001984 +/- 0.00000315 19.20 +/- 3.50 0.00012065 +/- 0.00001375 17.52 +/- 5.31 0.00004319 +/- 0.00000772
DATA: success 0.00025 Kazakh British Mari 5.33 6.99 3.45 24% 20.42 +/- 3.83 0.00003281 +/- 0.00000478 19.18 +/- 2.74 0.00012196 +/- 0.00001159 16.06 +/- 4.65 0.00003481 +/- 0.00000667
DATA: success 0.0064 Kazakh British Nogai 4.71 6.99 3.30 18% 21.09 +/- 4.48 0.00002087 +/- 0.00000321 19.18 +/- 2.74 0.00012196 +/- 0.00001159 17.52 +/- 5.31 0.00004319 +/- 0.00000772
DATA: success 5.8e-22 Kazakh Orcadian Kalmyk 10.41 6.62 2.63 23% 20.59 +/- 1.98 0.00023474 +/- 0.00001737 21.83 +/- 3.30 0.00013779 +/- 0.00001201 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 0.004 Kazakh Bulgarian Nogai 4.80 6.98 3.30 21% 21.66 +/- 4.51 0.00001853 +/- 0.00000339 21.33 +/- 3.06 0.00012336 +/- 0.00001168 17.52 +/- 5.31 0.00004319 +/- 0.00000772
DATA: success 3.1e-19 Kazakh Karelian Kalmyk 9.79 5.77 2.63 21% 21.05 +/- 2.15 0.00019192 +/- 0.00001302 21.12 +/- 3.66 0.00009774 +/- 0.00001073 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 0.011 Kazakh Mari Bosnian 4.60 3.45 6.44 16% 17.56 +/- 3.82 0.00003003 +/- 0.00000554 16.06 +/- 4.65 0.00003481 +/- 0.00000667 18.79 +/- 2.92 0.00012259 +/- 0.00001136
DATA: success 0.0057 Kazakh Mari Greek_Azov 4.73 3.45 9.00 21% 16.97 +/- 3.59 0.00002322 +/- 0.00000431 16.06 +/- 4.65 0.00003481 +/- 0.00000667 19.87 +/- 2.21 0.00010948 +/- 0.00000811
DATA: success 5.2e-33 Kazakh Chuvash Kalmyk 12.60 5.88 2.63 14% 24.10 +/- 1.91 0.00014440 +/- 0.00000896 22.75 +/- 3.87 0.00005482 +/- 0.00000595 26.05 +/- 8.19 0.00002219 +/- 0.00000844

Результаты говорят сами за себя.  Как и в большинстве случаев с центральноазиатскими популяциями, один из компонентов адмикса у узбекв и казахов представлен монголоидным популяциями, наиболее близкими к современным монголам, киргизам и калмыкам. В контексте обсуждаемой работы о древнем митоДНК, этот компонент можно обозначать как «восточноевразийский». Другой компонент у узбеков представлен популяциями близкими по частотам аллелей к  современным западноевропейским популяциям (таким как немцы, cардинцы, сицилийцы и прочие). Кроме того в результатах анализа угасания admixture-LD казахов присутствует хорошо заметный сигнал адмикса с предками современных чувашей, марийцев и карел. Этот феномен, опять-таки в контексте парадигмы исследования древнего ДНК, можно объяснить с помощью грубой аппроксимации: как было убедительно показано в работе Дерсаркиссян, митоДНК древние скифы из ареала современной Кубани и нижнего Поволжья напоминают ряд современных поволжских популяций, а также карелов. Это же касается и сигнала о смешивании с предками более отдаленных европейских популяций (британцев, скандинавов и так далее). В свете аутосомного анализа вынужден согласится с одним из ключевых выводов Дерсаркиссян, согласно которому западноевропейские аллели были привнесены в степени Казахстана и Алтай при посредничестве популяций скифов и сарматов.

Стоит еще отметить, что у узбеков в отличие от казахов поток европейских аллелей имеет несколько иной источник, и скорее всего связан с распространением в Центральной Азии носителей «неолитических средиземнорских аллелей».

Подводя итоги, необходимо сказачть, что определенные трудности представляет интерпретация датировки европейского адмикса у казахов и узбеков. Поскольку этот адмикс датируется примерно одинаковым интервалом 30-25 поколений до нашего времени, что примерно соответсвует периоду завоевательных походов монголов. Однако, представляется трудно допустимым, что европеидное население казахской степи могло сохранится в значительном количестве вплоть до эпохи монголов, или что земледельческое население Средней Азии — сарты — было в генетическом плане европеоидно. Лично я склоняюсь к следущей интерпретации:  смешивание европейского и восточноазиатского компонента произошло намного ранее монгольской эпохи, заниженная дата этого события есть прямое следствие последущего эфекта дрейфа генов и фиксации части аллелей.

Примечание 2. Комментарий профессионального историка

Хорошая работа. Но это — еще самое начало пути. Пока идет процесс верификации используемых методов. Очень важно, что результаты в целом совпали с тем, что говорят исторические источники. Для генетиков это хорошо, но для историков — тривиально. Действительный интерес появится, когда станет возможно давать такие ответы, которые историки своими методами добыть не могут. А этого пока нет.
Я на заре своей научной карьеры аналогичные выводы получил, используя всего один интегрированный фенотипический признак — индекс уплощенности лицевого скелета. По трудозатратам это было несопоставимо. Да, теперь эти выводы обоснованы гораздо надежнее. Но хочется гораздо большего.

Этногеномика беларусов — часть V

Обсуждение результатов и выводы

 

Как отмечалось в введении к нашей статье, главной задачей нашего исследования являлась проверка двух рабочих гипотез, озвученных в предыдущих исследованиях профессиональных попгенетиков. Во-первых, это гипотеза о присутствии трех основных древних компонентов , которая указывает на возможность общего происхождения славян и балтов. Во-вторых, это утверждение о том, что своеобразие аутосомного генофонда беларусов может быть связанно с вкладом балтского субстрата.

После внимательного изучения результатов нашего исследования,можно сказать, что оба из приведенных выше заключений представляют собой крайне упрощеные варианты сложного процесса формирования аутосомного генофонда беларусов. Хотя мы и не можем предоставить окончательных аргументов в пользу или опровержение каждой из этих версий, мы может предоставить более полное и подробное обозрение структуры аутосомного генофонда. В отличие от трех основых компонентов, упомянутых выше, в нашем исследовании мы выделили шесть основных компонентов, типичных для европейцев в целом. Основу генофонда составляет компонент, который мы обозначили как северо-восточно-европейский компонент. Именно этот компонент выделяет беларусов среди других восточных славян, приближая их к современным балтийским популяциям (у литовцев процент компонента составляет 81,9, у латышей — 79,5%, у беларусов -76,4%, у эстонцев — 75,2%). Примечательно, по мере удаления от территории Беларуси на север в с торону Латвии и Эстонии, увеличивается процент северо-европейского генетического компонента (как мы полагаем, этот компонент доминировал в генофонде доисторических жителей Скандинавии в эпоху до распространения финно-угоров и индо-европейцев). С другой стороны, беларусов и других восточных славян отдаляет от балтов и сближает друг к другу более высокий процент так называемого западно-азиатского или кавказского компонента (любопытно, что в этом случае эта закономерность может свидетельствовать в пользу западно-азиатской теории происхождения индо-европейцев).

Далее, как показывает анализ в программе fineStructure, генофонд беларусов характеризируется высокой степенью генетических контактов как с балтами, так и остальными славянами, а также с рядом финно-угорских популяций (например, c эрзя и мокша). О симметричном характере межпопуляционного обмена свидетельствует симметричное расположение популяции беларусов относительно этих трех групп.

Исходяизвышенаписанного,представляетсялогичнымсделатьвыводотом,чтоосновнойкритическийэтапстановленияаутосомногогенофондапришелсянапериодсмешиванияносителейсеверо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента,послечегопредковыйаутосомныйгенофондбеларусовприобрелотносительнуюстабильность.Разумеется,даннаямодельнеисключаетпозднейшиеэпизодысмешиванияпопуляций,ноониоставилименьшийследвструктуреаутосомногогенофондабеларусов.Вэтойсвязивозникаеточевидныйвопрос–вкакойименноисторическийпериодпроизошлосмешениеносителейсеверо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента,иктобылиихносителями?
В начале сентября 2012 года известная американская лаборатория популяционной генетики доктора Райха опубликовала альфа-версию программного продуктаADMIXTOOOLS1.0. Альфа-версия была разработана для внутреннего использования, поэтому modusoperandiэтого продукта вряд ли является кристально понятным для стороннего пользователя. Положительным аспектом на мой взгляд является то, что ADMIXTOOLSпакет обеспечивает полную совместимость с форматом другой очень популярной программыEIGENSOFT, которая была разработана в той же лаборатории. Это немаловажное обстоятельство намного упрощает процесс обучения в ADMIXTOOLS.

Вышеупомянутый пакет включает в себя 6 приложений, среди которых я считаю наиболее полезнойqp3Popи утилиты для вычисления частотной характеристики аллелей. Впрочем, я не собираюсь обсуждатьqp3popво всех деталях и в контексте данной заметки достаточно отметить, что эта программа реализует тест three_pop(F_3), подробно описанный в известной статье Рейха и соавт. 2009.

Однако другой имплементированный в пакете метод, – метод rolloff– нуждается в более пристальном внимании. Этот метод позволяет производить математическую оценку как времени, так как и уровня адмикса. Оценка производится на основании анализа неравновесия по сцеплению между SNP-ами. Тут необходимо вспомнить стандартное определение неравновесия по сцеплению.Неравновесием по сцеплению (часто используется английская аббревиатураLD) называется неслучайная связь между двумя аллелями, в силу которой определенные комбинации аллелей встречаются наиболее часть. В теории, чем дальше друг от друга находятся SNP-ы ,тем меньше будет уровень LD. Темп угасания снижения LDв адмиксе напрямую связана с числом поколений, прошедших с момента адмикса, так как cвозрастанием числа поколений увлечивается число рекомбинаций произошедших между двумя отдельными SNP-ами. Проще говоря: Rolloffсоответствует экспоненциальной кривой угасания уровня LDот расстояния, и эта скорость экспоненциального снижения как раз и используется для оценки числа поколений, так и уровня адмикса в анализируемой популяии. Учитывая, что одно поколение примерно равно 29 лет, можно преобразовать число поколений в года.

Этот метод открывает интересные перспективы. Для целей этого анализа, я создал специальный набор SNP-данных, который включает в себя около 750 000 cнипов, частично или полностью в 250 различных популяциях человека. Далее, я разбил популяции 3 * 62 000 трио в следующем виде (X, Y, Z), где X и Y – пара рефренсных групп, а Z – белорусы из коллекцииBehar et al.2010. После этого я провел q3Pop анализ этих трио.

Результаты изложены в нижеприведенной таблице

Indian Polish Belarusian -0.000736 0.000251 -2.935
Polish Indian Belarusian -0.000736 0.000251 -2.935
Karitiana Sardinian Belarusian -0.001278 0.000517 -2.471
Sardinian Karitiana Belarusian -0.001278 0.000517 -2.471
Otzi North_Amerind Belarusian -0.002556 0.001126 -2.271
Cirkassian Polish Belarusian -0.000488 0.000231 -2.113
Polish Cirkassian Belarusian -0.000488 0.000231 -2.113
Pima Otzi Belarusian -0.002727 0.00137 -1.99
Pima Sardinian Belarusian -0.000794 0.000431 -1.843
Sardinian Pima Belarusian -0.000794 0.000431 -1.843
Otzi Surui Belarusian -0.002938 0.001931 -1.522
Surui Otzi Belarusian -0.002938 0.001931 -1.522

 

На первый взгляд, результаты нашего эксперимента с 3qPop, кажется, неплохо согласуются с выводами, содержащимися в работеПаттерсон и др. 2012: “Самый поразительный вывод состоит в обнаружени четкого сигнала адмикса в северной Европе, один из элементов которого связан с предками населения наиболее близкого по своей генетике к баскам и жителям Сардинии, а другой – с предками современного населения северо-восточной Азии и Америки. Этот явный сигнал, вероятно, отражает историю смешивания неолитических мигрантов с коренным населением Европы, что подтверждается недавним генетическим анализом древних костей Швеция и секвенированием полного генома Отци Тирольца”. Что касается собственно белорусов, то источники сигнала смешивания с посторонними популяцими менее ясны и расплывчаты. Как было показано ранее, с точки зрения формального анализа примесей (f3 статистики), белорусы могут быть представлены в виде популяционного микса поляков и индусов / черкессов. Первый компонент смеси может быть связан с носителями культуры шнуровой керамики/боевых топоров и культуры колоковидных кубков; второй, в соответствии с результатами, должен быть общим для индусов и черкесов.

 

Белорусы = ((неолитические культуры Европы) + “носители культуры колоковидных кубков”) + (мезолитическое население Европы) + компонент носителей культуры шнуровой керамики)) + скифо-сарматский тип

 

Для оценки дата события базового адмикса в белорусской популяции, мы использовали в качестве референсных популяций поляков и индусов (Примечание: мы снизили порог генетических дистанции в параметрах Rolloff для снижения уровня шума от более поздних адмиксов).

 

rolloff

Как вы можете видеть, сигнал присутствия адмикса обнаруживается гораздо хуже, и в силу этого, погрешности в оценке временного промежутка высоки:

154,158 + -87,024 поколений назад (или, 4470 + -2523 года до настоящего времени / 2510 – +2523 лет до н.э.).

 

Исходя из этого, мы решили модифицировать Rolloff-анализ генофонда белорусов, используя на этот раз в качестве референсов литовцев и пуштунов. Следуя этому совету, я решил предпринять вторую попытку формального анализа адмикса в двух имеющихся у нас выборках беларусов ( выборка беларусов из статьи Behar et al. 2011), и выборка беларусов, собранная в нашем проекте.Ниже приведены результаты эксперимента с двумя этими группам (в отличие результатов нашей предыдущей попытки, результаты данного эксперимента менее “зашумленные”):

rolloff2

 

Интервал числа поколений, прошедших со времен анализируемого адмикса (105.086+-52.59) или 3069 +- 1525 лет до настоящего времени, что соответствует временном интервалу 2 тыс. до нашей эры – 6 век нашей эры. Принимая во внимание эти выводы, мы можем предположить, что основной аутосомный эпизод смешивания предковых популяций беларусов произошел в течении довольно таки продолжительного времени, охватывающего несколько тысяч лет. В этой связи, вопрос о том, кто именно был носителями северо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента, остается открытым.

Этногеномика беларусов — часть IV

Анализ структуры аутосомного генофонда популяции беларусов: результаты анализа этнического адмикса.

 

После проведения анализа этно-популяционного адмикса мы получили следущие результаты, обсуждению которых будет посвящена следущая часть нашего исследования. Результаты представляют собой разбивку аллельных частот на 22 кластера, каждый из которых представляет собой гипотетическую предковую популяцию. Поскольку в цели данного небольшого исследования не входит подробный анализ всех популяций, мы ограничимся сравнительном анализом структуры (компонентов) беларусов c географически близкими популяциями, а также с теми популяциями, которые могли входить в исторические контакты с предками современных беларусов:

admix

 

Рисунок 3. Результатыанализа ADMIXTUREK=22

У рассматриваемых здесь европейских популяций наиболее часто представлены следующие компоненты:

North-East-European,Atlantic_Mediterranean_Neolithic,North-European-Mesolithic, West-Asian, Samoedic, Near_East.

Разберем вкратце каждый из них. В ракурсе нашего исследования самым важным компонентом представляется – северо-восточно-европейский компонент North-East-European, он присутствует почти у всех европейцов, и в самой значительной степени — у балтов и славян: литовцы (81,9), латыши (79,5), беларусы (76,4), эстонцы (75,2), поляки (70,2), русские (67- 70,4), украинцы (62,1- 67,1), сорбы (65,9), карелы (60,2), вепсы (62,5), чехи (57,4), северные немцы (54,6), южные- 42,6, у британцев от 46 до 49, норвежцы- 48,1, шведы- (53,7).

Второй по значимости компонент — Atlantic_Mediterranean_Neolithic (юго-западно-европейский или просто западно-европейский неолитический компонент).[1]У восточноевропейцев он выражен в умеренной степени- чехи (27,8), поляки (18,4), украинцы ( от 17 до 21%), беларусы (13%), русские (от 11 у северных до 17,3 у южных), у коми (8,9 %), манси (8,8 %).

Третьй компонент – северо-европейский мезолитический компонент -North-European-Mesolithic[2]: cаамы (76,4 %), финны (от 30,1 до 37,3 %), вепсы (24,1), карелы (23,2), ижорцы (22, 7). Заметен этот компонент и у северных русских (10,5 %), норвежцев (9,8 %), шведов (7,8 %), эстонцев (7,1 %). У беларусов он практически отсутствует (1.1%).

Четвертый компонент – западно-азиатский (кавказский) West Asian[3]. На интересуемой нас территории этот компонент чаще встречается у казанских татар (9,9 %), южных немцев (8,4), украинцев (от 6,6 до 7,7 %), южных русских (6,2%). На западе высок процент у итальянцев (21,5 % у центральных итальянцев), французов (6,7 %), у беларусов (2.2%).

Пятый компонент — уральский Samoedic. Значительно присутствует у селькупов (68,1%), хантов (64,6), ненцы (37,1), манси (30,9 %-), удмурты (29,6), марийцы (27, 8), шорцы (22,0 %), башкиры (21,7%), чуваши и хакассы по 17,6 %, коми- 16,4 %, казанских татар (11,9 %). У западноевропейцев этот компонент практически не встречается, у русских (от 1,0% у центральных до 4,7 % у северных), у карел (1,6%), словаков (1,4%), западных украинцев (1,7 %), беларусы (0.5%).

Шестой компонент – ближневосточный Near_East[4]У южных немцев (3,5), украинцы (от 2,3 у восточных до 3,8 % у западных), чехи (3,0), беларусы (3,4), словаки (3,2), у русских от 1,0 до 1,5%, у литовцев- 1,4%, у поляков- 1,3 %.

[1]Больше всего у сардинцев (68,1 %), басков (59,2 %), иберийцев (48,8), корсиканцев (47,8), португальцев (46,6), северных итальянцев (44,3), французов (43,5 %). Данный компонент достаточно выражен у всех западноевропейцев- более 30 %

[1]Название связано с тем, что этот компонент достигает значительных частот в древней ДНК жителей мезолитической Иберии, неолитических жителей Швеции и современном ДНК жителей Фенноскандии

[1]Наибольший процент на Западном Кавказе- абхазы (64, 9%), имеретинцы (63,7), лазы (56,6), аварцы (56,8), лезгины (55,4).

[1]Евреи Йемена (60,9 %), Сауд. аравия (59,5), бедуины (56,7), евреи Эфиопии (52,5), египтяне (43,8).В Европе oтносительно много у итальянцев (центр- 17,4), португальцев (11,9).

 

Анализ разделяемых аутосомных сегментов между популяциями Северо-Восточной Европы.

С целью верификации результатов анализа главных компонентов генетического разнообразия я подготовил новую выборку популяций, которая включает в себя ряд референсных евразийских популяций и анализируемую группу участников моего проекта MDLP. В совокупности, выборка включала в себя 900 индивидов, каждый из которых был типирован по 350 000 снипам.В ходе нового экспериментального теста в ходе статистической обработки общих по генетическому происхождению сегментов хромосом в составе выборки было выделенно 15 групп кластеров генетически близких популяций Как нам представляется, ключевым моментом для понимания принципов этого анализа, а также результатов, является понятие эффективной популяции или эффективный размер (Ne) популяции, т.е размера той популяции которая участвовала в репродукции или обмене генами в некоем отдаленном временном промежутке. Собственно говоря, эффективная популяция – это даже не число уникальных предков, а математическая абстракция разброса гамет, размер которого оценивается исходя из разброса числа гамет относительного к гамет, передаваемых родителям репродуктивного возраста следующему поколению. Он отличается от репродуктивоного объема Nr в той мере, в какой существует неравный вклад лиц родительского поколения в генофонд следующего поколения. Это создает разброс значений числа гамет к, того родителя относительно числа гамет к, передаваемых родителям следующему поколению (Wright, 1931, Li Ch. Ch., 1955). Новая программа Chromopainter позволяет оценить этот размер, исходя из числа наблюдаемых рекомбинаторных гаплотипов и значений LD. Когда я производил оценку этого размера, то для каждой из 22 неполовых хромосом он получился разный, однако среднеарифметическое значение составило 22 000. Это близко к значениям Neрекомендованным к использованию профессионалами (например, авторами программы IMPUTE V2). Как видно из приведенных ниже результатов, даже 22 000 для совокупности эффективного размера элементарных популяций – это более, чем достаточно.

 

finest

Рисунок 4. Расположение популяций в пространстве 1 и 3 главных генетических компонентов

 

Изложим ниже некоторые закономерности размещения популяци

 

  1. Финны оказались ближе к русским и поволжским финно-угорам (эрзя и мокша)
  2. Все литовцы (участники проекта + референсы из вышеупомянутой статьи Бехара) и часть референсных белорусов образовали отдельный кластер, тесно примыкающий к кластеру белорусов, поляков, украинцев

  3. Следущим кластером является центрально-европейский кластер, представленный главным образом венграми, хорватами, а также частью немцев.

  4. Ниже находится балканский кластер (румыны, болгары и часть венгров).

  5. К этому кластеру примыкают турки и часть армян

  6. В центре плота находятся западноевропейцы из моего проекта (французы, немцы, бельгийцы и жители британских островов).

  7. Выше находятся два оркнейских кластера, в которых находится и часть скандинавских сэмплов.

  8. Еще левее находится кластер образованный референсными северо-итальянцами и тосканцами.

  9. Ниже находятся армяне и слево итало-иберийский кластер (часть итальянцев и испанцы).

  10. Левее этой группы популяций находится кластер ашкеназов.

  11. Наконец, самый крайний слева кластер представлен изолированной популяцией сардинцев.

  12. Ниже итало-иберийского и армянского кластеров расположен целый ряд кавказский кластеров. Это прежде всего адыгейцы и абхазцы, затем северные осетины.

  13. Вышеназванные кластеры частично перекрывают кластер ногайцев (что свидетельствует о наличии генетического обмена между северокавказскими популяциями и ногайцами)

  14. Кластер ногайцев плавно переходит в кластер узбеков, который в свою очередь примыкает к изолированному кластеру чувашей

  15. Наконец самым изолированным кластером является кластер французских басков (в нижнем левом углу плота).[5]

 

[1]Больше всего у сардинцев (68,1 %), басков (59,2 %), иберийцев (48,8), корсиканцев (47,8), португальцев (46,6), северных итальянцев (44,3), французов (43,5 %). Данный компонент достаточно выражен у всех западноевропейцев- более 30 %

[2]Название связано с тем, что этот компонент достигает значительных частот в древней ДНК жителей мезолитической Иберии, неолитических жителей Швеции и современном ДНК жителей Фенноскандии

[3]Наибольший процент на Западном Кавказе- абхазы (64, 9%), имеретинцы (63,7), лазы (56,6), аварцы (56,8), лезгины (55,4).

[4]Евреи Йемена (60,9 %), Сауд. аравия (59,5), бедуины (56,7), евреи Эфиопии (52,5), египтяне (43,8).В Европе oтносительно много у итальянцев (центр- 17,4), португальцев (11,9).

 

[5]Такое поведение на плоте объясняется только изолированным положением популяции и небольшим числом эффективной популяции.То есть все эти баски являются многократными родственниками между собой т.е., положение басков на графике есть следствие классического генного дрейфа, который можно наблюдать на карте.На самом деле положение басков на данном плоте не может ни подтвердить, ни опровергнуть гипотезу о континуитете баскской популяции , т.к PCA-координаты (eigenvalues и eigenvectors) вычислялись в Chromopainter исходя из количества sharedDNAchunks между популяциями-донорами и популяциями-рецепиентами.То есть баски изоляты в том смысле, что уровень обмена ДНК между ними и другими популяцими ничтожен.

Исходя из этого можно сделать вывод о том что баски эта экстремально-эндогенная популяция изолянтов, при этом генетическое разнообразие басков низко, т.к. размер эффективной популяции басков низок.

Этногеномика беларусов — часть II

Анализ структуры аутосомного генофонда популяции беларусов: методы, технические параметры и предварительные замечания.

 

В целях сопоставимости выводов данных анализа с приведенными выше выводами профессиональных популяционных генетиков, мы использовали в своем исследовании референтную выборку беларусовиз ДНК-банка Института Генетики Беларуси в том же объеме, в котором она была задействована в исследовании группы ученных под руководством Бехара (модифицированная выборка Генбанка с кодом доступа:GSE21478)[1]. Наряду с референтной группой беларусов (обозначена как Belarusian), мы использовали данные лиц беларуского происхождения из нашего собственного проекта этно-популяционного анализа лиц, предки которых проживали на территории Беларуси минимум 100-150 лет(обозначено как Belarusian_V).

Для проведения сравнительного анализа генофонда популяций нам понадобился референтный набор популяций. Референтный набор популяций в этом калькуляторе был собран в программе PLINK  методом “intersection&thinning” ( дословно “пересечением и истончением”) образцов из различных источников данных:HapMap 3(отфильтрованный набор данных КЕС, YRI, JPT, CHB),1000genomes, Rasmussen et al. (2010), HGDP (кураторская база данных Стэнфордского университета), Metspalu et al. (2011), Yunusbayev et al (2011),Chaubey et al. (2010)и т.д. Кроме того, мыотобралипроизвольным образом по 10 сэмплов (или максимальное количество доступных сэмплов в тех случаях, когда общее число сэмплов в популяции было меньше 10) от каждой европейской страны, представленной в панеле базе данныхPOPRES.Наконец, для того чтобы оценить степень корреляции между современным и древним генетическим разнообразием населения Европы, мытакже включилив выборку образцы древней ДНКЭци(Keller et al. (2012)) , образцы жителей шведского неолита Gök4, Ajv52, Ajv70, Ire8, STE7 (Skoglund et al. (2012))и 2 образца La Braña – останков мезолитических жителей Пиренейского полуострова (Sánchez-Quinto et al.(2012)).

Затем мыдобавили90 образцов – анонимизированных данных — участников моего проекта. После слияния вышеупомянутых наборов данных и истончения набора SNP с помощью особой команды PLINK, мыисключилиSNP-ы с менеечем 0.5% минорных аллелей. Послечего мыотфильтровал дубликаты, лиц с высоким уровнем общих по происхождению идентичных сегментов (IBD). В качестве критерия фильтрации были использованы расчеты IBD в Plink, где IBD представлена как средняя доля аллелей общих между двумя людьми по всем анализируемым локусам. Затем мыудалилииз выборки лиц с высоким коэффициентом предпологаемого родства, коэффициенты родства были вычислены в программном обеспеченииKing).

Для получения более стабильных результатов, мытакже отфильтровалисэмплы с более чем 3 стандартными отклонениями от средних данных по популяции. Поскольку коэффициент родства может быть надежно определен с помощью оценки HWE (ожидания, вытекающего из законаХарди-Вайнберга) между SNP-ами с той же базовой частотой аллелей, то SNP-ы с существенным отклонением (p < 5.5 x10−8) от ожидания Харди-Вайнберга были удалены из объединенного набора данных. После этого мывыделилите SNP-ы, которые присутствовали в чипах Illumina / Affymetrix, и затем произвелифильтрацию снипов на основе расчетов степени неравновесного сцепления (в этом эксперименте мыиспользовалтхромосомное ‘окно’ размером в 50 базовых пар, с шагом 5 базовых пар и пороговым значением уровня сцепления R ^ 2, равным 0,3).

По окончанию этой сложной последовательности операций, мыполучил окончательноый набора данных, который включал в себя 80 751 снипов, 2516 человек и 225 референсных популяций.

 

[1] http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21478

Этногеномика беларусов — часть 1

I. Анализ аутосомного генофонда беларусов

Наряду с ставшими уже традиционными методами анализа структуры генофонда популяций по Y-хромосоме и митохондриальном ДНК (о которых мы упоминали выше), в последнее время все большее распространение получают новые и более точные методы анализа генофонда популяций, в основу которых положены данные о частотах аллелей большого числе генетических локусов на неполовых хромосомах. В силу того, что в передаче генетического материала на неполовых (аутосомальных) хромосомах участвуют как мужчины, так женщины, подробный и детальный анализ распространения аллельных вариант способен дать более точную характеристику процессов исторических и эволюционных процессов в отдельно взятой популяции. Кроме того, большая часть человеческого генома сосредоточена в неполовых хромосомах — количество генов (точнее определенных генетических локусов) локализованных на неполовых хромосомах, несоизмеримо выше числа генов в митоДНК и половых хромосмах. Поэтому анализ аутосомных хромосом обладает более высокой степенью информационного разрешения. Выбор типа локусов в нашем исследовании также обусловлен сугубо прагматическими соображениями.
Поскольку существует разные типы генетических маркеров, мы ограничились снипами — точечными мутациями, представляющими собой замену одиночного нуклеотида. Как было показанов других исследованиях, математико-статистические методы исследования распределения аллельных вариантов(генотипов) отдельных снипов характеризуются наивысшой разрешающой способности в плане изучения воздействия всех известных генетических эффектов на историческую демографию популяции.

Перед тем, как перейти к весьма сжатому и краткому описанию результов анализа популяции беларусов по определенному набору типированных снипов,  следует вкратце описать предысторию изучения аутосомных маркеров беларуской популяции. Как уже отмечалось выше, новые методы исследования генофонда популяция с помощью изучения статистических характеристик одиночных нуклеотидных вариантов (SNV/SNP), были введены в популяционной генетике и биоинформатике относительно недавно. В более ранней парадигме, анализ (в том числе, и сравнительный) аутосомной составляющей генофонда состоял в определении набор-панели высокополиморфных и слабо сцепленных между собой аутосомных ДНК маркеров. В то же самое время, насколько нам известно, аналогичный анализ с использованием другого типа маркеров –снипов- до совсем недавнего временине проводился. Например, в исследованиях аутосомных ДНК-маркеров часто использовался стандартный набор CODIS, который первоначально разрабатывался для нужд ДНК-профилирования в криминалистике.В данную систему CODIS входят 16 аутосомных STR локусов и амелогениновый тест на определение половой принадлежностиОднако относительно простота амплификации сателлитной ДНК в формате мультиплексной PCR, и доступность методов статистической обработки с использованием современных статистических подходов, применяемых в популяционной генетике и судебной медицине, привела к тому что эта система часто использовалась в ранних исследованиях генофонда популяций Восточной Европы.

Cамой масштабной работой такого рода( а именно, c использованием классических аутосомных маркеров STR), является совместная статья Балановского и Тегако. В свете нашего исследованияпредставляется нужным отметить наиболее интересующий нас аспект вышеупомянутой работы, а именно сравнительный анализ генофонда беларусов с генофондами других популяций Западной Евразии. Как отмечают авторы, cравнительный анализ генофондов Западной Евразии показал, что «поаутосомным ДНКмаркерам все восточные славяне входят в один кластер Восточной Европы. Однако русские и украинские популяции расположены ближе друг к другу, чем к белорусам… Русские и украинцы оказываются ближе к популяциям Западной и Южной Европы, чем белорусы. К сожалению, по этим маркерам не изучены ближайшие западные и северные соседи белорусов, и в частности, балтские народы. Можно предполагать, что некоторое своеобразие генофонда белорусов связано с вкладом балтского субстрата»[1]
Использованные в работе Балановского и Тегакогенетические данные по генофонду популяций беларусов были взяты из баз данных Института генетики НАН Беларуси, где хранятся базы данных по 35 аутосомным генам, изучаемых, главным образом, в целях медицинской генетики. Однако, как отмечается в статье О.Давыденко и Е. Кушнеревич «Гаплогруппы Y-хромосомы и происхождение национального генофонда», для эволюционных исследований эти маркеры не совсем удобны, так как на частоту и характер распространения аллелей зачастую оказывает влияние жесткий естественный отбор, и поэтому по одним только результатам анализа распределения частот невозможно судить о генетическом родстве разных популяций.[2]

Несмотря на то, что основное внимание в статье Давыденко и Кушнеревич уделяется анализу Y-хромосомных гаплогрупп беларусов, в конце статьи авторы мимоходом упоминают о результатх исследования аутосомного генофонда, проведенного междунродным коллективом под руководством Дорона Бехара[3]:

«В работе израильского ученого Дорона Бехара с соавторами изучались различные популяции евреев и анализировалась генетическая взаимосвязь между ними и их «хозяйскими» популяциями. В большинстве случаев эта связь была незначительной. Белорусская «хозяйская» популяция также исследовалась с использованием именно нашего ДНК-банка, то есть эти данные весьма сопоставимы, поскольку сделаны на одной той же представительной выборке. Ученые сравнивали 100 тыс. однонуклеотидных замен (то есть изучали 100 тыс. точек, разбросанных по всему геному человека). Результаты работы демонстрируют достаточно близкий спектр изменений у белорусов, литовцев и русских и свидетельствуют о присутствии трех основных «древних» компонентов в сопоставимых пропорциях. Это также косвенно указывает на возможность общего происхождения славян и балтов, а также на то, что основы генофонда различных европейских народов заложены еще в доисторическое время.Если сопоставить данные математической лингвистики с данными по геномному анализу, нельзя не увидеть определенного параллелизма не только в дивергентном характере, но и во временных оценках эволюции – как языка, так и генетики. Эти данные также могут свидетельствовать в пользу предположения общности происхождения славян и балтов из некогда единой популяции.»

В приведенной выше цитате мы выделили самую важную часть, в которой авторы высказывают предположение о том, что присутствие трех основных древних компонентов указывает на возможность общего происхождения славян и балтов. Очевидно, что предложенная авторами спорная(на наш взгляд) интерпретация противоречит выводам Балановского и Тегако о том, что своебразие аутосомного генофонда беларусов может быть связано с вкладом балтского субстрата. К сожалению, в обеих статьях авторы не сочли нужным подробно аргументировать свои выводы по столь важному вопросу. Поэтому одной из задач нашего небольшого исследования мы ставим критический разбор обеих утверждений на основане полученных нами данных о структуре аутосомного генофонда беларусов.

 

[1] Балановский О. П., Тегако О. В. Генофонд белорусов по данным о трех типах генетических маркеров — аутосомных, митохондриальных,Y-хромосомы.

[2] Давыденко Олег, Кушнеревич Елена.2011. Гаплогруппы У-хромосом и происхождение национального генофонда. Наука и Инновации.Тайна происхождения белорусов. 9(103),12-15.

 

[3] Behar, Doron.M.2010.The genome-wide structure of the Jewish people.Nature 466, 238–242.

Возможна ли оценка вероятного возраста ближайшего общего предка по размеру одиночного аутосомного IBD-сегмента?

В последние годы среди людей, интересующихся генеалогией, приобрели заметную популярность сервисы, производящие поиск генетических родственников по всем линиям, а не только по прямой мужской и прямой женской. В качестве примера можно привести Family Finder от FTDNA и DNA relatives от 23andMe. Участник получает достаточно длинный список так называемых «совпаденцев» — людей, имеющих с ним один или более участок половинного совпадения (УПС) на аутосомах (неполовых хромосомах). Если участок достаточно длинный (а его длина измеряется в сантиморганидах, обозначающих вероятность разрыва участка при каждой передаче в следующее поколение), то это говорит о наличии общего предка (от которого участок и получен).

При этом большинство совпаденцев имеет с вами один, реже два или три одиночных сегмента диапазоном 8-15 или около того сМ. Предсказанная степень родства — от пяти-шести-юродности до неопределенно далекого. Интуитивно кажется, что более вероятно близкое родство, а далекие родственники пришли из так называемого «хвоста распределения» — по теории вероятности, часть сегментов должна сохраниться дольше, чем ожидается.

Так ли это? Поскольку я предполагаю, что придется еще не раз давать ссылку на этот пост людям, ищущим ответа на вопрос о возрасте ближайшего общего предка по одному сегменту, помещу этот ответ в самом начале:

В растущей популяции количество IBD-сегментов размером до 10-20 сМ (верхняя граница зависит от скорости роста) с каждым поколением только увеличивается.

Это значит, что более дальнее родство с совпаденцем из 23andMe или FTDNA вероятнее ближнего (по крайней мере, пока мы не добираемся до предков, живших в эпоху стагнации или уменьшения численности популяции). Грубо говоря, сегменты успевают размножиться быстрее, чем они разрываются.

Этот вывод был для меня неожиданным, однако он отлично согласуется с наблюдаемой практикой. Собственно, то, что большинство подобных сегментов являются весьма древними, было ясно мне и раньше, однако в качестве объяснений приходили на ум различные причины замедления распада (например, высокая гомозиготность в популяции). Инерция мышления не позволяла увидеть процесс в динамике.

Взявшись за решение задачи оценки вероятного возраста общего предка, я решил промоделировать процесс, постаравшись учесть ряд факторов. В модели просчитывается потомство от одного предка на протяжении 10-13 поколений (В зависимости от количества детей на семью. Пойти далее не позволила мощность компьютера). При этом для каждого потомка учитывается его пол (частота рекомбинации различается у мужчин и женщин), случайным образом определяется количество детей и просчитываются общие сегменты с одной, выделенной веткой древа, имитирующей нашу родовую линию. Использовалась генетическая карта от Rutgers University, согласно которой общая длина аутосом составляет примерно 3600 сМ. Для простоты Х-хромосома в моделировании не участвовала. Модель прогонялась 10000 раз, результат усреднялся. Далее для каждого следующего поколения результат умножался на степень двойки, чтобы учесть возрастание количества предков.

Для начала я запустил модель для стабильной популяции — среднее количество детей у каждого человека составляло 2, то есть рост отсутствовал. На графике показано суммарное количество общих с нашей веткой сегментов из каждой размерной категории (но не более 50 сМ) для каждого поколения. Видно, что для многих категорий количество сегментов поначалу увеличивалось, однако постепенно рост сменялся падением.
IBD_Diag01
Дольше всего держалась категория 1-5 сМ, стабилизировавшая свою численность к 12 поколению. Откуда же брался этот рост?
Более мелкие сегменты «подпитывались» распадом крупных. Например, при разрыве сегмента 14 сМ на 6 и 8, мог появиться 8 сМ сегмент (второй исчезал, так как по наследству передавался лишь один). Категория наиболее мелких сегментов при этом находилась на вершине пищевой цепочки, поэтому продержалась дольше всех. Однако к 12 поколению крупных сегментов для ее подпитки просто не осталось. Поэтому в каждом поколении количество сегментов, переданных от конкретного предка, уменьшалось вдвое, однако и количество предков увеличивалось в той же пропорции. Итого — практическая стабилизация численности. Медленный распад сегментов в пределах нескольких процентов на поколение практически незаметен. А вот у более крупных сегментов процесс распада идет быстрее, поэтому их количество заметно снижается. На следующем графике изображена доля, занимаемая по количеству данной категорией сегментов (исключая из общего числа сегменты крупнее 50 сМ). Доля мелких сегментов неизбежно растет с каждым поколением.

IBD_Diag02

Казалось бы, результаты моделирования полностью подтверждают интуитивные представления. Можно рассчитать и наиболее вероятное время жизни общего предка. Например, при наличии сегмента 11-15 сМ медиана находится между 7 и 8 поколением.

Однако следующая модель, предполагающая рост популяции на 25% за поколение (среднее количество детей — 2.5 на человека), дала заметно отличающийся график.

Как видно, с каждым поколением растет не только количество мелких сегментов, но и число сегментов вплоть до категории 20-25 сМ! В предыдущей модели их количество росло лишь до 4 поколения, а далее начало снижаться. Я попробовал проверить модель независимым расчетом. Допустим, у нас есть два человека, разделяющих общий сегмент 15 сМ. У одного из них два потомка в следующем поколении, у другого — 3 (примерно, как во второй модели). Если я правильно рассчитал вероятности, матожидание наличия неповрежденного сегмента между их потомками, составляет 111%. Если у нас была 1000 таких пар, в следующем поколении пар уже будет 1110. Чем больше сегмент, тем выше вероятность его разрыва и ниже матожидание передачи. Граница для выбранных условий проходит примерно по 20 сМ — для этого сегмента матожидание около 100% . Рост количества сегментов из категории 21-25 сМ, видимо, объясняется подпиткой от более крупных. Их число стабилизируется к 11-12 поколению и в дальнейшем должно начать падать. Количество же мелких сегментов при этом растет прямо-таки как на дрожжах, формируя экспоненциальный график.

Процентное соотношение разных категорий сегментов схоже с предыдущей моделью, однако доля категорий выше 10 сМ вполне ощутима.

При более быстром росте населения верхняя граница устойчивости сегментов должна сдвигаться в сторону увеличения. Чем больше детей у каждого родителя, тем больше крупных сегментов перейдет потомкам. Ради интереса, я запустил и вариант со средним количеством детей на семью, равным трем. Здесь эффект еще более выражен. А ведь при заселении новых пространств такое количество детей — далеко не предел.

IBD_Diag05

IBD_Diag06

Обнаруженный эффект естественным образом объясняет факты наличия большого количества общих сегментов внутри популяций ашкенази, финнов, американцев Юга США. Взрывной рост численности неизбежно ведет к данному итогу. То же самое относится и к славянам — большую часть их истории численность славян быстро росла. Думаю, это объясняет многие общие сегменты, к примеру, между русскими и поляками.

Теперь мне стали понятны некоторые моменты из прошлогодней заметки, часть которой была посвящена работе Ralph&Coop на схожую тему:

2. Второй момент связан напрямую с проблемой определения времени жизни последнего общего предка от которого был унаследован сегмент. Понятно, что ответ на этот вопрос будет иметь важное значение для тех людей, кто покупал услуги 23andme исключительно в генеалогических целях. На первый взгляд, все просто. Допустим, если я и Вы разделяем IBD блок генома размеров в 10 сантиморганов , то встает вопрос — когда же именно жил наш последний общий предок?
По теоретическим расчетам, средняя длина блока IBD унаследованного общего предка жившего пяти поколений назад, составляет 10 сантиморганид; поэтому мы могли бы ожидать, что средняя дистанция до общего предка составляет всего пять поколений.

Тем не менее, прямая экспликация результатов в обсуждаемой работе говорит о том, что средний возраст блока (10 cM) общего по происхождению у двух лиц с территории Соединенного Королевства составляет от 32 до 52 поколений (в зависимости от типа используемого распределения). Такое расхождение с теоретическими прогнозами видимо связано с тем, что априори гораздо более вероятно, что общий генетический предок жил в более отдаленном прошлом, и эта априорная вероятность сильно искажает результаты нашего наивной ожидания. И хотя с учетом действия рекомбинации представляется маловероятным, что блок 10 сM унаследован от конкретного общего предка жившего примерно 40 поколений назад, существует большое количество таких древних общих предков.

Именно так — маловероятна передача от каждого конкретного древнего предка, но в целом передача от древних предков как раз более вероятна, чем от близких.

Это также означает, что расчетные возраста зависят также и от разделенной популяционной историей ‘: например, возраст аналогичного блока (10 cM) разделяемого кем-то из Соединенного Королевства с кем-то из Италии еще старше, как правило, примерно 60 поколений до общего предка.

Впрочем, это правило не применяется в том случае если предки из совсем недавнего прошлого (не более чем восемь поколений) . Обычно в таком случае от общего предка наследуется сразу несколько длинных сегментов (часто на разных хромосомах), и в данном случае, мы можем надеяться сделать вывод о конкретном генеалогическом родстве с достаточной степенью достоверность, хотя даже в этом случае следует соблюдать осторожность, чтобы исключить возможность того, что эти несколько блоков не были унаследованы от общих удаленных предков.

Скорее даже меньше — пять-шесть поколений.

Но все же, в некоторых случаях оценка возраста общего предка по одиночному сегменту должна быть возможна. Я сделал прикидку для использованных трех моделей. Поколения 1-4 исключались — для этих случаев вариант получения лишь одного сегмента чересчур маловероятен. Не рассматривались совпаденцы старшего возраста — в модели участвовали лишь люди примерно нашего поколения. Впрочем, понятно, что оценка для отцов и дедов наших ровесников должна несколько отличаться в сторону уменьшения количества поколений до общего предка.

IBD_Diag07

Сегменты 46-50 сМ во всех моделях получились около пяти поколений. По сути, это нулевая отметка, поскольку поколения до четырех отрезаны. Получить такой одиночный сегмент очень маловероятно, но если уж вы его получили, общий предок не может быть давно. Противоположный конец — сегменты, возраст которых настолько велик, что не поддается оценке в рамках модели. В варианте нулевого роста это сегменты примерно до 10 сМ, для роста 25% на поколение — до 25 сМ (можно предположить для 21-25 сМ что-то в районе 12-20 поколений), для роста 50% на поколение — до 40 сМ

В реальности мы не наблюдаем большого количества совпаденцев с сегментами 15, 20, 25 сМ. Думаю, это объясняется тем, что в истории любой популяции периоды роста сменялись периодами уменьшения численности. В это время сравнительно крупные сегменты разрушались. Однако в целом за последние тысячелетия численность европейцев только росла.

Подытожу. Я доволен, что удалось снять противоречие между наблюдаемыми фактами и теоретическими ожиданиями. Получается, что если мы и наш совпаденец с одиночным сегментом происходим из непрерывно растущей популяции, то с наибольшей вероятностью наш ближайший общий предок жил в момент начала этого роста, либо в ближайшие поколения перед ним. С чуть меньшей вероятностью — в следующем поколении, и так далее с понижением вероятности к нашему времени. Количество поколений при этом не ограничено вообще — хоть 50. Многочисленные польские, финские, немецкие совпаденцы получают разумное объяснение. Ну а уж ашкенази ложатся сюда просто идеально.
Ясно, что это упрощение (непрерывный рост в течение 50 поколений навряд ли где-то был), но упрощение более близкое к реальности, чем предыдущие представления. Конечно, в модели не учтен ряд факторов. Однако и составные УПсы, и инбридинг, и отбор, и повышенная гомозиготность только удревняют сегменты. Если считать эти факторы весомыми, предикт возраста одиночного УПСа должен быть еще выше. Допустим, составной УПС выглядит, как полученный от сравнительно близкого предка, а на самом деле — от двух более далеких. А это как раз то, что я хочу доказать.