Формальный анализ смешивания предковых популяций: белорусы, часть 2

Итак, после определения значимых для формального статистического моделирования комбинаций предковых популяций (или вернее, их суррогатов) представляется возможным смоделировать две вещи. Во-первых, необходимое с точки зрения статистики, число «импульсов» или «потоков» смешивания, а во-вторых, пропорции вклада «предковых» групп в генофонд белорусов.

Результаты анализа в программах qp3Pop и qpDstat показали, что в референтной группы белорусов присутствуют сигналы смешивания трех групп — мезолитических охотников-собирателей Европы (WHG), неолитических популяций земледельцев с Ближнего Востока и cибирских охотников-собирателей (чьи потомки в составе индоевропейцев) распространили свои гены по всей Европе.

Но меня больше интересует вопрос оценки величины доли вклада так называемого «базального компонента»(Basal Eurasian):

«четвертый элемент» — тот «базальный» компонент генофонда Европы, который проявился при моделировании истории сложения генофонда Европы в работе [Lazaridis et al., 2014] (см. раздел 8.4, рис 8.20) — предковой евразийской группой, которая внесла свой большой вклад и в геном неолитических земледельцев. Из аналогичной по методам модели, созданной в рассматриваемой работе [Seguin-Orlando et al., 2014], следует (рис. 8.6), что в геном человека из Костенок эти таинственные «базальные евразийцы» внесли не менее важный вклад, чем и верхнепалеолитические западные евразийцы. Также из модели следует, что он имел и общих, хотя и более отдаленных предков с древними северными евразийцами восточного ствола.

В этих целях я решил использовать в качестве суррогата базального евразийского генома геном Mota (древнего жителя Африки), примерно половину генома которого составлял тот самый пресловутый базальный компонент (результат обратных миграций натуфийского населния Ближнего Востока в восточную Африки)

Итак, в начале используем программу qpWave из того же пакета Admixtools

parameter file: qpWave.par

THE INPUT PARAMETERS

##PARAMETER NAME: VALUE
indivname: data.ind
snpname: data.snp
genotypename: data.geno
popleft: left
popright: right
maxrank: 6

qp4wave2 version: 200

left pops:
Levant_N
Mota
WHG
EHG

right pops:
Han
Onge
Papuan
Kostenki14
Ust_Ishim
Siberian_Upper_Paleolithic

0 Levant_N 13
1 Mota 1
2 WHG 2
3 EHG 3
4 Han 33
5 Onge 15
6 Papuan 14
7 Kostenki14 1
8 Ust_Ishim 1
9 Siberian_Upper_Paleolithic 1
jackknife block size: 0.050
snps: 572603 indivs: 84
number of blocks for block jackknife: 719
dof (jackknife): 631.955
numsnps used: 177238
f4info:
f4rank: 0 dof: 15 chisq: 574.447 tail: 9.47752373e-113 dofdiff: 0 chisqdiff: 0.000 taildiff: 1

<cf4info:
f4rank: 1 dof: 8 chisq: 115.553 tail: 2.7408605e-21 dofdiff: 7 chisqdiff: 458.894 taildiff: 5.4614954e-95
B:
scale 1.000
Onge -0.475
Papuan -0.521
Kostenki14 0.069
Ust_Ishim -0.746
Siberian_Upper_Paleolithic 1.986
A:
scale 290.851
Mota -0.932
WHG 0.299
EHG 1.429

f4info:
f4rank: 2 dof: 3 chisq: 8.502 tail: 0.036691843 dofdiff: 5 chisqdiff: 107.050 taildiff: 1.7204978e-21
B:
scale 1.000 1.000
Onge -0.462 -0.050
Papuan -0.522 -0.105
Kostenki14 0.288 2.189
Ust_Ishim -0.733 0.378
Siberian_Upper_Paleolithic 1.973 -0.232
A:
scale 286.604 578.115
Mota -0.951 -1.197
WHG 0.385 0.752
EHG 1.396 -1.001

f4info:
f4rank: 3 dof: 0 chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 8.502 taildiff: 0.036691843
B:
scale 1.000 1.000 1.000
Onge -0.400 -0.203 1.065
Papuan -0.459 -0.258 0.882
Kostenki14 0.299 2.175 0.273
Ust_Ishim -0.645 0.116 1.513
Siberian_Upper_Paleolithic 2.031 -0.382 0.850
A:
scale 282.949 595.536 1395.824
Mota -0.857 -1.172 0.944
WHG 0.466 0.827 1.449
EHG 1.431 -0.971 0.093

## end of run

Нас интересует статистика f4rank 2, и как видно она убедительна: chisq: 8.502 tail: 0.036691843 dofdiff: 5 chisqdiff: 107.050 taildiff: 1.7204978e-21.  То есть, для моделирования референсной популяции достаточно трех «источников» (в f4rank 3, т.е с 4 предковыми популяциями, статистика гораздо хуже: chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 8.502 taildiff: 0.036691843 ).

Следующим этапом будет оценка пропорций «адмикса», образованного смешением трех «источников»:

 

parameter file: qpAdm.par

THE INPUT PARAMETERS

##PARAMETER NAME: VALUE
genotypename: data.geno
snpname: data.snp
indivname: data.ind
popleft: left
popright: right
maxrank: 8

qpAdm version: 200

left pops:
Belarusian
Mota
WHG
EHG
right pops:
Han
Onge
Papuan
Kostenki14
Ust_Ishim
Siberian_Upper_Paleolithic
0 Belarusian 25
1 Mota 1
2 WHG 2
3 EHG 3
4 Han 33
5 Onge 15
6 Papuan 14
7 Kostenki14 1
8 Ust_Ishim 1
9 Siberian_Upper_Paleolithic 1
jackknife block size: 0.050
snps: 572603 indivs: 96
number of blocks for block jackknife: 719
dof (jackknife): 628.796
numsnps used: 227599
codimension 1
f4info:
f4rank: 2 dof: 3 chisq: 20.724 tail: 0.000120097824 dofdiff: 5 chisqdiff: -20.724 taildiff: 1
B:
scale 1.000 1.000
Onge -0.502 0.176
Papuan -0.562 0.218
Kostenki14 0.442 2.074
Ust_Ishim -0.735 0.779
Siberian_Upper_Paleolithic 1.923 -0.110
A:
scale 285.645 552.926
Mota -1.490 -0.238
WHG 0.017 1.685
EHG 0.883 -0.324
full rank 1
f4info:
f4rank: 3 dof: 0 chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 20.724 taildiff: 0.000120097824
B:
scale 1.000 1.000 1.000
Onge -0.502 0.178 0.403
Papuan -0.599 0.280 0.995
Kostenki14 0.455 2.029 -0.773
Ust_Ishim -0.773 0.879 1.373
Siberian_Upper_Paleolithic 1.893 0.008 1.168
A:
scale 288.199 555.700 1346.772
Mota -1.449 -0.056 0.947
WHG 0.026 1.726 0.141
EHG 0.948 -0.132 1.444
best coefficients: 0.318 0.148 0.534
ssres:
0.000295769 0.000789821 0.000059100 0.001247609 0.001271289
0.335431254 0.895733409 0.067025433 1.414909018 1.441765444

Jackknife mean: 0.316895017 0.150748678 0.532356305
std. errors: 0.035 0.067 0.045
error covariance (* 1000000)
1212 -1838 625
-1838 4506 -2668
625 -2668 2043
fixed pat wt dof chisq tail prob
000 0 3 20.724 0.000120098 0.318 0.148 0.534
001 1 4 125.483 0 -0.088 1.088 0.000 infeasible
010 1 4 25.750 3.55457e-05 0.378 0.000 0.622
100 1 4 102.973 2.28952e-21 0.000 0.702 0.298
011 2 5 336.445 0 1.000 0.000 0.000
101 2 5 127.950 6.47788e-26 0.000 1.000 0.000
110 2 5 184.757 0 0.000 -0.000 1.000
best pat: 000 0.000120098 - -
best pat: 010 3.55457e-05 chi(nested): 5.025 p-value for nested model: 0.0249831
best pat: 101 6.47788e-26 chi(nested): 102.201 p-value for nested model: 5.01661e-24

end of run

Итак, лучшими коэффициентам (пропорциями адмикса) являются 0.318 0.148 0.534. То есть референсная популяция белорусов может быть смоделирована как 30 % базального компонента, 15% компонента мезолитических охотников собирателей и 53% компонента жителей степи бронзового века («индоевропейцев»). Очевидно, что большая часть базального компонента попала в Европу вместе неолитическими земледельцами, а оставшаяся часть — была принесена индоевропейцами.

 

Размышления над эффективностью алгоритма SPA

Перед тем,  как закрыть тему SPA, я решил поразмышлять о причинах неточности определения географического ареала происхождения с помощью генома. Те, кто воспользовался моей моделью для программы SPA (последняя версия — сентябрь 2016 года), могли убедится в том, что даже при наличии большого количества маркеров, модель не во всех случаях точно определяет ареал происхождения (даже с поправкой на погрешность радиусом в 500 км).
В основу алгоритма SPA положены примерно те же самые предпосылки, что и в случае с классическим анализом главных компонент (PCA)

  • Первая предпосылка  подхода SPA состоит в том, что частота аллели каждого SNP в популяции может быть смоделирована в виде непрерывной двумерной функции на карте. Другими словами, при выборе хромосомы индивидуума из локации с позицией (х, у) на карте, вероятность наблюдения минорного аллеля в SNP j на хромосоме может быть сформулирована в виде функции F (х, у), где Fj является непрерывной функцией, описывающей поведение частоты аллеля в зависимости от географического положения
  • Затем на основании сказанного делается упрощающее предположение, что эта функция является экземпляром логистической функции

 

где х представляет собой вектор переменных, указывающих географическое местоположение и а и Ь коэффициенты функции. Авторы понимают каждую из этих функций, как функцию FJ функции наклона градиента частота в SNP J. Эта функция кодирует крутизну склона по норме а, при этом предпологается что смещение параметра b фиксировано. Кроме того, направленность наклона  кодируется в значении вектора а.  Более подробно, θj = арктангенс (aj(1) / aj(2)) могут быть приняты в знчения угла для SNP j, где aj(1)  и aj(2)  являются первым и вторым элементами вектора а.

Поскольку SPA имеет явные географические координаты, подход может быть расширен для систем за пределами обычной картезианской двумерной плоскости координат. В качестве демонстрации этого, авторы программы SPA использовали алгоритм для анализа пространственной структуры населения земного шара, в которой двухмерное отображение на двухмерной плоскости не может точно фиксировать структуру популяции. Таким образом, каждый индивид проецируется на точку земного шара в трехмерном пространстве. Соответственно, авторы использовали трехмерный вектор х (с ограничением || х || равным определенной константе), чтобы представить индивидуальную позицию.

Используя данные (генотипы индивидов из различных популяций из  HGDP), авторы обнаружили что пространственная топология расположения индивидов в пространстве SPA мы наблюдали, что сильно напоминала топологию географической карту мира. В частности, люди из того же континента были сгруппированы вместе, а континенты были разделены примерно так, как это следовало бы ожидать из пространственного расположения.

ng-2285-f3

 

Главная проблема метода состояла в другом. Несмотря на точность топологии взаимного расположения индивидов,  на карте SPA сильно искажены расстояния между континентами.

Например, продольный размер континента Евразии составил 92 градусов в  SPA-пространстве земного шара, в то время как в пространстве реального земного шара — 150 градусов. Продольное расстояние между Европой и Северной Америкой составило 167 градусов на SPA карте земного шара, в то время как на самом деле оно составляет 90 градусов.  Любопытно отметить, что мой опыт работы с этой программы показал, что наибольшую проблему составляют географические координаты долготы, в то время как широты предсказываются довольно точно. То есть по какой-то причине (несимметричность генетических градиентов в направлении север-юг и направлении восток-запад?) пространство SPA очень сильно искажается в продольном измерении (т.е в долготу).
По этой причине, вычисленные географические точки происхождения для европейцев часто оказываются в Атлантическом океана и так далее.

Я решил использовать данные импутированных генотипов для европейских популяций (я занимался их импутацией на протяжении последнего полгода). На этот раз я ограничился только европейскими популяциями. Я  сделал два разных набора с разным числом снипов — один с 1 062 376 снипами, которые содержатся в платформах генотиприрования клиентов 23andme и FTDNA, другой — примерно 590 395 снипов.  Обе модели можно скачать с Google Drive  (здесь и здесь).

Несмотря на тщательный подбор снипов, обе модели продолжают страдать характерным сдвигом географических долгот, а это означает, что данная проблема обусловлена не выборкой генотипов, а самим алгоритмом программы (т.е. улучшение качества выборки или увеличение количества снипов не приводит к повышению точности даже в том случае, если мы используем для тренировки программы на обучающей выборке  индивидов с известной географической локацией).

Это хорошо видно на полученных в ходе анализа моих собственных данных географических координатах 2 точек происхождения (одна из них в Гренландии,  другая в Средиземном море)

untitled

Разумеется, вряд ли можно говорить о точности подобных вычислений. В ходе размышлений над способом решения проблемы я вспомнил о существовании ортогонального прокрустового анализа.

Я взял две матрицы — одну с географическими координатами (фактически центроиды — географические центры стран) и  вторую с предсказанными  (в модели 1M cнипов) величинами географических координат тех же самых образцов (с усредненными значениями по этносам), а затем совершил прокрустово преобразование в программе R, получив новую матрицу с преобразованными значениями координат. Ниже виден результат операции (преобразованные усредненные координаты образцов спроецированы вместе с центроидами на карту Европы). И хотя координаты по-прежнему немного сдвинуты относительно истинных, в целом результат уже гораздо лучше (правдоподобнее).rplot14При проведении прокрустова анализа, кроме Xnew (трансформированной матрицы),  мы получили значения матрицы вращения R, s- коэффициент масштабирования и tt — вектор трансляции координат, минимизирующие дистанцию между матрицей предсказанных координат и матрицей географических координат.

Эти значения можно использовать для коррекции значений географических координат, рассчитанных в SPA. Я снова использую свои данные (2 предсказанные точки географического происхождения Xp):


Xt=sRXp + 1tt


При подстановке Xp получаем следующие значения

точка A:  60.245448+-11.059673 северной широты;  21.394898 +- -5.979712  восточной долготы (северо-западная Балтика и Скандинавия)

точка B: 43.000748+-8.801889 северной широты;  20.725216+-52.159598 восточной долготы (юго-восточная Европа, Балканы и Греция).

 

 

 

 

 

ALDER анализ происхождения белорусов и поляков

В качестве одного из метода проверки надежности импутированных снипов для анализа популяционной истории различных этнических групп, я использовал метод ALDER (он представляет собой более продвинутую версию алгоритма ROLOFF, описанного в известной работе Patterson et al. 2012).

Метод ALDER  выявляет нюансы популяционной истории через оценку двух важных параметров: а) рекомбинации — процесса обмена участками между разными молекулами ДНК, который напоминает перемешивание игральных карт в колоде (у человека он обязательно происходит при образовании половых клеток) и б) неравновесия по сцеплению — явления, при котором несколько участков ДНК передаются вместе блоками, которые формируются несколько по-разному в разных популяциях из-за того, что в разных популяциях наследуются разные комбинации сегментов ДНК. Таким образом, метод основан на выявлении специфических для каждой популяции сцепленных участков ДНК и на оценке доли общих сегментов в выборках сравниваемых популяций. При этом метод ALDER на основе оценки неравновесия по сцеплению определяет правдоподобность того, что две выбранные группы являются предковыми по отношению к анализируемым популяциям. Кроме того, метод позволяет также установить время смешения через оценку доли рекомбинаций на поколение.
Как было сказано выше, метод ALDER представляет собой расширенный вариант алгоритма ROLLOFF.Этот метод позволяет производить математическую оценку как времени, так как и уровня адмикса. Оценка производится на основании анализа неравновесия по сцеплению между SNP-ами. Тут необходимо вспомнить стандартное определение неравновесия по сцеплению.Неравновесием по сцеплению (часто используется английская аббревиатура LD) называется неслучайная связь между двумя аллелями, в силу которой определенные комбинации аллелей встречаются наиболее часть. В теории,  чем дальше друг от друга находятся SNP-ы ,тем меньше будет уровень LD. Темп угасания снижения  LD в адмиксе напрямую связана с числом поколений, прошедших с момента адмикса,  так как c возрастанием числа поколений увлечивается число рекомбинаций произошедших между  двумя отдельными SNP-ами. Проще говоря: Rolloff соответствует экспоненциальной кривой угасания уровня LD от расстояния, и эта скорость экспоненциального снижения как раз и используется  для оценки числа поколений, так и уровня адмикса в анализируемой популяии. Учитывая, что одно поколение примерно равно 29 лет, можно преобразовать число поколений в года.В качестве двух тестовых популяций я использовал две группы — выборку белорусов (данные публичной коллекции эстонского биоцентра, вошедшие позднее в стандартный набор популяций лаборатории Райха, а также данные белорусов, собранные мной в проекте MDLP) и выборку поляков (из публичной коллекции эстонского биоцентра, а также данные поляков из выборки моего проекта MDLP).   В 2012 году я уже проводил анализ ROLLOFF белорусов, поэтому было интересно посмотреть, как изменится картина после добавления новых палеогеномов и импутированных (негенотипированных) снипов. Для полноты эксперимента, я также включил данные поляков, чтобы посмотреть, работает ли метод на данных, полученных с помощью других платформ генотипирования (NB:когда я проводил анализ, у меня еще не было данных поляков из кураторской базы данных лаборатории Reich).

В качественных референсных популяций (кандидатов в предковые популяции) я использовал набор из 400 популяций в моей расширенной выборки.  Программа работает в три этапа:

  • На первом этапе определяется статистическая значимость сравнения амплитуд угасания 2-референсной LD(в случае наличия такой значимость программа пишет success)

Cледующие комбинации дали положительный результат

Belarusian Andronovo.SG Chukchis
Belarusian Andronovo.SG Koryaks
Belarusian Armenian_Martuni Karelia_HG
Belarusian Bashkir Turkish_Jewish
Belarusian Nordic_LN.SG Villabruna
Belarusian Turkish_Jewish Uzbek
Belarusian Anatolia_Neolithic Brahui
Belarusian Anatolia_Neolithic Burusho
Belarusian Anatolia_Neolithic Itelmen
Belarusian Anatolia_Neolithic Koryak
Belarusian Anatolia_Neolithic Mixtec
Belarusian Anatolia_Neolithic Pathan
Belarusian Anatolia_Neolithic Mala
Belarusian Anatolia_Neolithic Turkmen
Belarusian Anatolia_Neolithic Uygur
Belarusian Druze Selkup
Belarusian Mala Syrian
Belarusian Mixtec Spain_EN
Belarusian Anatolia_Neolithic Brahui
Belarusian Anatolia_Neolithic Burusho
Belarusian Anatolia_Neolithic Chukchi
Belarusian Anatolia_Neolithic Selkup
Belarusian Anatolia_Neolithic Sindhi
Belarusian Anatolia_Neolithic Uygur
Belarusian British-Roman Koryak
Belarusian British-Roman Mixtec
Belarusian Chukchi Mala
Belarusian Itelmen Uzbek_WGA
Belarusian LBK_EN Selkup
Belarusian Selkup Turkish_Trabzon
Belarusian Abhkasian Lahu
Belarusian Ami_Coriell Uzbek_WGA
Belarusian Anatolia_Neolithic Chukchi
Belarusian Anatolia_Neolithic Daur
Anatolia_Neolithic Han
Anatolia_Neolithic Han_NChina
Anatolia_Neolithic Miao
Anatolia_Neolithic Turkmen
Belarusian Atayal_Coriell Uzbek_WGA
Belarusian British-Roman Mixtec
Belarusian Chukchi Mala
Belarusian Dai Greek_Islands
Belarusian Dai Uzbek_WGA
Belarusian Daur North_Ossetian
Belarusian Daur Uzbek_WGA
Belarusian Eskimo_Chaplin LBK_EN
Belarusian Georgian Lahu
Belarusian Georgian Yi
Belarusian Greek_Islands Han
Belarusian Greek_Islands Miao
Belarusian Greek_Islands Mixtec
Belarusian Greek_Islands Nganasan
Belarusian Greek_Islands Ulchi
Belarusian Greek_Islands Xibo
Belarusian Han Uzbek_WGA
Belarusian Han Yemenite_Jew
Belarusian Han_NChina Uzbek_WGA
Belarusian Han_NChina Yemenite_Jew
Belarusian Japanese Uzbek_WGA
Belarusian Korean Uzbek_WGA
Belarusian Lahu Turkish_Jew
Belarusian Lahu Uzbek_WGA
Belarusian Lahu Yemenite_Jew
Belarusian LBK_EN Selkup
Belarusian Miao Uzbek_WGA
Belarusian Miao Yemenite_Jew
Belarusian Naxi Uzbek_WGA
Belarusian Oroqen Uzbek_WGA
Belarusian She Uzbek_WGA
Belarusian Tu Uzbek_WGA
Belarusian Tujia Uzbek_WGA
Belarusian Tujia Yemenite_Jew
Belarusian Ulchi Uzbek_WGA
Belarusian Uzbek_WGA Xibo
Belarusian Uzbek_WGA Yi
Belarusian Uzbek_WGA Yukagir_Tundra
Belarusian Yemenite_Jew Yi
  • На втором — cоответствие скоростей угасания LD в попарном сравнении с референсными популяциями (программа выдает предупреждение, если амплитуды угасания LD несовместимы).  Как видно, большинство триплетов (таргетная популяция + 2 референса) имеет несовместимые амплитуды угасания LD.

DATA: success (warning: decay rates inconsistent) 0.028 Belarusian Andronovo.SG Chukchis 4.64 2.80 2.11 85% 244.96 +/- 44.45 0.00055485 +/- 0.00011964 262.22 +/- 50.30 0.00029724 +/- 0.00010632 105.99 +/- 50.22 0.00013405 +/- 0.00003707
DATA: success (warning: decay rates inconsistent) 3.8e-05 Belarusian Andronovo.SG Koryaks 5.86 2.80 2.36 85% 241.36 +/- 36.30 0.00059837 +/- 0.00010219 262.22 +/- 50.30 0.00029724 +/- 0.00010632 105.75 +/- 44.80 0.00011083 +/- 0.00002791
DATA: success (warning: decay rates inconsistent) 0.037 Belarusian Armenian_Martuni Karelia_HG 4.58 2.20 3.48 53% 206.14 +/- 39.11 0.00072944 +/- 0.00015918 324.91 +/- 90.64 0.00018302 +/- 0.00008311 189.01 +/- 42.42 0.00043186 +/- 0.00012423
DATA: success (warning: decay rates inconsistent) 0.044 Belarusian Bashkir Turkish_Jewish 4.55 2.70 2.53 83% 121.78 +/- 24.93 0.00009384 +/- 0.00002064 153.64 +/- 48.19 0.00006384 +/- 0.00002366 296.25 +/- 73.05 0.00014988 +/- 0.00005929
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Nordic_LN.SG Villabruna 4.54 2.19 5.01 30% 160.01 +/- 35.24 0.00086280 +/- 0.00018037 139.86 +/- 63.88 0.00033916 +/- 0.00014340 117.88 +/- 23.51 0.00043952 +/- 0.00008295
DATA: success (warning: decay rates inconsistent) 0.0032 Belarusian Turkish_Jewish Uzbek 5.07 2.53 2.35 112% 116.58 +/- 23.00 0.00008493 +/- 0.00001382 296.25 +/- 73.05 0.00014988 +/- 0.00005929 83.46 +/- 35.51 0.00004275 +/- 0.00001721
DATA: success (warning: decay rates inconsistent) 0.0066 Belarusian Anatolia_Neolithic Brahui 4.18 4.42 2.87 37% 63.78 +/- 15.17 0.00000803 +/- 0.00000192 92.46 +/- 19.49 0.00001427 +/- 0.00000323 88.94 +/- 27.82 0.00000775 +/- 0.00000270
DATA: success (warning: decay rates inconsistent) 0.019 Belarusian Anatolia_Neolithic Burusho 3.93 4.42 2.19 47% 93.43 +/- 9.05 0.00001536 +/- 0.00000390 92.46 +/- 19.49 0.00001427 +/- 0.00000323 149.25 +/- 37.02 0.00001357 +/- 0.00000621
DATA: success (warning: decay rates inconsistent) 0.035 Belarusian Anatolia_Neolithic Itelmen 3.79 4.42 2.15 64% 69.11 +/- 15.92 0.00002889 +/- 0.00000762 92.46 +/- 19.49 0.00001427 +/- 0.00000323 134.23 +/- 58.31 0.00003278 +/- 0.00001523
DATA: success (warning: decay rates inconsistent) 0.023 Belarusian Anatolia_Neolithic Koryak 3.90 4.42 2.30 30% 82.94 +/- 21.28 0.00003363 +/- 0.00000828 92.46 +/- 19.49 0.00001427 +/- 0.00000323 111.83 +/- 48.56 0.00002562 +/- 0.00000985
DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.90 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Mixtec 3.87 4.42 2.73 71% 71.36 +/- 14.69 0.00003027 +/- 0.00000782 92.46 +/- 19.49 0.00001427 +/- 0.00000323 149.36 +/- 43.83 0.00002944 +/- 0.00001080
DATA: success (warning: decay rates inconsistent) 0.019 Belarusian Anatolia_Neolithic Pathan 3.93 4.42 2.02 42% 104.78 +/- 14.08 0.00001497 +/- 0.00000380 92.46 +/- 19.49 0.00001427 +/- 0.00000323 141.03 +/- 36.42 0.00001165 +/- 0.00000577
DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success (warning: decay rates inconsistent) 0.026 Belarusian Anatolia_Neolithic Uygur 3.87 4.42 2.54 56% 71.95 +/- 14.95 0.00001528 +/- 0.00000395 92.46 +/- 19.49 0.00001427 +/- 0.00000323 127.39 +/- 37.67 0.00001541 +/- 0.00000606
DATA: success (warning: decay rates inconsistent) 0.02 Belarusian Druze Selkup 3.93 2.02 3.14 73% 51.53 +/- 13.06 0.00001224 +/- 0.00000311 110.46 +/- 43.38 0.00001040 +/- 0.00000516 59.53 +/- 18.98 0.00000945 +/- 0.00000299
DATA: success (warning: decay rates inconsistent) 0.044 Belarusian Mala Syrian 3.73 3.87 2.84 28% 72.39 +/- 19.33 0.00000805 +/- 0.00000216 87.55 +/- 18.75 0.00001071 +/- 0.00000277 96.31 +/- 27.52 0.00000993 +/- 0.00000350
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Mixtec Spain_EN 3.85 2.73 2.67 26% 114.65 +/- 21.37 0.00005462 +/- 0.00001417 149.36 +/- 43.83 0.00002944 +/- 0.00001080 117.07 +/- 30.31 0.00002193 +/- 0.00000820
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Anatolia_Neolithic Brahui 3.70 3.45 2.55 32% 63.07 +/- 15.18 0.00000871 +/- 0.00000235 81.39 +/- 21.48 0.00001207 +/- 0.00000349 87.19 +/- 27.66 0.00000771 +/- 0.00000303
DATA: success (warning: decay rates inconsistent) 0.039 Belarusian Anatolia_Neolithic Burusho 3.74 3.45 2.00 61% 89.47 +/- 10.12 0.00001582 +/- 0.00000423 81.39 +/- 21.48 0.00001207 +/- 0.00000349 152.62 +/- 45.80 0.00001482 +/- 0.00000742
DATA: success (warning: decay rates inconsistent) 0.0013 Belarusian Anatolia_Neolithic Chukchi 4.52 3.45 2.79 35% 77.64 +/- 16.37 0.00003602 +/- 0.00000797 81.39 +/- 21.48 0.00001207 +/- 0.00000349 110.36 +/- 39.54 0.00002861 +/- 0.00000981
DATA: success (warning: decay rates inconsistent) 0.038 Belarusian Anatolia_Neolithic Selkup 3.74 3.45 2.41 38% 55.27 +/- 13.63 0.00002155 +/- 0.00000576 81.39 +/- 21.48 0.00001207 +/- 0.00000349 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Anatolia_Neolithic Sindhi 3.83 3.45 2.68 61% 65.40 +/- 9.12 0.00001072 +/- 0.00000280 81.39 +/- 21.48 0.00001207 +/- 0.00000349 122.70 +/- 32.60 0.00001132 +/- 0.00000423
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.00000250 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Uygur 3.85 3.45 2.16 37% 70.37 +/- 13.51 0.00001582 +/- 0.00000411 81.39 +/- 21.48 0.00001207 +/- 0.00000349 102.34 +/- 33.39 0.00001107 +/- 0.00000512
DATA: success (warning: decay rates inconsistent) 0.021 Belarusian British-Roman Koryak 3.89 2.37 2.28 74% 62.36 +/- 16.01 0.00003903 +/- 0.00000934 52.03 +/- 19.63 0.00002305 +/- 0.00000974 113.23 +/- 49.75 0.00002665 +/- 0.00001027
DATA: success (warning: decay rates inconsistent) 0.0084 Belarusian British-Roman Mixtec 4.11 2.37 2.50 80% 64.78 +/- 15.52 0.00004703 +/- 0.00001145 52.03 +/- 19.63 0.00002305 +/- 0.00000974 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success (warning: decay rates inconsistent) 0.01 Belarusian Chukchi Mala 4.06 2.79 4.06 60% 172.83 +/- 30.55 0.00002691 +/- 0.00000663 110.36 +/- 39.54 0.00002861 +/- 0.00000981 93.18 +/- 21.71 0.00001222 +/- 0.00000301
DATA: success (warning: decay rates inconsistent) 0.047 Belarusian Itelmen Uzbek_WGA 3.69 2.36 2.20 54% 142.22 +/- 27.73 0.00006725 +/- 0.00001821 129.35 +/- 53.29 0.00003152 +/- 0.00001338 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.009 Belarusian LBK_EN Selkup 4.09 2.18 2.41 67% 67.83 +/- 16.58 0.00002655 +/- 0.00000641 115.11 +/- 38.65 0.00001960 +/- 0.00000899 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 0.05 Belarusian Selkup Turkish_Trabzon 3.68 2.41 2.11 32% 56.53 +/- 15.37 0.00001451 +/- 0.00000330 57.06 +/- 20.02 0.00000933 +/- 0.00000386 77.83 +/- 33.34 0.00000751 +/- 0.00000355
DATA: success (warning: decay rates inconsistent) 0.017 Belarusian Abhkasian Lahu 4.21 2.47 2.97 174% 32.04 +/- 6.68 0.00001002 +/- 0.00000238 3.95 +/- 1.60 0.00000098 +/- 0.00000024 57.34 +/- 19.33 0.00001384 +/- 0.00000369
DATA: success (warning: decay rates inconsistent) 0.00018 Belarusian Ami_Coriell Uzbek_WGA 5.15 2.09 2.20 63% 162.32 +/- 22.43 0.00007649 +/- 0.00001486 118.09 +/- 56.57 0.00002688 +/- 0.00001279 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0041 Belarusian Anatolia_Neolithic Chukchi 4.52 3.45 2.79 35% 77.64 +/- 16.37 0.00003602 +/- 0.00000797 81.39 +/- 21.48 0.00001207 +/- 0.00000349 110.36 +/- 39.54 0.00002861 +/- 0.00000981
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Daur 4.12 3.45 2.63 47% 73.39 +/- 17.81 0.00002378 +/- 0.00000569 81.39 +/- 21.48 0.00001207 +/- 0.00000349 118.84 +/- 40.98 0.00002486 +/- 0.00000947
DATA: success 0.05 Belarusian Anatolia_Neolithic Han 3.96 3.45 3.00 17% 79.39 +/- 18.74 0.00002687 +/- 0.00000678 81.39 +/- 21.48 0.00001207 +/- 0.00000349 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.00002310 +/- 0.00000644
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.20 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.00000250 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success (warning: decay rates inconsistent) 0.00046 Belarusian Atayal_Coriell Uzbek_WGA 4.97 2.02 2.20 53% 179.16 +/- 31.95 0.00008213 +/- 0.00001654 130.82 +/- 54.40 0.00002576 +/- 0.00001275 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian British-Roman Mixtec 4.11 2.37 2.50 80% 64.78 +/- 15.52 0.00004703 +/- 0.00001145 52.03 +/- 19.63 0.00002305 +/- 0.00000974 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success (warning: decay rates inconsistent) 0.033 Belarusian Chukchi Mala 4.06 2.79 4.06 60% 172.83 +/- 30.55 0.00002691 +/- 0.00000663 110.36 +/- 39.54 0.00002861 +/- 0.00000981 93.18 +/- 21.71 0.00001222 +/- 0.00000301
DATA: success (warning: decay rates inconsistent) 0.009 Belarusian Dai Greek_Islands 4.35 3.05 2.28 32% 122.32 +/- 24.18 0.00004797 +/- 0.00001103 88.71 +/- 29.04 0.00001846 +/- 0.00000511 102.11 +/- 26.83 0.00001569 +/- 0.00000687
DATA: success (warning: decay rates inconsistent) 0.049 Belarusian Dai Uzbek_WGA 3.97 3.05 2.20 87% 160.47 +/- 30.16 0.00006276 +/- 0.00001582 88.71 +/- 29.04 0.00001846 +/- 0.00000511 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0015 Belarusian Daur North_Ossetian 4.73 2.63 2.09 122% 42.94 +/- 8.92 0.00000724 +/- 0.00000153 118.84 +/- 40.98 0.00002486 +/- 0.00000947 178.58 +/- 51.90 0.00001887 +/- 0.00000901
DATA: success (warning: decay rates inconsistent) 0.047 Belarusian Daur Uzbek_WGA 3.97 2.63 2.20 62% 164.70 +/- 29.83 0.00008292 +/- 0.00002087 118.84 +/- 40.98 0.00002486 +/- 0.00000947 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.00086 Belarusian Eskimo_Chaplin LBK_EN 4.84 2.29 2.18 73% 53.65 +/- 11.08 0.00002657 +/- 0.00000479 63.81 +/- 27.89 0.00001618 +/- 0.00000586 115.11 +/- 38.65 0.00001960 +/- 0.00000899
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Georgian Lahu 4.10 2.89 2.97 166% 43.55 +/- 10.61 0.00001537 +/- 0.00000311 5.27 +/- 1.82 0.00000079 +/- 0.00000023 57.34 +/- 19.33 0.00001384 +/- 0.00000369
DATA: success (warning: decay rates inconsistent) 0.05 Belarusian Georgian Yi 3.96 2.89 3.26 179% 35.28 +/- 8.91 0.00000897 +/- 0.00000226 5.27 +/- 1.82 0.00000079 +/- 0.00000023 93.65 +/- 25.60 0.00002033 +/- 0.00000624
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3.00 15% 108.92 +/- 26.70 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.50 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.20 2.28 3.37 15% 118.40 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.90 0.00002845 +/- 0.00000805
DATA: success (warning: decay rates inconsistent) 0.042 Belarusian Greek_Islands Xibo 4.00 2.28 2.59 37% 101.05 +/- 22.65 0.00003689 +/- 0.00000922 102.11 +/- 26.83 0.00001569 +/- 0.00000687 70.25 +/- 27.10 0.00001649 +/- 0.00000507
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success (warning: decay rates inconsistent) 1.8e-05 Belarusian Han Uzbek_WGA 5.56 3.00 2.20 83% 145.83 +/- 21.23 0.00006518 +/- 0.00001171 93.68 +/- 31.25 0.00002137 +/- 0.00000623 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.023 Belarusian Han Yemenite_Jew 4.14 3.00 2.19 41% 101.08 +/- 19.78 0.00002665 +/- 0.00000644 93.68 +/- 31.25 0.00002137 +/- 0.00000623 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.00017 Belarusian Han_NChina Uzbek_WGA 5.15 3.58 2.20 76% 147.58 +/- 21.48 0.00006493 +/- 0.00001261 101.71 +/- 28.43 0.00002310 +/- 0.00000644 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.021 Belarusian Han_NChina Yemenite_Jew 4.16 3.58 2.19 47% 88.25 +/- 14.91 0.00002464 +/- 0.00000593 101.71 +/- 28.43 0.00002310 +/- 0.00000644 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Japanese Uzbek_WGA 3.99 2.51 2.20 76% 158.76 +/- 32.98 0.00007182 +/- 0.00001802 101.02 +/- 40.27 0.00002259 +/- 0.00000766 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.034 Belarusian Korean Uzbek_WGA 4.05 3.28 2.20 72% 147.50 +/- 22.94 0.00006552 +/- 0.00001618 106.54 +/- 29.46 0.00002451 +/- 0.00000748 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0022 Belarusian Lahu Turkish_Jew 4.65 2.97 3.22 53% 53.69 +/- 9.97 0.00001763 +/- 0.00000379 57.34 +/- 19.33 0.00001384 +/- 0.00000369 92.56 +/- 21.52 0.00000780 +/- 0.00000242
DATA: success (warning: decay rates inconsistent) 7.8e-06 Belarusian Lahu Uzbek_WGA 5.70 2.97 2.20 119% 125.65 +/- 17.75 0.00006183 +/- 0.00001084 57.34 +/- 19.33 0.00001384 +/- 0.00000369 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.028 Belarusian Lahu Yemenite_Jew 4.10 2.97 2.19 85% 73.51 +/- 17.32 0.00002186 +/- 0.00000534 57.34 +/- 19.33 0.00001384 +/- 0.00000369 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.029 Belarusian LBK_EN Selkup 4.09 2.18 2.41 67% 67.83 +/- 16.58 0.00002655 +/- 0.00000641 115.11 +/- 38.65 0.00001960 +/- 0.00000899 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 3e-05 Belarusian Miao Uzbek_WGA 5.47 3.63 2.20 89% 141.79 +/- 17.01 0.00005964 +/- 0.00001090 86.31 +/- 23.79 0.00001726 +/- 0.00000411 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.012 Belarusian Miao Yemenite_Jew 4.29 3.63 2.19 49% 96.51 +/- 17.73 0.00002466 +/- 0.00000575 86.31 +/- 23.79 0.00001726 +/- 0.00000411 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.036 Belarusian Naxi Uzbek_WGA 4.04 2.35 2.20 87% 150.57 +/- 27.26 0.00006598 +/- 0.00001633 88.34 +/- 37.62 0.00001891 +/- 0.00000714 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0037 Belarusian Oroqen Uzbek_WGA 4.54 2.50 2.20 75% 159.87 +/- 26.32 0.00007776 +/- 0.00001713 102.18 +/- 40.85 0.00002369 +/- 0.00000834 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.043 Belarusian She Uzbek_WGA 3.99 3.16 2.20 70% 177.32 +/- 34.01 0.00008208 +/- 0.00002055 108.68 +/- 31.62 0.00002238 +/- 0.00000708 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.029 Belarusian Tu Uzbek_WGA 4.09 2.28 2.20 85% 150.44 +/- 31.12 0.00006074 +/- 0.00001485 91.29 +/- 40.04 0.00001929 +/- 0.00000802 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.001 Belarusian Tujia Uzbek_WGA 4.80 2.09 2.20 61% 164.13 +/- 25.59 0.00008133 +/- 0.00001693 120.48 +/- 57.69 0.00002290 +/- 0.00001057 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.00002290 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.0053 Belarusian Ulchi Uzbek_WGA 4.47 3.37 2.20 65% 153.49 +/- 25.35 0.00007000 +/- 0.00001567 114.38 +/- 33.90 0.00002845 +/- 0.00000805 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.00055 Belarusian Uzbek_WGA Xibo 4.93 2.20 2.59 105% 129.90 +/- 24.58 0.00005579 +/- 0.00001132 225.56 +/- 61.89 0.00007507 +/- 0.00003406 70.25 +/- 27.10 0.00001649 +/- 0.00000507
DATA: success (warning: decay rates inconsistent) 0.00062 Belarusian Uzbek_WGA Yi 4.91 2.20 3.26 83% 156.22 +/- 22.94 0.00007252 +/- 0.00001478 225.56 +/- 61.89 0.00007507 +/- 0.00003406 93.65 +/- 25.60 0.00002033 +/- 0.00000624
DATA: success (warning: decay rates inconsistent) 0.011 Belarusian Uzbek_WGA Yukagir_Tundra 4.31 2.20 2.55 61% 182.09 +/- 32.35 0.00008497 +/- 0.00001970 225.56 +/- 61.89 0.00007507 +/- 0.00003406 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success (warning: decay rates inconsistent) 0.048 Belarusian Yemenite_Jew Yi 3.97 2.19 3.26 41% 130.87 +/- 22.50 0.00003478 +/- 0.00000876 142.22 +/- 61.15 0.00001902 +/- 0.00000870 93.65 +/- 25.60 0.00002033 +/- 0.00000624

После отсеивания не очень пригодных для дальнейшего анализа триплетов  у нас осталась следующие комбинации:

DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.9 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.05 Belarusian Anatolia_Neolithic Han 3.96 3.45 3 17% 79.39 +/- 18.74 0.00002687 +/- 0.00000678 81.39 +/- 21.48 0.00001207 +/- 0.00000349 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.0000231 +/- 0.00000644
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.2 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3 15% 108.92 +/- 26.7 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.5 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.2 2.28 3.37 15% 118.4 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.9 0.00002845 +/- 0.00000805
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.0000229 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.0000087

На третьем этапе программа определяет статистическая значимость комбинации (p-статистику):

P-значение (англ. P-value) — величина, используемая при тестировании статистических гипотез. Фактически это вероятность ошибки при отклонении нулевой гипотезы (ошибки первого рода). Проверка гипотез с помощью P-значения является альтернативой классической процедуре проверки через критическое значение распределения.

Обычно P-значение равно вероятности того, что случайная величина с данным распределением (распределением тестовой статистики при нулевой гипотезе) примет значение, не меньшее, чем фактическое значение тестовой статистики.

Отберем значения P меньше 0.05

DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.0000231 +/- 0.00000644
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.5 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.9 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.2 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.2 2.28 3.37 15% 118.4 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.9 0.00002845 +/- 0.00000805
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.0000229 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.0000087
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3 15% 108.92 +/- 26.7 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623

Получаем следующие пары (с датировкой адмикса в поколениях и годах)

Таргет Референс 1 Референс 2 Поколения Погрешность Года Погрешность
Belarusian Anatolia_Neolithic Turkmen 85.64 +/- 28.96 2483.56 +/- 839.84
Belarusian Anatolia_Neolithic Turkmen 72.89 +/- 23.73 2113.81 +/- 688.17
Belarusian Anatolia_Neolithic Han_NChina 101.71 +/- 28.43 2949.59 +/- 824.47
Belarusian Anatolia_Neolithic Turkmen 72.89 +/- 23.73 2113.81 +/- 688.17
Belarusian Greek_Islands Mixtec 121.19 +/- 40.18 3514.51 +/- 1165.22
Belarusian Greek_Islands Yukagir_Tundra 119.62 +/- 45.23 3468.98 +/- 1311.67
Belarusian Anatolia_Neolithic Mala 87.55 +/- 18.75 2538.95 +/- 543.75
Belarusian Anatolia_Neolithic Miao 86.31 +/- 23.79 2502.99 +/- 689.91
Belarusian Greek_Islands Ulchi 114.38 +/- 33.9 3317.02 +/- 983.1
Belarusian Tujia Yemenite_Jew 142.22 +/- 61.15 4124.38 +/- 1773.35
Belarusian Greek_Islands Miao 86.31 +/- 23.79 2502.99 +/- 689.91
Belarusian Greek_Islands Nganasan 97.92 +/- 45.95 2839.68 +/- 1332.55
Belarusian Greek_Islands Han 93.68 +/- 31.25 2716.72 +/- 906.25
Belarusian Anatolia_Neolithic Han 93.68 +/- 31.25 2716.72 +/- 906.25

О чем свидетельствует результаты? Результаты указывают на наличие сигнала смешивания предковых популяций белорусов с неолитическими земледельцами (ближневосточные популяции и популяции ближнего Востока здесь выступают в качестве суррогата неолитических популяций), и с рядом восточноазиатских, сибирских и америндских популяций (здесь они выступают в качестве суррогата сибирского вклада в генофонд восточной Европы) cо средним интервалом смешения примерно 2850 +- 950 лет назад, т.е в период бронзового века.

Ниже приведены графики угасания LD в комбинации Anatolian-Neolithic + Mala

Затем я уменьшил масштаб подгонки (fitting) кривых угасания LD до 0.5 сантиморганид и взял в качестве референса  палеогеномы с хорошим покрытием

Эксперимент с Loschbour + Stuttgart оказался неудачным.

Более правдоподобна комбинация андроновцев (Andronovo) и чукчей (дата адмикса — 125+-60 поколений тому назад)

Вторая попытка подгонки референсных популяций Loschbour и Stuttgart в качестве предковых групп оказался более удачным (дата адмикса — приблизительно 445 +- 56 поколений тому назад, времена энеолита)

Адмикс с сибирскими палеопопуляциями (MA1) примерно в два раза «моложе» (258 +- 42 поколения, бронзовый век)

Еще один вариант адмикса между палеолитическими жителями Европы и MA1 (датировка — 393 +- 75 поколений)

Теперь о поляках. К сожалению, результаты оказались гораздо более зашумленными, так как использовались данные генотипирования на платформе Illumina, имеющей меньшее пересечение снипов со снипами платформы Affymetrix HumanOrigins. Несмотря на это, программа ALDER нашла три комбинации, пусть и с несовместимой амплитудой угасания LD.

DATA: success (warning: decay rates inconsistent) 0.011 Pole Eskimo_Sireniki Irish-BA 3.87 2.01 2.53 40% 146.66 +/- 27.30 0.00035747 +/- 0.00009228 161.51 +/- 69.51 0.00013202 +/- 0.00006577 107.56 +/- 33.31 0.00015435 +/- 0.00006109
DATA: success (warning: decay rates inconsistent) 0.0068 Pole Eskimo_Sireniki Remedello_BA.SG 3.99 2.01 2.57 49% 110.88 +/- 21.02 0.00024049 +/- 0.00006022 161.51 +/- 69.51 0.00013202 +/- 0.00006577 182.60 +/- 39.99 0.00014922 +/- 0.00005796
DATA: success (warning: decay rates inconsistent) 0.035 Pole Eskimo_Chaplin Remedello_BA.SG 3.59 2.51 2.57 56% 102.38 +/- 21.46 0.00022199 +/- 0.00006181 126.26 +/- 42.96 0.00009643 +/- 0.00003846 182.60 +/- 39.99 0.00014922 +/- 0.00005796

Здесь тоже виден слабый сигнал адмикса популяций бронзового века из Западной Европы (Remedello и ирландского бронзового века) c америндскими популяциями.

Впрочем, дополнительный анализ в программе ROLLOFF (с уменьшенным масштабом подгонки — fitting) выдал правдоподобные (c низким значением P) варианты. Например, вариант Bichon + Georgian_Kakheti: 151.41 +/-38.18, p= 4.7e-06

Очень хорошим вариантом оказался вариант адмикса Esperstedt_MN-Halberstadt_LBA: (дата адмикса — 163.80 +/- 34.11), p=4.8e-07

Окончание процесса фазирования и импутирования геномов

К середине мая этого года я закончил трудоемкий процесс импутации сборной солянки из 9000 публично доступных образцовых представителей  700 различных человеческих популяций, генотипированных в разное время на разных снип-платформах (главным образом — Illumina и Affymetrix)
Строго говоря, я планировал завершить этот этап работы намного раньше, но в ходе выполнения работ возник ряд обстоятельств, помешавших завершить этот этап в срок. Главным из них является смена сервера где я выполнял импутирование геномов. Я начал работать на сервере Мичиганского университета, однако в ходе процесса перешел на аналогичный сервис Института Сэнгера (имени того самого нобелевского лауреата, предложившего первый метод полного сиквенирования генома).
Это решение было продиктовано необходимостью использовать новейшую референсную панель аутосомных гаплотипов — Haplotype Reference Consortium (в нее входит примерно 30 тысяч, а после предстоящего этим летом обновления — свыше 50 тысяч — аутосомных геномов, т.е свыше 60 тыс. гаплотипов). Надо сказать, этнический состав выборки референсных геномов впечатляет, хотя и там по-прежнему наблюдается перекос в сторону европейских популяций. К сожалению, и эта новейшая выборка представлена преимущественно европейцами (поэтому вероятность  импутированных генотипов для европейских популяций оказались лучше аналогичных результатов в африканской и азиатской когортах), однако даже с учетом этого обстоятельства ее надежность в определении негенотипированных аллелей снипов выше 1000 Genomes (не говоря уже о HapMap):

1 UK10K 3715 3781 6.5x
2 Sardinia 3445 3514 4x
3 IBD 4478 4478 4x + 2x
4 GoT2D 2710 2974 4x/Exome
5 BRIDGES 2487 4000 6-8x (12x)
6 1000 Genomes 2495 2535 4x/Exome
7 GoNL 748 748 12x
8 AMD 3305 3305 4x
9 HUNT 1023 1254 4x
10 SiSu + Kuusamo 1918 1918 4x
11 INGI-FVG 250 250 4-10x
12 INGI-Val Borbera 225 225 6x
13 MCTFR 1325 1339 10x
14 HELIC 247 2000 4x (1x)
15 ORCADES 398 399 4x
16 inCHIANTI 676 680 7x
17 GECCO 1131 3000 4-6x
18 GPC 697 768 30x
19 Project MinE — NL 935 1250 45x
20 NEPTUNE 403 403 4x
Totals 32611 38821
22 French-Canadian 2000 5-6X End 2014
23 Converge 12000 1x Now
24 UG2G Uganda 2000 4x 2015
25 Arab Genomes 100 30x
26 Ashkenazi 128 CG Now
27 INGI-Carlantino 94 4x Now
28 CPROBE 80 80 4x

 

Cледуя рекомендациям, я получил набор из 9000 образцов, каждый из которых включает в себя набор из 20-30 миллионов снипов. К сожалению, из-за субоптимальности результатов в некоторых выборках (Xing et al, Henn et al. и ряде других), их придется исключить из тех видов анализа, которые требует максимальной точности исходных данных. Импутированные генотипы (выраженные через оцененные вероятности) были трансформированы с помощью программы Plink 1.9 в генотипы, причем выбирались варианты полиморфизмов с вероятностью 0.8 (—hardcallthreshold 0.8)

Для оценки полезности импутированных генотипов для популяционного анализа я использовал метрику nearest в программе Plink (матрица с дистанцией между ближайшими геномами) и кластерограммы IBS (идентичности по генотипам).

Таблица метрики nearest (Z-статистика)

А это кластерограмма с хорошо видно географической локализацией кластеров. Я использовал для кластеризации матрицы IBS несколько разных алгоритмов — наиболее убедительный вариант был получен с помощью алгоритма Ward

Другие варианты топологии кластерограмм в формате NEWICK и TRE можно посмотреть здесь (их можно открыть в любой программе для визуализации филогенетических деревьев).

Таким образом, для некоторых типов анализа в популяционной генетике использование импутированных снипов может сослужить хорошую службу, смягчая (или, наоборот, увеличивая) градиент частот аллелей).

Дополнительные анализы — fastIBD, IBS, анализ главных компонентов — образцов в выборке, только подтверждает это наблюдение:


Но самое лучшее подтверждение надежности импутированных снипов для анализа компонентов происхождения  было получено с помощью p-теста Z-статистики во время оценки правильности определенной топологии дерева компонентов (с допущением фактора смешивания предковых компонентов). Для этой цели я использовал стандартный инструмент — программу TreeMix. Я использовал только те снипы, которые встречаются в моей контрольной выборке (референсов каждого из компонента) с частотой выше 99 процентов. Как видно из нижеприведенного графика, компоненты выбраны правильно, а топология определяется практически безошибочно, несмотря даже на малое количество снипов (6 тысяч). Правильно определились и направления потоков генов, дрейфов генов (указаны стрелками). Тут в принципе мало нового — большинство этих эпизодов уже были описаны в отдельных работах генетиков. Так, виден поток генов от «денисовского» человека к усть-ишимцу, от которого в свою очередь идет поток генов к австралоидным популяциями. То есть денисовская примесь у папуасов могла достаться от сибирских популяциях близких к «усть-ишимцу». Виден также вклад ANE/EHG в геном североамериканцев -в интервале 10-15 процентов.

Принципально новым является лишь определенный программой дрейф генов в направлении от африканцев Khoisan к североафриканцами (в качестве референса которых взяты египтяне, бедуины и алжирцы). Скорее всего, это и есть тот самый пресловутый сигнал «египтского выхода» человечества из Африки, о котором недавно писалось в новейшей статье, а сам компонент -идентичен пресловутому Basal-Eurasian component


В начале июля  в связи с публикацией препринта о генофонде древних ближневосточных земледельцев решился все таки подписать заявление на имя Давида Рейха и Иосифа Лазаридис с ходатайством о доступе к полной версии их выборки (она включает много новых интересных для меня популяций — например, около сотни новых образцов шотландцев, шетландцев, ирландцев из разных областей Ирландии, немцев, сорбов и поляков из восточной и западной Польши).

Г-н Лазаридис был весьма любезен и буквально на следующий день после получения подписанного заявления предоставил мне доступ к этим данным. Я займусь их плотным изучением чуть позже. А пока любопытно посмотреть результаты пилотного Admixture анализа 5900 публичных доступных образцов. В качестве проверки надежности своего нового метода изучения древних и современных популяций людей, я провел 4 параллельных анализа Admixture c разным дефолтным значением предковых популяций (K).

Разумеется, в нашем случае число компонентов K заведомо больше 3, авторы статьи эмпирически показали что меньший разброс значений был получен при K=11. Поэтому я исходил из этой цифры, назначив три разных значения K — 10,11,13.
В первом варианте я использовал т.н unsupervised режим Admixture, т.е. программа должна была сама угадать и реконструировать частоты аллелей снипов в 10 реконструируемых предковых «компонентах» популяций.

Как и ожидалась, таковыми оказались африканский (пик у пигмеев и бушменов), америндский (пик у эксимосов и американских индейцев), сибирский (пиковые значение у нганасанов), южно-индийский компонент (пик в народностях Paniya и Mala), австрало-меланизийский, южно-восточноазиатский, три западно-евразийских компонента — 2 компонента западноевроп ейских и кавказских охотников-собирателей и неолитический; и наконец ближневосточный.

Разумеется, за исключением трех компонентов с пиками в древних геномах, данное распределение отражает cовременное распределение предковых компонентов.

Пришлось вручную выделять из ближневосточного компонента популяцию базальных европейцев (в качестве основы я взял геномы натуфийцев, т.е ближневосточный компонент — Levant_N — может быть разложен на два отдельных предковых компонента — неолитический и мезолитический «натуфийский»), а затем сгенерировать гипотетическую популяцию из 20 образцов состоящих на 100 процентов из натуфийского компонента. Именно этот компонент был включен в модель K11 под названием Levant_Mesolithic ( или Natufian). Этот компонент не стоит путать с компонентом Basal-Eurasian в калькуляторе Eurogenes K7 Basal-rich, так в в моей модели K11 основная часть базального компонента ушла в неолитические компоненты (т.е Natufian=Basal-Rich — Neolithic)

Гораздо сложнее ситуация обстояла с разделением компонента кавказских охотников-собирателей, которые наряду с американскими аборигенами несут в своем геноме значительные доли компонента древних северо-евразийцев. По этому причине очень сложно, например, разделить восточных охотников-собирателей (из мезолитических культур Карелии и Самары) и синхронным им кавказских охотников-собирателей.
Из-за присутствия компонента древних северо-евразийцев в их геноме, в Admixture компонент древних кавказцев увеличивается только за счет компонент восточных охотников-собирателей — и наоборот. Правда, можно попытаться выделить отдельный мезолитический компонент населения горного Загроса (Иран).

В случае успеха древние геномы жителей мезолитической Грузии можно будет представить как 20% компонента степных охотников-собирателей + 80% местного мезолитического субстрата.

Две новые модели для калькулятора DIYDodecad

Закончил на 99% подготовку 2 моделей этно-популяционных калькуляторов ДНК — заточенную под deep ancestry (анализ современных геномов с использование древних геномов) K11 и модель для анализа популяционного происхождения современных популяций K16.

 

В число 16 «предполагаемых предковых» популяций в K16 входят следующие выделенные группы:

Австрало-веддоидная
Палеолитические охотники-собиратели Кавказа
Американские аборигены
Охотники-собиратели скандинавского мезолита
Австронезийцы
Ближневосточные неолитические земледельцы
Сибирские аборигены
Ближне-восточные популяции
Североафриканские популяции
Популяции западной Африки
Северные популяции Индостана
Юго-восточноазиатские популяции
Восточные охотники-собиратели
Неолитическое население Европы
Восточно-африканские популяции
Западноевропейские охотники-собиратели

 

Таблица FST между компонентами K11 (FST — Индекс фиксации Райта Fst, отражающий меру дифференциации популяций)

Кластеризация компонентов модели K11 по степени дифференциации

Таблица FST между компонентами K16

Кластеризация компонентов модели K16 по степени дифференциации

 

На следующем PCA графике отображены 2 группы компонентов — предковые компоненты K16 (полученные в программе ADMIXTURE в ходе анализа современных популяций) и предковые компоненты K11 (они вычислены в той же программе, но на другой выборке аутентичных палеогеномов). Поскольку у пользователей подобных калькуляторов часто возникает вопрос о соотношении компонентов разных моделей калькуляторов, я решил разместить их на одном графике. Методология довольно проста. Сначала я сгенерировал в программе PLINK 220 «синтетических» геномов (20 индивидов в 11 группах). В основу положен предложенный Понтикосом метод популяционных «zombies», в котором используется частоты аллелей снипов, полученных в программе ADMIXTURE. Каждая из 11 групп состоит из 20 «индивидов», геном которых на 100% состоит из одного компонента.
То же самое я сделал с компонентами K16. Затем в целях изучения соотношения компонентов этих двух разных моделей, я пропустил «геномы синтетических индивидов» K16 через калькулятор K11. В итоге выяснилось, что только несколько компонентов K16 полностью совпадают с компонентами K11 (например, Amerindian и African). Остальные компоненты K16 разложились на комбинации компонентов K11. Этот простой эксперимент еще раз подтвердил очевидный факт: предковые компоненты ADMIXTURE, выявленные в ходе анализа современных популяций только в редких случаях соответствуют настоящим предковым компонентам. Большинство подобных компонентов возникают в результате сложного процесса фиксации аллельных частот, например в тех случаях, когда непосредственно после смешивания предковых групп разного происхождения происходит процесс генетического дрейфа. Закон Харди—Вайнберга утверждает, что в теоретической идеальной популяции распределение генов будет оставаться постоянным из поколения в поколение. Так, в популяции растений количество «внуков» с генами высокорослости будет ровно таким же, сколько было родителей с этим геном. Но в реальных популяциях дело обстоит иначе. Из-за случайных событий частота распределения генов из поколения в поколение несколько варьирует — это явление называется дрейфом генов. Рассмотрим крупную размножающуюся популяцию со строго определенным распределением аллелей. Представим, что по той или иной причине часть этой популяции отделяется и начинает формировать собственное сообщество. Распределение генов в субпопуляции может быть нехарактерным для более широкой группы, но с этого момента и впредь в субпопуляции будет наблюдаться именно такое, нехарактерное для нее распределение. Это явление называется эффектом основателя.Дрейф генов сходного типа можно наблюдать и на примере явления с запоминающимся названием эффект бутылочного горлышка. Если по какой-либо причине численность популяции резко уменьшится — под воздействием сил, не связанных с естественным отбором (например, в случае необычной засухи или непродолжительного увеличения численности хищников), быстро появившихся и затем исчезнувших, — то результатом будет случайное устранение большого числа индивидуумов. Как и в случае эффекта основателя, к тому времени, когда популяция вновь будет переживать расцвет, в ней будут гены, характерные для случайно выживших индивидуумов, а вовсе не для исходной популяции.

PCA correlation between K11 and K16 components Вот эта таблица с усредненными значениями «симулянтов» компонентов K16 в калькуляторе K11 (колонки — компоненты K16, столбцы — компоненты K11, их пересечения — проекция компонентов K16 в компоненты K11).

Для облегчения понимания сказанного, приведу немного теории. Начну с основ.

Определение базовых терминов

ADMIXTURE (буквально: примесь) – это компьютерная программа (анализ), позволяющая выявлять смешанность состава некоего набора индивидов на основе данных о генотипах и тем самым строить предположения о происхождении популяции.

Принцип работы ADMIXTURE.

Рассмотрим принцип работы ADMIXTURE на примере образцов и популяций из проекта HapMap.

Всего у нас N = 324 образца/индивида, каждый из которых относится к одной из четырех нижеперечисленных популяций:

АФРИКА (ASW) – Африканские предки из Юго-Западной части США
ЮТА (CEU) – жители штата Юта США с корнями из Северной и Западной Европы
МЕКСИКА (MEX) – Мексиканцы, Лонг-Айленд США
ЙОРУБА (URI) – Йоруба, Нигерия
Для удобства дальнейшего изложения будем называть эти популяции «известными».

Также мы предполагаем, что они произошли от К разных предковых популяций (мы не знаем от каких именно). В дальнейшем будем называть эти предковые популяцие «предполагаемыми предковыми». Этих «предполагаемых предковых» популяций на самом деле не существует, у них нет общепризнанных названий и характеристик. И на этом этапе мы даже не знаем какие образцы к какой из этих К популяций могут быть отнесены. Теоретически возможно, что образцы из одной и той же «известной» популяции могут принадлежать к двум разным «предполагаемым предковым» популяциям.

Пример 1.

Предположим, что К = 3.

ADMIXTURE далее работает с образцами (их генотипами) и заданным нами числом К = 3. Имея сведения о генотипах и предположение о количестве «предполагаемых предковых» популяций (К) ADMIXTURE строит свою модель (предположение) того, каков вклад каждой из «предполагаемых предковых» популяций в каждый индивид. В результате мы имеем для каждого индивида 3 цифры: количественный вклад каждой из трех популяций (или образно говоря, на сколько процентов данный индивид состоит из первой «предполагаемой предковой» популяции, на сколько – из второй и на сколько – из третьей). При этом может быть и такая ситуация, что у конкретного индивида в составе отсутствует какая-то из «предполагаемых предковых» популяций, даже возможно, что он принадлежит только к одной из «предполагаемых предковых» поуляций. Предположим, для индивида №1 эти цифры такие: 0.3, 0.5 и 0.2. Что эти цифры означают? Означают они доли каждой из «предполагаемых предковых» популяций (ППП) в индивиде №1, т.е. индивид состоит на 30% из первой ППП, на 50% — из второй и 20% — из третьей. Чем больше вклад каждой ППП в индивида, тем больше индивид является «носителем» данной популяции и ее представителем.
Так называемый этно-популяционный калькулятор ДНК представляет собой инструмент, позволяющий использовать заранее определенные (вычисленные) компоненты этнического происхождения K для определения той комбинация исходных предковых компонентов дает наилучшее соответствие (аппроксимирует) происхождение носителя тестируемой ДНК.

При создании калькулятора ДНК в основу берется определенная модель (например, задается исходное число компонентов или состав референсной выборки), что неизбежно приводит к определенным уступкам в плане точности и проявлению слабых сторон модели. Например, часто люди критикуют подобные модели калькуляторов за излишнюю европоцентричность и недостаточную представленность геномов из других мест, или же используемые для определения компонентов происхождения выборки данных по отдельным популяциям слишком малы для определения сложной субструктуры генофонда референсной популяции. Наконец, более грамотные люди указывают на отсутствие необходимо инструментария (например, формальной статистики) для проверки статистической значимости определенных компонентов в отдельных моделях калькулятора.
Движок обеих калькуляторов — все та же программа DIYDodecad, После того, как ппрограммма ДНКа калькулятора выдаст первичные результаты — процентное распределение компонентов этно-популяционного происхождения в изучаемом геноме, можно будет перейти к вторичному анализу. Суть его проста — зная процентную комбинацию компонентов происхождения в своем геноме, довольно просто смоделировать свой геном в виде смеси нескольких референсных популяций.

Поэтому, в отличие от предыдущих релизов, K11 и K16 будут включать в себя дополнительный контент:

1) классический Oracle, позволяющий смоделировать анализируемый «геном» (точнее, набор из 100-200 тысяч информативный снипов) в виде комбинации двух референсных популяций, а также установить группу генетически ближайших референсных популяций к геному изучаемого индивида. Однако этот инструмент не может быть использован в случае сложного смешанного происхождения (например, когда изучаемый индивид происходит из более чем двух разных этнических популяций). Иногда программа выдает довольно глупые комбинации, cущественным образом понижая достоверность результатов. Впрочем основное преимущество Oracle и состоит в том, что программа предлагает вместо окончательного «простого» решения список альтернативных вариантов.

Пример: в качестве примера я буду использовать собственные данные.
Исходя из полученных в модели K16 значений компонентов, мой условный наиболее близок к восточнославянским популяциям
«Ukrainian-Center» «2.5884»
«Pole» «3.0962»
«Sorb» «3.1733»
«Polish_West» «3.5992»
«Russian-North-West» «3.7265»
«Russian_Smolensk» «3.834»
«Polish» «4.0348»
«Belarusian_EastBelarus» «4.0852»
«Belarusian_WestBelarus» «4.1216»
«DonKuban_cossack» «4.7769»

В комбинированном варианте двух смешанных популяций распределение предковых компонентов происхождения может быть аппроксимировано следующими комбинациями:

«65.8% Belarusian_EastBelarus + 34.2% Norwegian» «1.1023»
«66.4% Belarusian_EastBelarus + 33.6% Icelandic» «1.1118»
«80.9% Latvian + 19.1% Spanish_Baleares_IBS» «1.1154»
«30% French + 70% Lithuanian» «1.1206»
«29% French + 71% Latvian» «1.1215»
«55% French_West + 45% Lithuanian_Zemajitia» «1.1302»
«28.9% French_East + 71.1% Latvian» «1.1402»
«29% French_Northwest + 71% Latvian» «1.1563»
«72.3% Belarusian_EastBelarus + 27.7% Orcadian» «1.1766»
«57.2% European_Utah + 42.8% Lithuanian_Zemajitia» «1.1825»

Основная часть генома — условно славяно-балтийская (что ожидаемо), но с существенным сдвигом в сторону Скандинавии и западной Европы(примерно 20-30%). Скорее всего, это наследие готов, или контактов балтийских племен с викингами. Интересно, что модель K11 (c использованием современных референсных популяций) дает примерно такой же расклад — разве что древний скандинавско-германский пласт выражен чуть резче чем в модели K16

«Belarusian_West» «2.3841»
«Belarusian» «2.4187»
«Pole_Poland» «2.5278»
«Belarusian_East» «3.7288»
«Russian_Central» «3.7635»
«Swede» «3.9724»
«Russian_cossack» «4.1139»
«Ukrainian» «4.2647»
«Russian_Southern» «4.5204»
«Ukrainian_East» «4.8635»
«66.6% Icelandic + 33.4% Latvian» «1.586»
«41.1% Latvian + 58.9% Orcadian» «1.5898»
«47.9% Lithuanian + 52.1% Orcadian» «1.6007»
«60.2% Icelandic + 39.8% Lithuanian» «1.6082»
«5.7% Basque_Spanish + 94.3% Belarusian» «1.6386»
«5.8% Basque_French + 94.2% Belarusian» «1.6406»
«67.2% Belarusian + 32.8% Swede» «1.659»
«40.2% Lithuanian + 59.8% Norwegian» «1.6876»
«33.7% Latvian + 66.3% Norwegian» «1.689»
«94.1% Belarusian + 5.9% Spanish_Pais_Vasco_IBS» «1.7359

В палеокалькуляторе K11 (т.е. с древними геномами) картинка кажется более убедительной

«Unetice_EBA» «2.7065»
«Bell_Beaker_Czech» «5.0633»
«British_AngloSaxon» «5.1998»
«Nordic_LN» «5.6157»
«Corded_Ware_Proto_Unetice_Poland» «6.3751»
«Nordic_MN_B» «6.3865»
«Halberstadt_LBA» «6.4422»
«BenzigerodeHeimburg_LN» «7.4695»
«Nordic_IA» «7.5404»
«Corded_Ware_Estonia» «7.7635»

Из всех палеогеномов наиболее близок к моему геном представителя унетицкой культуры. Происхождение унетицкой культуры до сих пор не выяснено. Между позднейшими энеолитическими культурами и унетицкой культурой существует типологический и хронологический разрыв. Наибольшее признание в результате последних исследований получило предположение, согласно которому в ее возникновении главную роль сыграли культура колоколовидных кубков и надиревская культура, распространенная в Венгрии (см. ниже). У культуры колоколовидных кубков и унетицкой имеется сходство в керамике, в погребальном обряде и в орудиях труда. Небольшую роль могла сыграть культура шнуровой керамики, хотя в целом они очень различаются. Закономерно, что следующими — хотя и с большим отрывом — близкими к моему геному группами палеогеномов являются геномы древних англосаксов (которые близки к древним скандинавам) и представителей чешского ареала культуры колоковидных кубков).
Аналогично, в режиме смешенных популяций хорошо заметны две тенденции. Во-первых, мой геном может быть представлен в виде комбинации палеогенома представителя позднебронзового века (Хальберштадт) и палеогеномов восточных охотников-собирателей эпохи энеолита, во-вторых как смесь 23.4% генома представителей балтийской позднебронзовой эпохи и все того же позднебронзового палеогенома из Хальберштадта

«86.4% Halberstadt_LBA + 13.6% Karelia_HG» «2.139»
«74.1% Bell_Beaker + 25.9% LesCloseaux13_Mesolithic» «2.1574» «35.9% Hungary_BA + 64.1% Poltavka_MBA_outlier» «2.319»
«65.7% Halberstadt_LBA + 34.3% Poltavka_MBA_outlier» «2.4387»
«83.2% Alberstedt_LN + 16.8% Karelia_HG» «2.443»
«23.4% Baltic_LBA + 76.6% Halberstadt_LBA» «2.4846»
«16.7% Europe_MN + 83.3% Poltavka_MBA_outlier» «2.4897»
«83.4% Halberstadt_LBA + 16.6% Samara_Eneolithic» «2.536»
«12.9% Halberstadt_LBA + 87.1% Unetice_EBA» «2.5603»
«16.1% Bell_Beaker_Czech + 83.9% Unetice_EBA» «2.5747»

2) файлы модели K11 и K16 для более сложной программы 4Admix (разработанной Александром Бурнашевом). Вторым инструментом вторичного анализа является 4Mix. Он работает по методу brute-force, шаг за шагом перебирая все возможные комбинации, а по окончанию цикла программа возвращает результат с наименьшим евклидовым расстоянием (по выбору можно использовать гауссово сглаживание, снижающее случайный статистический шум результатов). Как и в классическом Oracle, комбинация cмешиваемых этнических групп не может содержать более 4 популяций, хотя в отличие от классического Oracle, программа может моделировать комбинации из 3 и 4 этнических групп.

Пример. Приведу пример этих 3- и 4-членных аппроксимаций. В принципе, все то же самое, c той лишь разницей что теперь программа выделяет в комбинациях балтийскую и славянскую составляющую. Интересно, что скандинавская составляющая никуда не исчезла, оставаясь в пределах 20-25%
Using 3 populations approximation:
1 50% Belarusian_EastBelarus +25% English_Kent_GBR +25% Latvian @ 0.973956
2 50% Belarusian_EastBelarus +25% English_Kent_GBR +25% Lithuanian @ 0.988467
3 50% Latvian +25% French +25% Balt @ 1.036492
4 50% Lithuanian_Zemajitia +25% French +25% Irish_Connacht @ 1.05259
5 50% Lithuanian +25% Sorb +25% French_West @ 1.059638
6 50% Belarusian +25% Icelandic +25% French_West @ 1.06158
7 50% Lithuanian_Zemajitia +25% French +25% Irish_Cork_Kerry @ 1.074796
8 50% Lithuanian_Aukstajtia +25% French_East +25% Irish_Connacht @ 1.076771
9 50% Lithuanian_Zemajitia +25% French +25% Irish_Ireland @ 1.078576
10 50% Belarusian +25% Norwegian +25% French_West @ 1.079741
11 50% European_Utah +25% Lithuanian_Zemajitia +25% Balt @ 1.084317
12 50% Dane +25% Belarusian_EastBelarus +25% Lithuanian_Aukstajtia @ 1.090086
13 50% Lithuanian_Zemajitia +25% French +25% Scottish_Highlands @ 1.093951
14 50% Lithuanian +25% North_European +25% Sorb @ 1.103744
15 50% Lithuanian_Aukstajtia +25% English_GBR +25% French_Northwest @ 1.105369
16 50% Lithuanian_Zemajitia +25% French +25% Scottish_Grampian @ 1.106616
17 50% Lithuanian_Aukstajtia +25% French_Northwest +25% Irish_Connacht @ 1.106771
18 50% Lithuanian_Aukstajtia +25% French_Northwest +25% Scottish_Dumfries_Galloway @ 1.108261
19 50% Lithuanian +25% French_West +25% Polish_West @ 1.113695
20 50% Latvian +25% North_European +25% Sorb @ 1.115164
31501779 iterations.
Using 4 populations approximation:
1Belarusian_EastBelarus+Lithuanian_Zemajitia+Swede+French_West @ 0.947002
2Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Sorb @ 0.971605
3Belarusian_EastBelarus+Belarusian_EastBelarus+English_Kent_GBR+Latvian @ 0.973956
4Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Polish_East @ 0.986863
5Belarusian_EastBelarus+Belarusian_EastBelarus+English_Kent_GBR+Lithuanian @ 0.988467
6 French+Lithuanian_Zemajitia+Swede+Balt @ 0.98916
7Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Polish @ 0.996302
8 Belarusian+Lithuanian_Aukstajtia+Shetlandic+French_West @ 1.010485
9 Belarusian+Lithuanian_Zemajitia+Irish_Ulster+French_West @ 1.01227
10 Belarusian+Lithuanian_Zemajitia+French_West+Irish_Ulster @ 1.012977
11 Belarusian_EastBelarus+Lithuanian_Aukstajtia+Swede+Welsh @ 1.013043
12Belarusian_EastBelarus+European_Utah+Lithuanian_Aukstajtia+Swede @ 1.013805
13Belarusian_EastBelarus+Lithuanian_Aukstajtia+Swede+French_West @ 1.018296
14German_NorthGermany+Lithuanian_Aukstajtia+Balt+French_West @ 1.026503
15 Lithuanian_Aukstajtia+Sorb+Ukrainian-Center+French_West @ 1.027473
16 Belarusian+Lithuanian_Zemajitia+French_West+Irish_Connacht @ 1.031967
17Belarusian+Lithuanian_Zemajitia+French_West+Irish_Cork_Kerry @ 1.035716
18 French+Latvian+Latvian+Balt @ 1.036492
и т.д.
То же самое, но в модели K11
Using 3 populations approximation:
1 50% Poltavka_MBA_outlier +25% Halberstadt_LBA +25% Hungary_BA @ 2.031302
2 50% Poltavka_MBA_outlier +25% Bell_Beaker_Czech +25% Hungary_BA @ 2.072453
3 50% British_AngloSaxon +25% Halberstadt_LBA +25% Poltavka_MBA_outlier @ 2.125791
4 50% Bell_Beaker +25% Bell_Beaker +25% LesCloseaux13_Mesolithic @ 2.209118
5 50% Halberstadt_LBA +25% British_AngloSaxon +25% Poltavka_MBA_outlier @ 2.244371
6 50% Halberstadt_LBA +25% Hungary_BA +25% Samara_HG @ 2.270667
7 50% Halberstadt_LBA +25% Poltavka_MBA_outlier +25% Unetice_EBA @ 2.291406
8 50% Poltavka_MBA_outlier +25% British_AngloSaxon +25% Hungary_BA @ 2.30791
9 50% Bell_Beaker_Czech +25% Hungary_BA +25% Samara_HG @ 2.356281
10 50% Halberstadt_LBA +25% Nordic_BA +25% Poltavka_MBA_outlier @ 2.358744
11 50% Bell_Beaker +25% Hungary_BA +25% Karelia_HG @ 2.369978
12 50% Bell_Beaker_Czech +25% Nordic_BA +25% Poltavka_MBA_outlier @ 2.385823
13 50% Halberstadt_LBA +25% Corded_Ware_Germany +25% Nordic_BA @ 2.490915
14 50% Poltavka_MBA_outlier +25% Hungary_BA +25% Unetice_EBA @ 2.503754
15 50% British_AngloSaxon +25% Bell_Beaker_Czech +25% Poltavka_MBA_outlier @ 2.53217
16 50% Halberstadt_LBA +25% Baltic_LBA +25% Halberstadt_LBA @ 2.540751
17 50% Hungary_BA +25% Poltavka_MBA_outlier +25% Samara_HG @ 2.551414
18 50% Poltavka_MBA_outlier +25% Alberstedt_LN +25% Hungary_BA @ 2.561557
19 50% British_AngloSaxon +25% Poltavka_MBA_outlier +25% Unetice_EBA @ 2.575398
20 50% Bell_Beaker_Czech +25% British_AngloSaxon +25% Poltavka_MBA_outlier @ 2.575919
1127348 iterations.
Using 4 populations approximation:
1 Halberstadt_LBA+Hungary_BA+Poltavka_MBA_outlier+Poltavka_MBA_outlier @ 2.031302
2 Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier+Unetice_EBA @ 2.03713
3 Bell_Beaker_Czech+Hungary_BA+Poltavka_MBA_outlier+Poltavka_MBA_outlier @ 2.072453
4 British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier+Unetice_EBA @ 2.088049
5 British_AngloSaxon+British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.125791
6 British_AngloSaxon+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.131526
7 Bell_Beaker_Czech+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.14648
8 Bell_Beaker+Bell_Beaker+Bell_Beaker+LesCloseaux13_Mesolithic @ 2.209118
9 Bell_Beaker_Czech+Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier @ 2.209365
10 Bell_Beaker_Germany+British_AngloSaxon+Hungary_BA+Samara_HG @ 2.212982
11 Bell_Beaker_Czech+Bell_Beaker_Germany+Hungary_BA+Samara_HG @ 2.232922
12 British_AngloSaxon+Halberstadt_LBA+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.244371
13 British_AngloSaxon+Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier @ 2.254756
14 Alberstedt_LN+British_AngloSaxon+Hungary_BA+Samara_HG @ 2.255589
15 Bell_Beaker_Czech+British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.256027
16 Halberstadt_LBA+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.270667

3) новым инструментом в релизе будет R программа nMonte, разработанная голландцем Гером Гизбертом. В отличие от двух предыдущих инструментов (ограниченных в числе используемых для моделирования этнических групп), nMonte позволяет использовать для моделирования (аппроксимации) генмоа все референсные грппы. Программа использует алгоритм эволюционного моделирования по методу Монте-Карло.
После пошагового добавления новой популяции программа определяет уменьшается ли евклидово расстояние; если да, то шаг сохраняется, в противном случае шаг отклоняется. Алгоритм завершает свою работу после выполнения примерно миллиона шагов. Как и два предыдущих инструмента программа стремится к минимализации евклидова расстония; но похоже за счет использования метода Монте-Карло, алгоритм гораздо более эффективен. И, также, как и в других инструментах, в nMonte «наилучшая комбинация» определяется как комбинация с наименьшим расстоянием. Недостаток же nMonte состоит в том, что она выдает только наилучшее подходящее решение, в то время как Oracle представляет альтернативные варианты.
Пример. Посмотрим, сколько потенциальных предковых популяций выдаст nMonte при аппроксимации моего генома.
При первом запуске программа выдала комбинацию (в cкобках процентный вклад референсной популяции) следующих 65 популяций. Также как и в других инструментах, тон задают балтийские популяции, а также белорусы, сорбы и поляки.

Lithuanian_Zemajitia 10.1
Latvian 7.85
Lithuanian_Aukstajtia 7.85
Belarusian_SouthBelarus 6.55
Lithuanian 6.5
Pole 5.45
Belarusian_WestBelarus 4.8
Balt 4.35
Sorb 3.35
Belarusian 3.05
Belgian 3
Norwegian 2.95
Czech 2.75
Dane 2.5
Slovak 2.4
Icelandic 1.9
Swede 1.9
French_SouthFrance 1.5
Slovenian 1.5
Basque_Spanish 1.3
Frisian 1.15
German_NorthGermany 1.1
Sardinian 1.1
Polish_East 1.05
Ukrainian_WestUkraina 1
Polish 0.95
Basque_French 0.9
Orcadian 0.7
Spanish_Pais_Vasco_IBS 0.7
Hungarian 0.65
Irish_Connacht 0.65
DonKuban_cossack 0.6
Dutch 0.6
Ukrainian_EastUkraina 0.6
Scottish_Argyll_Bute_GBR 0.55
European_Utah 0.5
English_GBR 0.45
Croatian 0.4
Russian-Pskov 0.4
French_South 0.4
Welsh 0.35
Irish_Ulster 0.35
Scottish_Fife 0.3
German_SouthGermany 0.25
Scottish_Dumfries_Galloway 0.25
Belarusian_CentralBelarus 0.2
Datog 0.2
English_Cornwall_GBR 0.2
North_European 0.2
Ukrainian 0.2
Russian_Orjol 0.15
Afar 0.1
Belarusian_EastBelarus 0.1
English_Kent_GBR 0.1
Irish 0.1
Kambera 0.1
Russian_Smolensk 0.1
Vindija 0.1
Belarusian-East 0.1
Spanish_Canarias_IBS 0.1
Spanish_Cantabria_IBS 0.1
Spanish_Cataluna_IBS 0.1
Peruvian 0.05
Russian_Voronezh 0.05

В K11 показаны следующие палеогеномы (или их группы). По-прежнему, основа генома 40% моделируется как геном представителя культуры колоколовидных кубков.

«Bell_Beaker» 40.3
«Halberstadt_LBA» 31.6
«Samara_HG» 8.5
«Tyrolean_Iceman_EN» 2.05
«Esperstedt_MN» 1.95
«Swedish_Mesolithic» 1.95
«BerryAuBac_Mesolithic» 1.85
«Swedish_Motala_Mesolithic» 1.7
«Bichon_Azillian» 1.6
«Continenza_Paleolithic» 1.5
«Hungary_BA» 1.5
«LaBrana_Mesolithic» 1.35
«Bell_Beaker_Germany» 1.05
«Hungary_HG» 0.85

4) следующим новым инструментом будет 4mix, более упрощенный вариант 4Admix. Он разработан тем же Г. Гизбертом. Основное отличие от 4Admix — если 4Admix перебирает все возможные комбинации из 4 популяций, то в 4mix можно эксплицитно задавать отдельные комбинации и определять евклидову дистанции между этой комбинацией и аппроксимируемым геномом в пространстве моделей
5) карты компонентов с аннотацией. Аннотации компонентов будут чуть позже, а вот карты уже готовы

Карты распространения некоторых компонентов K16 и K11  в ряде географических ареалов

6) я включил в релиз модифицированный скрип GPS лаборатории Элхайка для определения географического ареала происхождения предков человека, чей геном является предметом изучения. Я включил пару строчек кода для проецирования вычисленных географических координат на географическую карту.
Пример. Ниже показаны две карты, на которые спроецированы географические координаты вычисленной алгоритмом GPS (GPS DNA tool ) точки «этнического происхождения».
Я проверил работоспособность алгоритма на обеих моделях.
В модели K16 (современные популяции) GPS-координаты точки моего «происхождения» 49.7648663288835 32.4345922625112 (примерно 49 градусов северной широты и 32 градуса восточной долготы), т.е где-то на левом берегу Днепра в Украине. Как утверждают разработчики программы, она позволяет определить место происхождения с радиусом погрешности в 500 км. Я вычислил расстояние от полученной точки до настоящего места жительства предков (южная часть Брестской области) и получилось 470 км. Т.е точка попадает в радиус, хотя и с некоторым трудом.

Rplot

Что касается модели K11 (древние геномы), то в этой модели мой «Urheimat» локализуется — весьма ожидаемо — на землях древней унетицкой и лужицких культур (51.1254133094371 13.2336209988448)

Rplot

 

 

Вторая фаза нового проекта: африканская когорта

В одной из предыдущих записей я упомянул о том, что из 3 начальных когорт образцов «геномов» я провел импутацию азиатской и европейской когорты,  осталась получить результаты по последней — третьей когорты — африканской.

По состоянию на текущий момент,  закончена работа на 18 из 22 хросомом в выборке африканских популяции. Согласно моему прогнозу,  процесс импутации недостающих генотипов по 4 оставшимся хромосомам будет завершен в  самое ближайшее время.

А пока — т.н. «этноплот» или промежуточные результаты анализа главных компонент в пространстве генетического разнообразия африканских этнических групп.

Вторая фаза нового проекта

Две недели назад я сообщил об окончании первой фазы своего нового проекта (на первом этапе работы удалось собрать надежную выборку из более чем 5000 образцов более чем 250 различных этно-популяционных групп людей по всему миру.

Как я уже рапортовал ранее, самой сложной из запланированных на втором этапе задач являлась импутирование (импутация) отсутствующих генотипов.  Читатели моего блога помнят, что две предыдущие экспериментальные попытки импутирования больших выборок     — в 2013  и в 2015  — закончились неудачно (или, если говорить точнее, качество импутированных генотипов не оправдало моих завышенных ожиданий). В предыдущих опытах я задействовал мощную комбинацию программ ShapeIT и IMPUTE и  метод импутирования снипов за счет использования большой референсной панели аутосомных гаплотипов (из 1000 genomes),  гарантирующей более аккуратное определение генотипов.

На этот раз, я решил не повторять ошибок, и обратился к использованию других программ — в частности , к  Minimac3, хорошо зарекомендовавшую себя в работе с геномами 1000G.  К моему счастью, я набрел на недавно появившиеся публичные сервера, работающие с «облачным» сервисом импутирования Cloudgene. геномов.
Серверы импутирования геномов позволяют использовать полную референсную панель гаплотипов для точного определения недостающих генотипов в анализируемых данных. Пользователи подобных серверов могут загружать (предварительно фазированные или несфазированные) данные генотипов на сервер. Процедура импутирования  будет осуществляться на удаленном сервере, и по окончанию этого процесса рассчитанные данные доступны пользователю для скачивания. Наряду с импутированием, подобные сервисы позволяют провести процедуру контроля качества (QC) и фазировки данных в качестве предварительного этапа процесса импутирования генотипов.

Прототипы серверов импутирования уже доступны в институте Сангера и Мичиганского университета. В дополнение к вышеназванным серверам, можно упомянуть прототип сервера поэтапной полномасштабной  фазировки генотипов анализируемых образцов (прототип создан биоинформатиками Оксфордского университета). На мой взгляд, самое простое и доступное решение задачи импутирования на удаленном сервере было разработано сотрудниками   Мичиганского университета. Дополнительное преимущество этому решению дает грамотная документация по использованию сервиса.

Основная рабочая лошадка сервиса — это комбинация двух или трех программ — две програмы для фазирования диплоидных генотипов в гаплоидную фазу  ShapeIT и Hapi-UR , а в качестве основного ПО для самого процесса импутирования (определения) недостающих генотипов — вышеупомянутую программу Minimac3.

Описание эксперимента с импутированием генотипов на удаленном сервере

В самом начале,  я разбил свою выборку на пять когорт (т.к. референсные панели на сервере также разбиты на «этнографические группы»):

  1. европейцы (европейцы + кавказцы) — 1715 образцов -87169 снипа
  2. азиаты (+американские аборигены и аборигены островов Тихого Океана) — 2356 образцов — 87044 снипа
  3. африканцы — 1054 образца — 86754 снипов
  4. палеогеномы древних жителей Евразии, Африки и Америки -340 — 594500 снипов
  5. смешанные группы — преимущественно мозабиты, пуэрто-риканцы и др.
QC-Report
На рисунке показана корреляция между частотами аллелей в изучаемоей выборке (здесь: европейская когорта) и частотами аллелей в референсной панели

К моему вящему неудовльствию,  некоторые образцы в сводной выборке не прошли контроль качества — в первую очередь это касается образцов европейцев из базы данных POPRES, а также выборок статьи  Xing et al. (2010). Скорее всего, их нужно будет импутировать отдельно.

Несмотря на значительную скорость обработки генотипов на удаленном сервере, к настоящему времени эксперимент еще не доведен до конца.  Пока я планирую ограничиться импутированием генотипов в 3 первых когортах (т.к. импутирование палеогеномов с помощью современных референсных панелей гаплотипов вероятнее всего приведет к искажению истинного разнообразия палеогеномов за счет проекции на современные группы населения, хотя авторы статьи Gamba et al. 2014 в сопроводительном материале к своей статье утверждают обратное).

После окончания фазирования и последующей обработки генотипов европейской когорты в программе Plink (были отсеяны все варианты с вероятностью ниже 0.9) ,  я получил выборку из 1715 европейцев с 25 215 169 снипами против изначальных 87169, т.е число снипов в выборке увеличилось в 290 раз!
В азиатской когорте соотношение импутированных генотипов к исходным составило чуть меньшую величину 19 048 308 / 87044 = 219.

Проверка результатов

Разумеется, все полученные результаты нуждались в дополнительной проверке качества генотипирования.
Cначала я объединил импутированную европейскую когорту с когортой палеогеномов (которая не была импутирована) и рассчитал в программе PLINK 1.9 матрицу IBS (т.е. сходства образцов в выборке между собой, эта метрика отдаленно напоминает Global Similarity в клиентских отчетах 23andme), а затем усреднил данные по популяциям и произвел по усредненным значениям иерархическую кластеризацию по признакам сходства (IBS, identity by state). Результат превзошел все мои пессимистические ожидания

 

 

Как становится очевидно из приведенной выше кластерограммы,  в целом взаимное расположение популяций в кластерах соответствует (в общих чертах) взаимному географическому положению. Присутствуют, правда, и некоторые огрехи. Так, например, венгры очутились в одном кластере с русскими из Курска,  норвежцы — с русскими из Смоленска, а усредненные «русские» — с американцами европейского происхождения из штата Юта и французами. Трудно сказать, в чем здесь причина, тем более что матрица была составлена по значениям IBS (идентичности по состоянию), а не IBD (идентичности по происхождению).  Более подробные данные о попарных значениях IBS между популяциями выборки можно посмотреть в этой таблице

Импутированная азиатская когорта (несмотря на расширение географии за счет включения образцов коренного населения Америки и аборигенов бассейна Тихого океана)  тоже  оказалась на удивление надежной. Я пока не буду останавливаться на подробностях изучения этой когорты, вместо этого я размещаю здесь результаты MDS- мультдименсионального шкалирования образцов выборки, образованной в ходе слияния 2 импутированных когорт (европейской и азиатской) с 1 неимпутированной (палеогеномы). Цветовое обозначение точек соответствует определенным кластерам, выявленных в выборке с помощью алгоритма MCLUST (cледуя рекомендациям Диенека Понтикоса). Всего этих кластеров 15 и они обозначены последовательностью чисел от 1 до 15, и каждый из этих кластеров имеет свою четкую географическую привязку:

  • 1 — кластер популяций ближнего Востока и  Анатолии
  • 2 — кластер популяций северного Кавказа
  • 3 — «индоевропейский» кластер древних популяций Синташта, шнуровой культуры, Ямной культуры и т.д.
  •  4 — кластер аборигенных жителей Америки (эскимосов и индейцев)
  • 5 — суперкластер популяций средиземноморского и восточноевропейского региона
  • 6 — сибирский кластер алтайских и самодийских популяций
  • 7 — кластер популяций западной и северной Европы
  • 8 — кластер палеосибирских популяций (таких как чукчи, ительмены и коряки)
  • 9 — кластер аборигенных (австронезийских и тай-кадайских) популяций юго-восточной Азии (даи, атаяла и ами)
  • 10 — кластер неолитических популяций
  • 11 — еще один ближневосточно-средиземноморский кластер (ашкеназим, сардинцы и так далее)
  • 12 — кластер североиндийских популяций
  • 13 — кластер центральноазиатских популяций
  • 14 — поволжские популяции
  • 15 — разные групп индусов

 

Новая российская компания на рынке персональной геномики

 

В сентябре в Москве открылся один из «сколковских стартапов» -медицинский центр «Атлас», который специализируется на «персонализированной» и «превентивной» медицине. Своим пациентам центр предлагает сначала cделать скрининговый тест http://www.atlas.ru, а потом уже разрабатывать план профилактики и лечения на основе его результатов — выявленных предрасположенностей и рисков возникновения заболеваний, а также генетически обусловленных реакций на лекарства.

Массовой расшифровкой генома в России занялись ещё в 2007 году, поэтому на рынке уже существует несколько похожих компаний. Однако «Атлас» назвал своей целью сделать генотипирование популярным и доступным — примерно так, как это удалось 23andMe, американской компании бывшей жены Сергея Брина Анны Войжитски, в которую Google инвестировала почти 4 миллиона долларов. Популярность 23andMe явно не даёт покоя владельцам «Атласа», поэтому даже домен 23&me.ru они зарегистрировали на себя. Биомедицинский холдинг Atlas основан в 2013 году. Команда Atlas включает в себя специалистов, уже сейчас внедряющих в клиническую практику концепцию персонализированной медицины и работающих на стыке фундаментальной науки и практической медицины.

Нужно сказать, что бизнес-модель «Атласа» действительно построена на основе модели 23andme. Спектр предлагаемых клиентам сервисов персональной геномики также похож на тот, что имеется в 23andme. Вместе с этим, имеется одно принципиальное отличие — в отличии от 23andme, предлагавшей в своем продукте в числе прочего и описание медицинских генетических рисков, продукт «Моя генетика» компании Atlas не просто представляет перечень рисков, но и предполагает консультацию профессионального специалиста по медицинской генетике в медицинском центре Atlas (входящего в состав холдинга).  На мой взгляд, это очень удачный ход. Как известно, в прошлом году у компании 23andme возникли серьезные проблемы с  FDA. Управление по санитарному надзору за качеством пищевых продуктов и медикаментов[3] (англ. Food and Drug Administration, FDA, USFDA) — агентство Министерства здравоохранения и социальных служб США, один из федеральных исполнительных департаментов. Управление занимается контролем качества пищевых продуктов, лекарственных препаратов, косметических средств, табачных изделий и некоторых других категорий товаров, а также осуществляет контроль за соблюдением законодательства и стандартов в этой области. В прошлом году это агентство по жалобе нескольких клиентов инициировало проверки соответствия рынка персональной медицинской генетика законодательству, в результате которой 23andme было предписано временно прекратить включение данных о генетических рисках в свои отчеты. И хотя российским законодательством данная область практически не регулируется, тем не менее включение в продукт услуг профессионального врача-генетика, безусловно, правильный ход, так как позволяет клиенту получить профессиональную консультацию специалиста в довольно специфической и сложной области медцинской генетики.

Лицам, интересующимся генетической генеалогией и своим происхожден, будет интересен раздел, в котором можно посмотреть данные о своих гаплогруппах; проценте генов, доставшихся от неандертальцев; а также разбиение генетических вариантов своего «генома» по компонентам происхождения.  Поскольку я помогал компании Atlas разрабатывать этот раздел (в плане составления описания гаплогрупп и разработки алгоритмов определения компонентов происхождения), то могу поручиться своей репутацией за научную состоятельность выдаваемых результатов.

Процитирую отзыв одного из первых клиентов

«Самая серьёзная и достоверная рубрика — здоровье: в ней связь определённых типов генов с возможным заболеванием подтверждена научными исследованиями, в которых принимало участия более тысячи человек. Здесь риски развития заболеваний сгруппированы в процентах и сравниваются со средним риском по популяции, отображены наследственные заболевания, а также так называемая фармокогенетика, индивидуальная чувствительность к лекарствам (аллергические реакции, побочные эффекты).

Самыми высокими рисками для меня, согласно тесту, являются меланома (0,18 % при среднем риске 0,06 %), системная склеродермия (0,05 % при среднем 0,03 %), сахарный диабет первого типа (0,45 % при среднем 0,13 %), аневризма сосудов головного мозга (2,63 % при среднем 1,8 %), системная красная волчанка (риск 0,08 % при среднем риске 0,05 %), эндометриоз (1,06 % при среднем риске 0,81 %), артериальная гипертензия (42,82 % при среднем риске 40,8 %). Ну и так далее. Кроме того, тест выявил, что я являюсь здоровым носителем варианта гена, связанного с периодической болезнью. Моя же чувствительность к лекарствам оказалась совершенно среднестатистической, ничем не примечательной, поэтому никаких особых побочных эффектов или аллергических реакций тест не выявил.

В рубрике «Питание» мне рекомендовали то, что рекомендуют своим читателям все журналы о здоровом образе жизни, — сбалансированную диету и почему-то не больше 998 килокалорий в день (при норме для взрослого человека, который не занимается спортом, в 1 200). Не рекомендовали есть сладкое и жирное, пить крепкий алкоголь, закусывать его картошкой или заедать рисом, запретили сладкое и жареное. В общем, всё, что можно было бы посоветовать любому россиянину старше 18 лет. У меня заподозрили непереносимость лактозы и запретили молочные продукты, хотя никаких проблем с молоком у меня никогда не было. Несмотря на это, в разделе «Рекомендации» мне посоветовали есть «больше молочных продуктов каждый день» (потом разработчики сказали, что это — баг), потому что молоко «снижает риск развития сахарного диабета», который у меня повышен. Если пить его вместо сладкой газировки, то, наверное, снижает. Но сейчас прогрессивное человечество уже задумывается о том, насколько молоко вообще необходимо взрослому человеку, — связи потребления молока с крепкими костями и восполнением витамина D, о которой говорили раньше, так и не было найдено.

В разделе «Спорт» меня назвали «спринтером» и посоветовали силовые тренировки, поэтому рекомендовали гандбол, регби и плавание и запретили бег, баскетбол, конный спорт и зимние виды спорта. На мой удивлённый вопрос: «Почему запретили бег, который почти всем можно?» — врач-генетик Ирина Жигулина, с которой мы потом общались, ответила, что речь идёт о профессиональном спорте. Профессионального бегуна из меня, по их мнению, не выйдет.

В разделе «Происхождение» меня ждала интерактивная инфографика о том, как мои предки по материнской линии вышли из Восточной Африки 150–180 тысяч лет назад и двинулись в Северную Европу. У меня нет Y-хромосомы, поэтому, что там происходило с отцовской линией, совершенно непонятно. Мои надежды найти успешных родственников так и не оправдались — бегунок остановился на отметке «500 лет назад» и выдал результат, что 50,9 % моего ДНК — от жителей Северной Европы. Жаль, что это совсем не то, что получают, например, покупатели теста 23andMe, которым предоставляют доступ к социальной сети, где можно найти своих родственников. А так хотелось прожить такую историю, как Стэйси и Грета, которые узнали, что они сёстры, благодаря 23andMe!

Больше всего меня удивила информация под заголовком «Личные качества». Тут я узнала, что у меня снижен риск развития никотиновой зависимости, есть предрасположенность к абсолютному слуху, нет риска ранней менопаузы и есть склонность к избеганию вреда. Этот раздел создатели относят к «развлекательной генетике», потому что данные в ней строятся на основе экспериментов с небольшой выборкой испытуемых (меньше 500). Но они меня вовсе не развлекли, а расстроили. Во-первых, выяснилось, что у меня нет предрасположенности к кудрявым волосам: «у вас не выявлен генетический вариант, часто встречающийся у кудрявых людей», хотя я кудрявей, чем многие каракулевые шубы. А во-вторых, у меня «не выявлен вариант гена, встречающийся у большинства творческих людей». В-третьих, я и вовсе интроверт.

Результаты теста заканчиваются рекомендациями пройти консультацию с терапевтом (по поводу риска системной красной волчанки), с эндокринологом (по поводу сахарного диабета) и с дерматологом (склеродермия, меланома), а также ежегодно сдавать анализ крови, делать маммографию, с 40 лет — регулярно ЭКГ. Ещё рекомендовали пить кофе и молоко, витамины, регулярно заниматься спортом и редко загорать»

Публикации и работа с палеогеномами

Как я уже отмечал в своих предыдущих записях, за последние годы был опубликован ряд работ, посвященных попыткам генотипирования останков древних людей — от живших несколько тысячелетий назад до «усть-ишимца» с предположительным возрастом около 45 тысяч лет, неандертальцев и «денисовки». Количество таких расшифровок растет все быстрее, что не может не вызывать оптимизма.  Вторая половина 2014 года особенно примечательна как количеством подобных публикаций, так и числом полных геномных NGS-сиквенсов древних людей, размещенных в публичных репозиториях (банках геномных данных). Так, в сентябре в Nature была опубликована окончательная версия работы Lazaridis et al. 2014  «Ancient human genomes suggest three ancestral populations for present-day Europeans». Работа получила широкое освещение в СМИ, поскольку аналитическая выборка сэмплов в этом исследовании включала значительное количествао заново генотипированных (на чипе Affymetrix HumanOrigin) образцов ДНК из древних палеолитических стоянок Сибири (Афонтова Гора, Малта), представителя древней индейской культуры Кловис и палеоэскимоса Cаккак. В работе был представлен  целый  ряд образцов древней ДНК представителей европейских мезолитических и неолитических культур, опубликованных в более ранних работах 2012-2014 годов: Skoglund et a. 2014 «Genomic Diversity and Admixture Differs for Stone-Age Scandinavian Foragers and Farmers»(шведские земледельцы и охотники собиратели эпохи неолита); Olalde et al. 2014 «Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European» (дДНК мезолитического населения Иберийского полуострова) и т.д.

В этой связи необходимо также отметить статью Carpenter et al. 2013 «Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries»в которой целый авторский коллектив представил результаты исследований древних образцов ДНК найденных в захоронениях бронзового века II тыс. д.н.э (Болгария и Дания).  В следующей работе опубликованной в конце октября, Gamba et al. 2014. «Genome flux and stasis in a five millennium transect of European prehistory»,  читателям была представлена хронологическая перспектива на процесс изменения генофонда населения популяций живших на территории  Паннонской равнины на протяжении 5000 лет (с эпохи неолита до конца железного века), проиллюстрированная на примере изучения 13 образцов древней ДНК. Параллельно вместе с этим Wellcome Trust Sanger Institute разместил геномные «риды» геномов древних англосаксов и бриттов (сама статья еще находится в процессе пре-публикации, презентация статьи была представлена на последней конференции AJHG).

Более важные публикации появилась совсем недавно. В частности, таковой публикацией является статья Fu et al. 2014 «Genome sequence of a 45,000-year-old modern human from western Siberia» о  геноме так называемого «усть-ишимца» (возраст останков которого датируются 45 000 д.н.э) и статья Seguin-Orlando et al. 2014 «Genomic structure in Europeans dating back at least 36,200 years», посвященная обсуждению результатов анализа ДНК знаменитого «папусоида»  с палеолитической стоянки Костенки-14.Тело мужчины, жившего 37 тыс. лет назад и найденное в 1954 г. на юго-западе России, оказалось источником старейшей европейской ДНК. Анализ его генома, опубликованный на прошлой неделе, показывает, что большинство разнообразных европейских генетических комбинаций существуют более 30 тыс.лет и пережили последний ледниковый период. Генетики обнаружили что ДНК Костенки-14 является близкородственным по отношению к раннеевропейским охотникам-собирателям, современным европейцам и жителям Сибири.
В то же время другой древний геном, данные о котором были опубликованы несколько недель назад, принадлежащий сорокапятитысячелетнему западному сибиряку, известному как Усть-Ишим, имел родство как с европейцами, так и с азиатами.  Любопытно, что в этой статье подтверждается то о чем я говорил гораздо раньше: процент неандертальских генов у древних евразийцев был выше чем у современных (о чем я упоминал в одной из своих заметок в этом блоге).

Трудами известного геномного блоггера Феликса Чандракумара большинство из них было переведено в простой и доступный формат, аналогичный файлам raw data от FTDNA и 23andMe. В GEDMatch можно поиграть с этнокалькуляторами и даже попытаться сравнить свой геном с геномами древних людей.Для этого следует взять из таблицы (кот. видна, если пройти по ссылке) номера, которыми обозначены древние геномы.

Sample Name Sample Location GEDMatch Sex Y-DNA Mt-DNA Approx. Age by authors My Analysis or Comments
Altai Neanderthal Denisova Cave, Siberia F999902 Female 50,000 years
Denisova Denisova Cave, Siberia F999903 Female 30,000 years
Palaeo-Eskimo Qeqertarsuaq, Greenland F999906 Male Q1a D2a1 4,000 years Palaeo-Eskimo 2000 BC DNA
Clovis-Anzick-1 Montana, North America F999919 Male Q-Z780 D4h3a 12,500 years Matches Living people.
Mal’ta South-Central Siberia F999914 Male R U 24,000 years Matches Living people on X Chromosome.
La Braña-Arintero León, Spain F999915 Male C-V183 U5b2c1 7,000 years Analyzing La Braña-Arintero Ancient DNA
Motala-12 Östergötland, Sweden F999917 Male I-L460 U2e1 7,000 years My Analysis of Motala-12 ancient DNA
LBK Stuttgart, Germany F999916 Female T2c2 7,500 years Matches Living people
Loschbour  Loschbour, Luxembourg F999918 Male I-L460 U5b1a 8,000 years Matches Living people
Ajvide58 Sweden F999924 Male I-CTS772 U4d 5000 years Ajvide58 DNA Analysis
Gökhem2 Sweden F999934 Female H1c 5000 years Gökhem2 Ancient DNA Analysis
Hinxton-2 Cambridgshire, UK F999921 Female H2a2b1 1300 years Hinxton-2 Analysis
Hinxton-3 Cambridgshire, UK F999922 Female K1a4a1a2b 1300 years Hinxton-3 Analysis
Hinxton-4 Cambridgshire, UK F999925 Male R-DF25 H1ag1 2000 years Hinxton-4 has X-Matches with living people
Hinxton-5 Cambridgshire, UK F999926 Female H2a2a1 1300 years Hinxton5 Ancient DNA Analysis
KO1 Tiszaszőlős-Domaháza, Hungary F999931 Male I-L68 R3 5650-5780 cal BC Analysis of Neolithic KO1 genome
NE1 Polgár-Ferenci-hát, Hungary F999937 Female U5b2c 5070-5310 cal BC NE1 Ancient DNA Analysis
NE5 Kompolt-Kigyósér, Hungary F999927 Male C-F3393 J1c 4990-5210 cal BC Ancient Hungarian Genome NE5 Analysis
NE6 Apc-Berekalja I., Hungary F999932 Male C-P255 K1a3a3 4950-5300 cal BC Analysis of Hungarian genome-NE6
NE7 Apc-Berekalja I., Hungary F999928 Male I-L1228 N1a 4360-4490 cal BC Ancient Hungarian genome — NE7
CO1 Apc-Berekalja I., Hungary F999930 Female H 2700-2900 cal BC Analysis of Copper age genome CO1
BR2 Ludas-Varjú-dűlő, Hungary F999933 Male J-M67 K1a1a 1110-1270 cal  BC Ancient BR2 matches living people
IR1 Ludas-Varjú-dűlő, Hungary F999929 Male N-M231 G2a1 830-980 cal BC Ancient Hungarian genome — IR1
Tyrolean Iceman
(ERP001144)
Tisenjoch Pass, Oetztal Alps Male 5300 years Pending
Ust’-Ishim Ust’-Ishim, Siberia F999935 Male K-M526 R 45,000 years Ust’-Ishim matches with living people!
Kostenki14 European Russia F999936 Male C-V199 U2b 38,700-36,200 years Kostenki14 Ancient DNA Analysis
Sample Name Sample Location Sex Y-DNA Mt-DNA Approx. Age by authors
Mezmaiskaya Neanderthal Mezmaiskaya Cave Female 29,000 years
Tianyuan Tianyuan Cave, China R 40,000 years
Afontova Gora-2 South-Central Siberia Male R1? R 17,000 years
Motala-1 Östergötland, Sweden Female U5a1 7,000 years
Motala-9 Östergötland, Sweden Female U5a2 or U5a1f1a1 7,000 years
Motala-6 Östergötland, Sweden Male U5a2d 7,000 years
Motala-2 Östergötland, Sweden Male F-P139 U5e1 7,000 years
Motala-4 Östergötland, Sweden Female U5a2d 7,000 years
Motala-3 Östergötland, Sweden Male I-M258 U2e1 7,000 years
Hinxton-1 Cambridgshire, UK Male R-L151 K1a1b1b 2000 years
Ajvide53 Sweden Female U4d 5000 years
Ajvide59 Sweden Male I-PF3796 U5b2c1 5000 years
Gökhem7 Sweden Female H 5000 years
Ire8 Sweden Male I-CTS6343 U4d 5000 years
StoraFörvar11 Stora Karlsö, Sweden Male I-CTS4077 U5a1f1a 7500 years
Gökhem4 Sweden Male CF-M3690 H 5000 years
Gökhem5 Sweden Female K1e 5000 years
Ajvide52 Sweden Male HIJK-F929 HV0a 5000 years
Ajvide70 Sweden Female U4d 5000 years
NE4 Polgár-Ferenci-hát, Hungary Female J1c 5050-5290 cal BC
NE3 Garadna, Hungary Female X2b 5010-5210 cal BC
BR1 Kompolt-Kigyósér, Hungary Female K1c1 1980-2190 cal BC
KO2 Berettyóújfalu-Morotva-liget, Hungary Female K1 5570-5710 cal BC
NE2 Debrecen Tócópart Erdõalja, Hungary Female HV 5060-5290 cal BC
V2 Vratitsa, Bulgaria Male U2e1’2’3 1500-1100 BC
M4 Borum Eshøj, Denmark Male B2 1350 BC
K8 Krushare, Bulgaria Male R 450-400 BC
NA43 Laguna de los Condores, Peru Male B4b’d’e 1000-1500 AD
AusAboriginal Western Austalian Male F-M235 O1a 100 years
NA41 Laguna de los Condores, Peru Male L3 1000-1500 AD
P192-1 Svilengrad, Bulgaria Male U3b 800-500 BC
T2G2 Stambolovo, Bulgaria Male H1c9a 850-700 BC
NA42 Laguna de los Condores, Peru Male D1 1000-1500 AD
NA50 Laguna de los Condores, Peru B4b’d’e 1000-1500 AD
NA47 Laguna de los Condores, Peru L3 1000-1500 AD
NA40 Laguna de los Condores, Peru L3 1000-1500 AD
NA39 Laguna de los Condores, Peru Male B2 1000-1500 AD
Feld1 Neanderthal Neander Valley, Germany 42,000 years
Sid1253 Neanderthal El Sidron cave, Asturias, Spain 49,000 years
Vi33.16 Neanderthal Vindija cave, Croatia Female 38,310 years
Vi33.25 Neanderthal Vindija cave, Croatia Female
Vi33.26 Neanderthal Vindija cave, Croatia Female 44,450 years

В своем блоге Феликс размещает аналитические отчеты по каждому из проведенных анализов, отчеты включают графическое отображения «состава различных геномных компонентов происхождения» каждого из образцов в калькуляторах Gedmatch (включая мой последний калькулятор K23b), фенотипические признаки (предположительный цвет кожи и глаз), возраст на момент смерти и т.д.
Пытаясь ответить на вопрос,  насколько  правдоподобны (в смысле реального генеалогического родства) результаты совпадения сегментов древних и современных людей, Феликс приводит замечательные вычисления оценки правдоподобия совпадений в геномах современных людей и древних образцов. К сожалению, рассуждения замечательные, но вызывающие определенные вопросы, которые я озвучу в другой заметке.

Так или иначе, поставленная Феликсом на поток и практически полностью автоматизированная работа с древними геномами заслуживает безусловного признания, поскольку в силу разделения труда позволяет другими исследователям-любителям полностью сконцетрировать свое внимание на процессе непосредственного анализа полученных данных, вместо того чтобы тратить свои ресурсы на процесс извлечения снипов из «сырых» геномных данных. Благодаря этому разделению труда,  Давид Веселовский из проекта Eurogenes провел ряд замечательных экспериментов с этими данными (включая PCA, Treemix и вычисление генного дрейфа с помощью f3). В основном выводы этих экспериментов повторят то, что было написано в статьях профильных генетиков, за исключением одного интересного вывода на основании графа Treemix, в котором отображено направление процессов обмена генами между различными древними популяциями:

«В отношении Kostenki14, графики  Treemix  подтверждают один из основных выводов работы Seguin-Orlando et al. 2014, согласно которой  главны компонент образца  Kostenki-14  является базальным «предковым» компонентом более поздних европейцев (Basal_Eurasian). Тем не менее, два последних графика показывают, что этот базальный «компонент» не тот же самый «базальный» компонент в геноме неолитического образца из Штутгарта, связанного с базальным евразийским  компонентом, который был описан  в работе Lazaridis et al. 2013″.

Другой геномный блоггер, Сергей Козлов, использовал те же самые данные палеогеномов (взятые с сайта Ф. Чандракумара) для создания замечательных карт, иллюстрирующих количество и интенсивность общих IBD-сегментов палеогеномов и геномов современных популяций.

Я решил не оставаться в стороне и провел собственный анализ PCA и кластеризации популяций по значениям компонентов генетического разнообразия.

Ниже приведены иллюстрации к моему опыту кластеризации собственного генома с геномами древних жителей Евразии. В качестве входных данных алгоритма ward-кластеризации в программе R, я использовал собственные значения 4 векторов главных компонентов (PC) разнообразия. Эти векторы, в свою очередь, были получены путем вычислений в большом массиве (2024 образца) генетических данных (примерно 110 тысяч снип-полиморфизмов) представителей современных и древних популяций. Мой геном (обозначенный как Vadim) представляет собой набор, полученныq в ходе импутации по датасету Human Origin значения снипов информативных с точки зрения эволюционного происхождения, и используется в качестве контрольной группы.

Для начала график PCA, и положение палеогеномов на этом графике.

10805810_10205228379818844_2683994891484833194_n

В аналитической выборке я задействовал снипы геномов высших и низших приматов (дендрограмма выборка укоренена на геноме мармозетки), древних гоминидов (денисовского человека и неандертальцев). Остальное — как я и упоминал выше — представляет собой совокупность снипов современных и древних популяций.

Благодаря характеру выборки и характеру используемых снипов, я могу взглянуть на свое происхождение с наиболее широкой перспективы, позволяющей проследить индивидуальный эволюционный путь от древнейших людей до наших современников.
Можно сказать, что я проделал самое далекое (из всех предыдущих) генеалогическое путешествие в собственное прошлое. Разумеется, без предыдущего выделения обработки образцов древнего ДНК новейшими биохимическими методами, а также публикации данных — это путешствие длинной в сотни тысяч лет не могло бы просто состоятся. Так что огромное спасибо всем биохимикам, генетикам и биоинформатиков работавшим с образцами древней ДНК.

Полученные мной кластерные дендрограммы вышли очень большого разрешения. В силу этого, имеет смысл изучить топологию, структуры и расположение популяционных групп-кластеров в полномасштабном варианте, иначе могут возникнуть интересные вопросы.

1557253_10205127321932460_4975988878575720296_o 10801887_10205156832150197_5471832914364777784_n (1) 10801887_10205156832150197_5471832914364777784_n 247121_10205156832710211_7030394711716209950_n 1235004_10205156831950192_4536397005560655073_n 1379610_10205156832350202_753531489446222277_n 10411811_10205156831710186_6596784203743263163_n

Поэтому — я подготовил соответствующие файлы PDF и разместил ссылки на эти файлы для удобного просмотра.

tree1

tree2

tree3

tree4

tree5

tree6

tree7

tree8

tree9

tree10

tree11

tree12

tree13

tree14

tree15

tree16

Здесь их опубликовать не представляется возможным, и по этой причине я ограничу себя размещением тех фрагментов трех вариантов кластерных диаграмм, на которых присутствуют древние образцы.
Забегая вперед, можно заметить, что образцы ДНК древних людей (т.е людей современного анатомического типа — homo sapiens sapiens), строго говоря, разбиваются на три органические суперкластера — древних сибириков (или евразийцев), древних европейских охотников-собирателей, и ранних неолитических европейских земледельцев. В основной своей части состав и топология популяционных кластеров стабилен в разных вариантах, наибольшие видоизменения заметны у тех образцов, чье множество снипов имеет меньшее пересечение с общим набором снипов. Отсюда довольно таки тривиальный вывод: чем меньше общее число снипов — тем больше флуктуаций наблюдается в расположении древних образцов внутри ветвей кластерной дендрограммы.

Кластер древних евразийцев наиболее стабилен (т.к. там всего два древних генома Afontova Gora 2 (AG2) и знаменитый мальчик с сибирской стоянки Malta (MA1); причем оба образца взяты из одного источника данных). Из современных популяций к этому кластеру наиболее органично примыкают различные группы населения центральной Азии — от таджиков до гуджаратов, и от калашей до пуштунов.

Кластер древних охотников-собирателей Европы наиболее неустойчив, и это объясняется прежде всего разным числом снипов в образцах, а также тем что сами образцы взяты из разных исследований. Тем не менее тенденция наглядна — древнейшие европейцы (охотники-собиратели мезолита) наиболее близки по своим аутосомным снипам к жителям современной западной и северной Европы — особенно Британских островов, Скандинавии и Балтийского региона. Практически во всех вариантах прибалтийцы близки к древним жителям Швеции (Готланда), а также мезолитическим образцам La Brana, Motala и Loshbour. Последние также близки к финнам, эстонцам и северным русским. Из более поздних и географически удаленных образцов к ним близки древние образцы из Венгрии неолитического периода, бронозового и железного веков (BR1, NE2 и KO1).

Интересно, что в этот же кластер входят как современные популяции западной Европы (британцы, норвежцы, французы и др.), так и современные жители центральной Европы — чехи хорваты и венгры. Является ли это наследием древних времен (гальштатской общности связываемой с древними кельтами) — трудно сказать. Не этим ли объясняется тот факт, что образцы древних англо-саксов и бриттов (обозначенные здесь как Hixton) иногда кластеризируются с (современными!) венграми, хорватами, иногда с современными англичанами из Кента и корнуэлльцами. При этом некоторые из образцов Hixton остаются близки (в смысле схожести генома) к скандинавам, оркнейцам, шотландцам, и даже литовцам.

Мой собственный «геном» (Vadim) также входит в эту группу, причем в разных вариантах он определенно близок одновременно и древним мезолитическим и эпинеолитическим шведам, а также более поздним образцам из Венгрии (киммерийского мальчика IR1, а также самый «балтийский» из всех древних венгерских обрацов — KO1). Интересно что IR1 («аутосомный геном» «киммерийского » мальчика Y-гаплогрупы N1a из захоронения паннонской культуры бронзового века Mezőcsát примерно 900 год до нашей эры) в первых четырех главных компонентах кластеризируется с моим собственным «аутосомным геномом»). Это наверное объясняет почему мой собственный геном дает хорошие комбинации (fit) к комбинации трапезундских турков и древних жителей Балтийского региона.

Как известно, попгенетики готовят к публикации большую статью, в которой подводятся итоги нескольких лет исследования генофонда представителей древних культуры шнуровой керамики* (известной также как культура боевых топоров) и ямной культуры** (другое название — древнеямная культурно-историческая общность). Безусловно, это исследование обещает пролить свет на некоторые темные места генетических связей жителей этих культур с современным населением Восточной Европы (особенно Польши, Украины, Беларуси и юго-западной части России).

Пока все детали исследования неизвестны, однако благодаря настойчивости некоторых энтузиастов генетической генеалогии (Веселовского и пр.) удалось выяснить, например, что генофонд древние образцы представителей Ямной культуры в рамках формальных тестов (f3 и D-статистик) наилучшим образом аппроксимируются как результат смешения древнего мезолитического населения севера Европы (в работе их представляют карельские образцы, очевидно из известных захоронений Палеострова) и населения, близкого к современным закавказским популяциям (лучший результат дали армяне из Еревана).

Признаюсь, эти сведения приободрили меня. Дело в том, что последние несколько недель я занимался изучением эволюции аутосомного генофонда беларусов (и своего тоже) из недавно опубликованного набора лаборатории Райха (это одна из усеченных версии их знаменитого кураторского набора Human Origin Dataset).
Как и раньше, для анализа я использовал инструменты разработанные программистами той же лаборатории (Admixtools), а также Alder — программу написанную на основе открытого кода Admixtools, и оптимизированную под более детальный анализ процесса смешивания различных предковых групп.

Так вот, до получения сведений о предварительных результатах попгенетиков, я был немного смущен полученной картиной. У меня получилось вот что. С точки зрения формальной оценки (f3-статистки, аналога более известной p-статистки) лучшие пары адмикса для беларусов (с отрицательным значением Z) представляли собой либо комбинацию мезолитического населения Европы (Loshbour) и современного населения современной Анатолии и ближнего Востока, либо комбинацию ‘генов’ неолитических жителей Европы (LBK380, а также современных сардинцев) и современных америндских популяций (происходящих, как нам известно, из восточной Сибири).
Вот начало списка значимых пар:

Mixe Sardinian Vadim -11.811
Sardinian Mixe Vadim -11.811
Karitiana Sardinian Vadim -11.757
Sardinian Karitiana Vadim -11.757
Zapotec Sardinian Vadim -11.638
Sardinian Zapotec Vadim -11.638
Loschbour Georgian_Megrels Vadim -11.599
Georgian_Megrels Loschbour Vadim -11.599
Piapoco Sardinian Vadim -11.482
Sardinian Piapoco Vadim -11.482
Loschbour Turkish_Trabzon  Vadim -11.434
Turkish_Trabzon Loschbour Vadim -11.434
Loschbour Assyrian_WGA Vadim -11.395
Assyrian_WGA Loschbour Vadim -11.395
LBK380 Piapoco Vadim -11.354
Piapoco LBK380 Vadim -11.354
Surui Sardinian Vadim -11.346
Sardinian Surui Vadim -11.346
Loschbour Abkhasian Vadim -11.293
Abkhasian Loschbour Vadim -11.293
Bolivian_LaPaz Sardinian Vadim -11.232
Sardinian Bolivian_LaPaz Vadim -11.232
Loschbour Iranian_Jew Vadim -11.231
Iranian_Jew Loschbour Vadim -11.231

Я выбрал около сотни значимых пар и проверил их достоверность «адмикса) с помощью инструментов D-статистки (qpDstat) в попарном сравнении каждой из значимых комбинаций (начало таблицы):

Vadim Italian_Tuscan : Loschbour Palestinian 0.0293 8.141 best
Vadim Iranian : LBK380 GujaratiC_GIH 0.0245 7.319 best
Vadim Motala12 : Druze Sardinian 0.0125 7.285 best
Vadim Loschbour : Palestinian Albanian 0.0146 7.17 best
Vadim Sardinian : GujaratiC_GIH Iranian 0.0121 7.151 best
Vadim Palestinian : Spanish_Pais_Vasco_IBS GujaratiC_GIH 0.0145 7.126 best
Vadim Egyptian_Comas : Basque_Spanish GujaratiC_GIH 0.0137 7.016 best
Vadim Sardinian : Loschbour Egyptian_Comas 0.0251 6.962 best
Vadim Sardinian : Loschbour Tunisian_Jew 0.0251 6.789 best
Vadim Palestinian : Basque_Spanish GujaratiC_GIH 0.013 6.758 best
Vadim Sardinian : Loschbour Palestinian 0.0237 6.69 best
Vadim Basque_Spanish : Balkar Palestinian 0.0076 6.601 best
Vadim GujaratiC_GIH : Tunisian_Jew Egyptian_Comas 0.0094 6.493 best
Vadim Spanish_Pais_Vasco_IBS : Balkar Palestinian 0.0079 6.458 best
Vadim Loschbour : Druze Italian_WestSicilian 0.0135 6.443 best
Vadim Loschbour : Iranian Albanian 0.0159 6.385 best
Vadim Palestinian : Sardinian Iranian 0.0083 6.344 best

Как видно, лучшая достоверность (обмена генами) у тех пар которые представляют собой комбинацию мезолитических популяций (Loshbour и Motala), популяций Кавказа, южной Европы и центральной Азии.

Это особенно хорошо заметно в тесте f4ratio. Вот например сравнение 2 квадропул, три популяции в каждой из которых идентичны (беларусы, кумыки и Losbour), а четвертая популяция отличается (балкарцы vs. Motala). Результат означает что кроме мезолитического компонента Loshbour (из западной Европы), у беларусов наблюдается эксцесс (28+-0.1%) дополнительного источника мезолитических «генов» (типично для балтийских популяций мезолита вроде Motala)

Vadim Kumyk Loschbour Motala12 : Vadim Kumyk Loschbour Balkar 0.285678 0.096194 2.97

Крайне любопытны и результаты проведенного мной в Alder исследования источников «древного» адмикса у беларусов.
Я выбрал только те пары, в которых амплитуда угасания LD в двух гипотетических популяциях-донорах была сопоставима с амплитудой угасания LD в популяции-реципиенте (т.е у беларусов). Интересно, что только две пары (пенджабцы + Motala) и (иракские евреи + чукчи) дали консистентную попарную подгонку кривой угасания LD с незначительным разбросом амплитуды (15-25%). К слову, комбинация Armenian+Motala-merge (примерно идентичная наиболее устойчивой модели адмикса у жителей ямной культуры) тоже присутствует в списке «успешных» комбинаций, однако кривые угасания LD имеют разную скорость угасания (их амплитуда отличается уже на 55% и поэтому они не консистентны, т.е несовместимы) в попарном режиме сравнения

DATA: success_consistent 0.0042 Belarusian Punjabi_Lahore_PJL Motala_merge 4.49 2.76 2.78 15%
DATA: success_consistent 0.0098 Belarusian Iraqi_Jew Chukchi 4.31 2.2 3.01 25%
DATA: success 0.0065 Belarusian Mongola Motala_merge 4.4 2.64 2.78 28%
DATA: success 0.011 Belarusian Yi Papuan 4.29 2.26 4.66 28%
DATA: success 0.00037 Belarusian Lebanese Papuan 4.98 2.69 4.66 38%
DATA: success 0.041 Belarusian Kusunda Motala_merge 3.98 2.61 2.78 41%
DATA: success 0.013 Belarusian Hezhen Motala_merge 4.25 2.17 2.78 49%
DATA: success 0.037 Belarusian Motala_merge Tu 4.01 2.78 3.13 51%
DATA: success 4.20E-06 Belarusian Kalmyk Motala_merge 5.79 2.36 2.78 54%
DATA: success 0.0086 Belarusian She Motala_merge 4.34 2.58 2.78 54%
DATA: success 0.0019 Belarusian Armenian Motala_merge 4.66 2.14 2.78 55%
DATA: success 0.048 Belarusian Daur Motala_merge 3.94 2.11 2.78 56%
DATA: success 0.0042 Belarusian Motala_merge Miao 4.49 2.78 3.5 59%
DATA: success 0.041 Belarusian Oroqen Motala_merge 3.98 2.28 2.78 59%
DATA: success 0.013 Belarusian Thai Motala_merge 4.25 2.13 2.78 65%
DATA: success 0.043 Belarusian Motala_merge Lahu 3.97 2.78 3.56 71%
DATA: success 0.0049 Belarusian Motala_merge Japanese 4.46 2.78 3.53 72%

Примечательно что для пары Belarusian Armenian Motala_merge  Admixtools датирует смешение 114.67+/-20.5 поколений тому назад. А вот датировка адмикса для двух первых пар (последняя колонка это датировка адмикса
Belarusian Punjabi_Lahore_PJL Motala_merge 4.49 2.76 2.78 15% 142.4+/-27.54
Belarusian Iraqi_Jew Chukchi 4.31 2.2 3.01 25% 43.28+/-9.45 То есь самое позднее 3500 лет до нашего времени.Итак, выводы: в эволюционной перспективе, костяк аутосомного генофонда беларусов составляет субстрат мезолитического генетического компонента Европы, к которому примешиваются два потока — один с юга, с наиболее значимым вливанием во времена неолита (земледельцы из Анатолии и ближнего Востока), другой — видимо более поздний (т.к. он отсутствует у ямников) из Сибири.


*Культура боевых топоров, культура шнуровой керамики (нем. Schnurkeramik) — археологическая культура медного и бронзового веков, распространенная на обширных территориях Центральной и Восточной Европы и датированная 3200 г. до н. э./2300 до н. э. — 2300 г. до н. э./1800 г. до н. э. Племена культуры боевых топоров часто считают первыми индоевропейцами на территории Средней Европы
**Я́мная культу́ра (точнее — Древнея́мная культу́рно-истори́ческая о́бщность) — археологическая культура эпохи позднего медного века — раннего бронзового века (3600—2300 до н. э.). Занимала территорию от Южного Приуралья на востоке до Днестра на западе, от Предкавказья на юге до Среднего Поволжья на севере.В рамках ранней версии курганной гипотезы Марии Гимбутас ямная культура связывалась с поздними протоиндоевропейцами.

 

Кластер древних жителей по своей устойчивости занимает промежуточное место между кластерами древних северных евразийцев и западных европейских охотников-собирателей.
В этот кластер, иерархически близкий популяциям Кавказа и ближнего Востока, предсказуемо входят предстаители самых классических популяции южной Европы — от греков и болгар, до басков и сардинцев. Как уже стало обычным, сардинцы кластеризуются с образцом тирольского человека Этци и женщины из линейноленточной культуры («LBK380»). В большинстве вариантов (2 из трех опубликованных) к этой подгруппе примыкают представители древнейших неолитических культур на территории современной Венгрии — CO1, H4, H3, NE5, NE7). Жители бронзового века (на графике они ошибочно обозначены как Europe оказались посередине между раннеевропейскими охотникам-собирателями и земледельцами.

Добавление к выборке древних геномов «усть-ишимца» и «костенковца» позволило пролить свет на некоторые особенности эволюции популяций центральной и восточной части Евразии. В кластерном анализе (вардовская кластеризация) по 4 первым компонентам PCA усть-ишимец у меня получился в одном кластере с киргизами и кажется селькупами. По первым двум компонентам в том варианте рейховского набора популяций, где нет андаманцев Onge — он попадает в один кластер с австралийскими аборигенами.
Думаю, что onge все же ближе, да к тому же во всех калькуляторах у усть-ишимца максимум «генома» приходится на сочетание южно-индийских и юго-восточноазиатских компонентов.  А вот «костенковец» оказывается ближе всего к чувашам и саамам. Что характерно — в предыдущих вариантах, в которых я не использовал костенковца, место костенковца часто занимал AG-2 (Afontova Gora).  Также заметна разница между кластерными схемами PC1-2 и PC-1-2-3-4.В первом случае костенковец в одном кластере с индусами, а во-втором с с чувашами и саамами. Характерно, что восточноевразийские палеогеномы Тяньюань и Усть-Ишим входят в один кластер (их положение не сильно меняется), а MA1 нет.

Генетические следы экспансии тюркоязычных номадов в Евразии

В самом конце июля,  на  известном ресурсе bioRxiv наконец-то появился препринт давно ожидаемой статьи тартуских генетиков  в составе Баязита Юнусбаева, Майта Метспалу и др., предметом исследования которой является важный вопрос, — оставили ли многочисленные волны экспансии и миграций древних тюрков в структуре генофонда тюркоязычных народов? Следует отметить, что Баязит Юнусбаев и ранее занимался изучением вопроса характера, состава и происхождения генетических компонентов ряда современных тюркских популяций, однако ареал исследований и используемые методы в его предыдущих исследованиях носили ограниченный характер. Свежая работа коллектива тартуских генетиков замечательна уже тем, что в ней было уделено серьезное мнение разработке точного статистико-математического аппарата для определения статистически достоверных геномных cигналов свидетельствующих о определенном характере, направленности и экстенсивности демографических процессов в среде предков современных тюркских популяций.
Наверное, именно по этим причинам работа над подготовкой данных и текста публикации велась довольно долго, не менее 3-4 лет, при том что средний цикл проведений таких исследований на уже готовых генетических данных составляет максимум год-полтора.
Существенным отличием от других подобных работ последнего времени является и заметно явное смещение акцента исследования со ставших уже традционными  методов анализа генетических компонентов (кластеров аллельных частот, которые более или менее коррелируют с географией расселения человеческих популяций), таких как PCA, Admixture) на анализ так называемых IBD сегментов и блогов, имеющих общее генетическое происхождение.  Как недавно показал на убедительных примерах ув. Сергей Козлов, зачастую правильно распланированный и тщательно выверенный анализ IBD дает более точную, в сравнении с Admixture, генетическую картину происхождения человека. Этот метод основан на метрике IBD и принципиально отличается от Admixture. У него есть свои преимущества, часто он дает лучшую прорисовку кластеров предковых популяций, построенных на основе матрицы разделяемых общих сегментов. Есть и свои недостатки — которые объясняются консервативным характером сохранения некоторых участков. Я бы рекомендовал удалить такие сегменты из анализа — в первую очередь большой мультимаркерный гаплотип региона MHC-HLA на 6 хромосоме, а также ряд участков с высоким уровнем LD. Это значительно улучшит результатЭто наблюдение особенно применимо к относительно гомогенным, однородным популяциям северо-восточной Европы.

Возвращаясь к обсуждаемой статье,  можно сказать,  что  краеугольным рабочим методом в этой статье является  расширенный fastIBD анализ большого количества геномных образцов представителей практически всех тюркских народов. В работе присутствуют и более привычные результаты Admixture и PCA анализов структуры генофонда тюркских популяций; однако, на мой личный взгляд, они менее важны в силу тривиальности результатов и легкой повторяемости эксперимента.

Выводы авторов, вынесенные в абстракт статьи, вряд ли вызовут сомнение в своей правильности у большинства историков:

1) Большинство тюркских народов изученых в данной статье, (за исключением тюрков Центральной Азии), генетически напоминают своих географических соседей,  что хорошо согласуются с моделью языковой экспансии, в которой тюркские языки — как языки доминирующей элиты -распространялись  кочевой элитой.

 

Turkic-Speaking Nomads_small
2) 2) Западные тюркские народы в выборке Западной Евразии характеризуются эксцессом длинных хромосомных сегментов, которые идентичны по своему происхождению (IBD) с большей частью населения современной Южной Сибири и Монголии (SSM),  т.е в той области, где историки отмечают концетрацию серию ранних тюркских и не -тюркских степных политических  объединений. При всем этом, наблюдаемый избыток длинных  общих по генеалогическому происхождению IBD сегментов (> 1 сентиморгана) между популяциями из региона Южной Сибирии и Монголии и тюркских народов всей Западной Евразии была статистически значимой.
Untitled
3) Примененные в исследовании методы датировки событий генетического смешения групп популяций (метод ALDER и SPCO) показали у тюрских народов присутствие сигнала смешивания различных предковых группы в интервале между ~ 9-17-ыми векми нашей эры. Несмотря на принципиальную разницу между этими методами, они дали идентичные результаты, что придает дополнительную надежность вычисленному интервалу И этот интервал перекрывается интервалом тюркских миграций с 5-го по 16 века.

Примечание 1. Мой комментарий

Как я уже отмечал выше, несмотря на всю тривиальность результатов,  эту публикацию Юнусбаева et al. 2014 следует отнести к важным работам, поскольку впервые методы оценки времени слияния популяция — ALDER и SPCO были использованы для анализа популяций без явного намека на смешения, расширявшихся в уже историческое время. Ранее эти методы использовались либо при изучении древних доисторических процессов (например, смешивания неолитического и мезолитического населения Европы). либо с использованием классических «смешанных» популяций (мозабитов, пуэрто-риканцев, карибцев и так далее).
В этой связи, заслуживает внимание результаты ALDER для группы тюркских популяций Центральной Азиии (Table 3 в сапплементе к статье), в третьей колонке которой показана датировка событий «смешивания» в поколениях (которые пересчитаны в 4 колонке на года), и это событие приходится на интервал между 13 и 14 веками нашей эры, то есть во времена Золотой Орды :

Kazakhs Italians (North Italy) Tujia 23.72±1.61 1288±48 0.00039184±0.00002155
Kyrgyz Orcadians Japanese 22.02±1.00 1339±30 0.00035833±0.00001271
Uzbeks Italians (North Italy) Tujia 22.07±1.47 1338±44 0.00036534±0.00001432
Karakalpaks Italians (North Italy) Naxi 22.69±1.89 1319±57 0.00044112±0.00001912

Однако не все просто. Еще в ноябре 2012 года при обсуждении характерных особенностей митохондриальных гаплогрупп жителей Евразии (в статье Клио дер Саркиссян), я решил проверить, насколько эта модель гаплоидной вариативности находит свое подтверждение в анализе диплоидных аутосомных маркеров.

Для этих целей я использовал программу ALDER: Admixture-induced Linkage Disequilibrium for Evolutionary Relationships,  специально разработанную для формального обнаружения в анализируемой популяции сигнала смешивания двух и более  исходных популяций.В качестве эксперимента я выбрал две современные популяции — казахов и узбеков.

Как видно, полученные мной результаты оказались очень похожи на результаты из более поздней статьи Юнусбаева et al. 2014

Из полученных результатов были отобраны только те успешные результаты, которые прошли формальные критерии отбора (статистический значимый уровень экспонентного угасания неравновесного сцепления маркеров(LD curve is significant) и наличие двухсторонней корреляции между кривыми угасания неравновесного сцепления маркеров в обеих референсных популяциях(decay rates are consistent)).

Результаты по узбекам

DATA: success 3.7e-18 Uzbek Italian-Center Mongol 9.54 9.15 5.18 13% 22.94 +/- 2.41 0.00024041 +/- 0.00001438 23.78 +/- 2.60 0.00006319 +/- 0.00000406 26.14 +/- 5.05 0.00006772 +/- 0.00000894
DATA: success 5.8e-33 Uzbek Sicilian Kyrgyz 12.59 8.51 4.94 19% 23.50 +/- 1.87 0.00015817 +/- 0.00001067 25.77 +/- 3.03 0.00005899 +/- 0.00000443 28.44 +/- 5.76 0.00003069 +/- 0.00000506
DATA: success 6.9e-25 Uzbek Sicilian Mongol 11.03 8.51 5.18 7% 24.49 +/- 2.22 0.00024382 +/- 0.00001210 25.77 +/- 3.03 0.00005899 +/- 0.00000443 26.14 +/- 5.05 0.00006772 +/- 0.00000894
DATA: success 4e-23 Uzbek Sicilian Kalmyk 10.66 8.51 5.56 16% 24.46 +/- 2.29 0.00022326 +/- 0.00001473 25.77 +/- 3.03 0.00005899 +/- 0.00000443 28.67 +/- 5.16 0.00006591 +/- 0.00000891
DATA: success 0.00077 Uzbek Sicilian Nogai 5.12 8.51 2.26 10% 23.79 +/- 4.56 0.00001986 +/- 0.00000388 25.77 +/- 3.03 0.00005899 +/- 0.00000443 23.24 +/- 10.27 0.00001138 +/- 0.00000317
DATA: success 9.8e-21 Uzbek Sardinian Kyrgyz 10.14 9.82 4.94 17% 23.96 +/- 2.36 0.00016455 +/- 0.00001038 27.67 +/- 2.82 0.00007013 +/- 0.00000589 28.44 +/- 5.76 0.00003069 +/- 0.00000506
DATA: success 2e-20 Uzbek Sardinian Mongol 10.07 9.82 5.18 10% 25.15 +/- 2.50 0.00025559 +/- 0.00001310 27.67 +/- 2.82 0.00007013 +/- 0.00000589 26.14 +/- 5.05 0.00006772 +/- 0.00000894
DATA: success 6e-13 Uzbek Sardinian Kalmyk 8.20 9.82 5.56 19% 23.64 +/- 2.88 0.00022058 +/- 0.00001440 27.67 +/- 2.82 0.00007013 +/- 0.00000589 28.67 +/- 5.16 0.00006591 +/- 0.00000891
DATA: success 0.00011 Uzbek Sardinian Nogai 5.48 9.82 2.26 17% 24.99 +/- 4.56 0.00002279 +/- 0.00000367 27.67 +/- 2.82 0.00007013 +/- 0.00000589 23.24 +/- 10.27 0.00001138 +/- 0.00000317
DATA: success 1.5e-28 Uzbek German Kyrgyz 11.77 9.19 4.94 25% 22.14 +/- 1.88 0.00012893 +/- 0.00000925 24.85 +/- 2.70 0.00004544 +/- 0.00000443 28.44 +/- 5.76 0.00003069 +/- 0.00000506
DATA: success 6.9e-21 Uzbek German Mongol 10.17 9.19 5.18 7% 24.40 +/- 2.40 0.00021733 +/- 0.00001182 24.85 +/- 2.70 0.00004544 +/- 0.00000443 26.14 +/- 5.05 0.00006772 +/- 0.00000894
DATA: success 2.8e-16 Uzbek German Kalmyk 9.08 9.19 5.56 22% 23.04 +/- 2.54 0.00018456 +/- 0.00001210 24.85 +/- 2.70 0.00004544 +/- 0.00000443 28.67 +/- 5.16 0.00006591 +/- 0.00000891

Результаты казахов:

DATA: success 4.7e-17 Kazakh Italian-Center Kalmyk 9.27 7.06 2.63 17% 22.06 +/- 2.38 0.00022347 +/- 0.00001893 25.42 +/- 3.60 0.00012981 +/- 0.00001327 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 3.5e-18 Kazakh German Kalmyk 9.54 6.39 2.63 18% 21.71 +/- 2.27 0.00021450 +/- 0.00001602 23.54 +/- 3.68 0.00012169 +/- 0.00001026 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 2.6e-23 Kazakh Russian_Center Kalmyk 10.70 6.64 2.63 17% 22.19 +/- 2.07 0.00023388 +/- 0.00001645 21.86 +/- 3.29 0.00012520 +/- 0.00001320 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 2.1e-22 Kazakh Russian_South Kalmyk 10.50 7.12 2.63 25% 20.31 +/- 1.93 0.00021745 +/- 0.00001580 20.82 +/- 2.93 0.00012386 +/- 0.00001116 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 0.019 Kazakh Slovakian Mari 4.48 8.09 3.45 17% 17.26 +/- 3.86 0.00002773 +/- 0.00000574 19.08 +/- 2.36 0.00011870 +/- 0.00001088 16.06 +/- 4.65 0.00003481 +/- 0.00000667
DATA: success 1.6e-29 Kazakh Ukrainian Kalmyk 11.95 6.93 2.63 23% 20.58 +/- 1.41 0.00021665 +/- 0.00001813 20.75 +/- 3.00 0.00011940 +/- 0.00001005 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 1.5e-14 Kazakh Ukrainian-East Kalmyk 8.63 5.90 2.63 23% 20.58 +/- 2.38 0.00022215 +/- 0.00001803 21.97 +/- 3.72 0.00012517 +/- 0.00001419 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 0.0014 Kazakh CEU_V Nogai 5.02 5.49 3.30 17% 20.84 +/- 4.16 0.00001984 +/- 0.00000315 19.20 +/- 3.50 0.00012065 +/- 0.00001375 17.52 +/- 5.31 0.00004319 +/- 0.00000772
DATA: success 0.00025 Kazakh British Mari 5.33 6.99 3.45 24% 20.42 +/- 3.83 0.00003281 +/- 0.00000478 19.18 +/- 2.74 0.00012196 +/- 0.00001159 16.06 +/- 4.65 0.00003481 +/- 0.00000667
DATA: success 0.0064 Kazakh British Nogai 4.71 6.99 3.30 18% 21.09 +/- 4.48 0.00002087 +/- 0.00000321 19.18 +/- 2.74 0.00012196 +/- 0.00001159 17.52 +/- 5.31 0.00004319 +/- 0.00000772
DATA: success 5.8e-22 Kazakh Orcadian Kalmyk 10.41 6.62 2.63 23% 20.59 +/- 1.98 0.00023474 +/- 0.00001737 21.83 +/- 3.30 0.00013779 +/- 0.00001201 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 0.004 Kazakh Bulgarian Nogai 4.80 6.98 3.30 21% 21.66 +/- 4.51 0.00001853 +/- 0.00000339 21.33 +/- 3.06 0.00012336 +/- 0.00001168 17.52 +/- 5.31 0.00004319 +/- 0.00000772
DATA: success 3.1e-19 Kazakh Karelian Kalmyk 9.79 5.77 2.63 21% 21.05 +/- 2.15 0.00019192 +/- 0.00001302 21.12 +/- 3.66 0.00009774 +/- 0.00001073 26.05 +/- 8.19 0.00002219 +/- 0.00000844
DATA: success 0.011 Kazakh Mari Bosnian 4.60 3.45 6.44 16% 17.56 +/- 3.82 0.00003003 +/- 0.00000554 16.06 +/- 4.65 0.00003481 +/- 0.00000667 18.79 +/- 2.92 0.00012259 +/- 0.00001136
DATA: success 0.0057 Kazakh Mari Greek_Azov 4.73 3.45 9.00 21% 16.97 +/- 3.59 0.00002322 +/- 0.00000431 16.06 +/- 4.65 0.00003481 +/- 0.00000667 19.87 +/- 2.21 0.00010948 +/- 0.00000811
DATA: success 5.2e-33 Kazakh Chuvash Kalmyk 12.60 5.88 2.63 14% 24.10 +/- 1.91 0.00014440 +/- 0.00000896 22.75 +/- 3.87 0.00005482 +/- 0.00000595 26.05 +/- 8.19 0.00002219 +/- 0.00000844

Результаты говорят сами за себя.  Как и в большинстве случаев с центральноазиатскими популяциями, один из компонентов адмикса у узбекв и казахов представлен монголоидным популяциями, наиболее близкими к современным монголам, киргизам и калмыкам. В контексте обсуждаемой работы о древнем митоДНК, этот компонент можно обозначать как «восточноевразийский». Другой компонент у узбеков представлен популяциями близкими по частотам аллелей к  современным западноевропейским популяциям (таким как немцы, cардинцы, сицилийцы и прочие). Кроме того в результатах анализа угасания admixture-LD казахов присутствует хорошо заметный сигнал адмикса с предками современных чувашей, марийцев и карел. Этот феномен, опять-таки в контексте парадигмы исследования древнего ДНК, можно объяснить с помощью грубой аппроксимации: как было убедительно показано в работе Дерсаркиссян, митоДНК древние скифы из ареала современной Кубани и нижнего Поволжья напоминают ряд современных поволжских популяций, а также карелов. Это же касается и сигнала о смешивании с предками более отдаленных европейских популяций (британцев, скандинавов и так далее). В свете аутосомного анализа вынужден согласится с одним из ключевых выводов Дерсаркиссян, согласно которому западноевропейские аллели были привнесены в степени Казахстана и Алтай при посредничестве популяций скифов и сарматов.

Стоит еще отметить, что у узбеков в отличие от казахов поток европейских аллелей имеет несколько иной источник, и скорее всего связан с распространением в Центральной Азии носителей «неолитических средиземнорских аллелей».

Подводя итоги, необходимо сказачть, что определенные трудности представляет интерпретация датировки европейского адмикса у казахов и узбеков. Поскольку этот адмикс датируется примерно одинаковым интервалом 30-25 поколений до нашего времени, что примерно соответсвует периоду завоевательных походов монголов. Однако, представляется трудно допустимым, что европеидное население казахской степи могло сохранится в значительном количестве вплоть до эпохи монголов, или что земледельческое население Средней Азии — сарты — было в генетическом плане европеоидно. Лично я склоняюсь к следущей интерпретации:  смешивание европейского и восточноазиатского компонента произошло намного ранее монгольской эпохи, заниженная дата этого события есть прямое следствие последущего эфекта дрейфа генов и фиксации части аллелей.

Примечание 2. Комментарий профессионального историка

Хорошая работа. Но это — еще самое начало пути. Пока идет процесс верификации используемых методов. Очень важно, что результаты в целом совпали с тем, что говорят исторические источники. Для генетиков это хорошо, но для историков — тривиально. Действительный интерес появится, когда станет возможно давать такие ответы, которые историки своими методами добыть не могут. А этого пока нет.
Я на заре своей научной карьеры аналогичные выводы получил, используя всего один интегрированный фенотипический признак — индекс уплощенности лицевого скелета. По трудозатратам это было несопоставимо. Да, теперь эти выводы обоснованы гораздо надежнее. Но хочется гораздо большего.