Формальный анализ смешивания предковых популяций: белорусы, часть 2

Итак, после определения значимых для формального статистического моделирования комбинаций предковых популяций (или вернее, их суррогатов) представляется возможным смоделировать две вещи. Во-первых, необходимое с точки зрения статистики, число «импульсов» или «потоков» смешивания, а во-вторых, пропорции вклада «предковых» групп в генофонд белорусов.

Результаты анализа в программах qp3Pop и qpDstat показали, что в референтной группы белорусов присутствуют сигналы смешивания трех групп — мезолитических охотников-собирателей Европы (WHG), неолитических популяций земледельцев с Ближнего Востока и cибирских охотников-собирателей (чьи потомки в составе индоевропейцев) распространили свои гены по всей Европе.

Но меня больше интересует вопрос оценки величины доли вклада так называемого «базального компонента»(Basal Eurasian):

«четвертый элемент» — тот «базальный» компонент генофонда Европы, который проявился при моделировании истории сложения генофонда Европы в работе [Lazaridis et al., 2014] (см. раздел 8.4, рис 8.20) — предковой евразийской группой, которая внесла свой большой вклад и в геном неолитических земледельцев. Из аналогичной по методам модели, созданной в рассматриваемой работе [Seguin-Orlando et al., 2014], следует (рис. 8.6), что в геном человека из Костенок эти таинственные «базальные евразийцы» внесли не менее важный вклад, чем и верхнепалеолитические западные евразийцы. Также из модели следует, что он имел и общих, хотя и более отдаленных предков с древними северными евразийцами восточного ствола.

В этих целях я решил использовать в качестве суррогата базального евразийского генома геном Mota (древнего жителя Африки), примерно половину генома которого составлял тот самый пресловутый базальный компонент (результат обратных миграций натуфийского населния Ближнего Востока в восточную Африки)

Итак, в начале используем программу qpWave из того же пакета Admixtools

parameter file: qpWave.par

THE INPUT PARAMETERS

##PARAMETER NAME: VALUE
indivname: data.ind
snpname: data.snp
genotypename: data.geno
popleft: left
popright: right
maxrank: 6

qp4wave2 version: 200

left pops:
Levant_N
Mota
WHG
EHG

right pops:
Han
Onge
Papuan
Kostenki14
Ust_Ishim
Siberian_Upper_Paleolithic

0 Levant_N 13
1 Mota 1
2 WHG 2
3 EHG 3
4 Han 33
5 Onge 15
6 Papuan 14
7 Kostenki14 1
8 Ust_Ishim 1
9 Siberian_Upper_Paleolithic 1
jackknife block size: 0.050
snps: 572603 indivs: 84
number of blocks for block jackknife: 719
dof (jackknife): 631.955
numsnps used: 177238
f4info:
f4rank: 0 dof: 15 chisq: 574.447 tail: 9.47752373e-113 dofdiff: 0 chisqdiff: 0.000 taildiff: 1

<cf4info:
f4rank: 1 dof: 8 chisq: 115.553 tail: 2.7408605e-21 dofdiff: 7 chisqdiff: 458.894 taildiff: 5.4614954e-95
B:
scale 1.000
Onge -0.475
Papuan -0.521
Kostenki14 0.069
Ust_Ishim -0.746
Siberian_Upper_Paleolithic 1.986
A:
scale 290.851
Mota -0.932
WHG 0.299
EHG 1.429

f4info:
f4rank: 2 dof: 3 chisq: 8.502 tail: 0.036691843 dofdiff: 5 chisqdiff: 107.050 taildiff: 1.7204978e-21
B:
scale 1.000 1.000
Onge -0.462 -0.050
Papuan -0.522 -0.105
Kostenki14 0.288 2.189
Ust_Ishim -0.733 0.378
Siberian_Upper_Paleolithic 1.973 -0.232
A:
scale 286.604 578.115
Mota -0.951 -1.197
WHG 0.385 0.752
EHG 1.396 -1.001

f4info:
f4rank: 3 dof: 0 chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 8.502 taildiff: 0.036691843
B:
scale 1.000 1.000 1.000
Onge -0.400 -0.203 1.065
Papuan -0.459 -0.258 0.882
Kostenki14 0.299 2.175 0.273
Ust_Ishim -0.645 0.116 1.513
Siberian_Upper_Paleolithic 2.031 -0.382 0.850
A:
scale 282.949 595.536 1395.824
Mota -0.857 -1.172 0.944
WHG 0.466 0.827 1.449
EHG 1.431 -0.971 0.093

## end of run

Нас интересует статистика f4rank 2, и как видно она убедительна: chisq: 8.502 tail: 0.036691843 dofdiff: 5 chisqdiff: 107.050 taildiff: 1.7204978e-21.  То есть, для моделирования референсной популяции достаточно трех «источников» (в f4rank 3, т.е с 4 предковыми популяциями, статистика гораздо хуже: chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 8.502 taildiff: 0.036691843 ).

Следующим этапом будет оценка пропорций «адмикса», образованного смешением трех «источников»:

 

parameter file: qpAdm.par

THE INPUT PARAMETERS

##PARAMETER NAME: VALUE
genotypename: data.geno
snpname: data.snp
indivname: data.ind
popleft: left
popright: right
maxrank: 8

qpAdm version: 200

left pops:
Belarusian
Mota
WHG
EHG
right pops:
Han
Onge
Papuan
Kostenki14
Ust_Ishim
Siberian_Upper_Paleolithic
0 Belarusian 25
1 Mota 1
2 WHG 2
3 EHG 3
4 Han 33
5 Onge 15
6 Papuan 14
7 Kostenki14 1
8 Ust_Ishim 1
9 Siberian_Upper_Paleolithic 1
jackknife block size: 0.050
snps: 572603 indivs: 96
number of blocks for block jackknife: 719
dof (jackknife): 628.796
numsnps used: 227599
codimension 1
f4info:
f4rank: 2 dof: 3 chisq: 20.724 tail: 0.000120097824 dofdiff: 5 chisqdiff: -20.724 taildiff: 1
B:
scale 1.000 1.000
Onge -0.502 0.176
Papuan -0.562 0.218
Kostenki14 0.442 2.074
Ust_Ishim -0.735 0.779
Siberian_Upper_Paleolithic 1.923 -0.110
A:
scale 285.645 552.926
Mota -1.490 -0.238
WHG 0.017 1.685
EHG 0.883 -0.324
full rank 1
f4info:
f4rank: 3 dof: 0 chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 20.724 taildiff: 0.000120097824
B:
scale 1.000 1.000 1.000
Onge -0.502 0.178 0.403
Papuan -0.599 0.280 0.995
Kostenki14 0.455 2.029 -0.773
Ust_Ishim -0.773 0.879 1.373
Siberian_Upper_Paleolithic 1.893 0.008 1.168
A:
scale 288.199 555.700 1346.772
Mota -1.449 -0.056 0.947
WHG 0.026 1.726 0.141
EHG 0.948 -0.132 1.444
best coefficients: 0.318 0.148 0.534
ssres:
0.000295769 0.000789821 0.000059100 0.001247609 0.001271289
0.335431254 0.895733409 0.067025433 1.414909018 1.441765444

Jackknife mean: 0.316895017 0.150748678 0.532356305
std. errors: 0.035 0.067 0.045
error covariance (* 1000000)
1212 -1838 625
-1838 4506 -2668
625 -2668 2043
fixed pat wt dof chisq tail prob
000 0 3 20.724 0.000120098 0.318 0.148 0.534
001 1 4 125.483 0 -0.088 1.088 0.000 infeasible
010 1 4 25.750 3.55457e-05 0.378 0.000 0.622
100 1 4 102.973 2.28952e-21 0.000 0.702 0.298
011 2 5 336.445 0 1.000 0.000 0.000
101 2 5 127.950 6.47788e-26 0.000 1.000 0.000
110 2 5 184.757 0 0.000 -0.000 1.000
best pat: 000 0.000120098 - -
best pat: 010 3.55457e-05 chi(nested): 5.025 p-value for nested model: 0.0249831
best pat: 101 6.47788e-26 chi(nested): 102.201 p-value for nested model: 5.01661e-24

end of run

Итак, лучшими коэффициентам (пропорциями адмикса) являются 0.318 0.148 0.534. То есть референсная популяция белорусов может быть смоделирована как 30 % базального компонента, 15% компонента мезолитических охотников собирателей и 53% компонента жителей степи бронзового века («индоевропейцев»). Очевидно, что большая часть базального компонента попала в Европу вместе неолитическими земледельцами, а оставшаяся часть — была принесена индоевропейцами.

 

Формальный анализ модели смешивания предковых популяций: белорусы

Перед подготовкой релиза новых калькуляторов K16 и K11 на Gedmatch, я решил провести пилотный (пробный) анализ референсной популяции белорусов (в которую входят публичные образцы из  базы данных HumanOrigin, EGDP новой панели референсных геномов Эстонского биоцентра, а также данные белорусов — участников моего проекта MDLP). Основным инструментом формального анализа надежности модели будет известный и популярный пакет Admixtools.
Перед тем, как дать краткое описание первых шагов, хочу отметить трудности работы с Admixtools — в первую очередь, крайнее низкую степень документированности (описания) практических аспектов работы большинства входящих в пакет инструментов. Данное обстоятельство существенным образом снижает темп изучения этого все более популярного пакета (с другой стороны, похоже что лаконичность изложения задумывалась изначально, для отсеивания слабо мотивированных дилетантов-любителей). Второе обстоятельство, затрудняющее использование Admixtools, заключается в необходимости компилировать отдельные компоненты пакета.

Пакет содержит шесть программ

 

convertf: программа конвертирования форматов
qp3Pop: формальный анализ сигнала "смешивания" в трех популяциях
qpBound: программа, вычисляющая верхнюю и нижнюю границу смешивания в трех популяциях (2 референсные популяции и 1 одна популяция, предположительно образованная за счет смешивания двух референсных популяций) 
qpDstat: формальный анализ "адмикса" в 4 популяциях
qpF4Ratio: программа для определения пропорций адмикса за счет проведения 2 f4-тестов
rolloff:  программа датировки адмикса.

В приницпе, четкого порядка работы с этими программами нет, однако авторы рекомендуют следовать приведенному списку (т.е. начинать с qp3Pop и заканчивать rolloff)

Outgroup-статистика f3 является крайне полезным аналитическим инструментом для понимания взаимных отношений разных популяций: основная задача теста состоит в определении характера этих отношений. Образована ли целевая популяция (target) за счет смешивания двух рефересных популяций, или же  популяции представляют собой две простые ветви популяционного дерева человечества (т.е. в образовании таргетной популяций не участвовали референсные популяции)

Статистика f3, так же, как два других вида статистик — f4 и f2 — представляют собой меру корреляции частот аллелей между рассматриваемыми популяциями. Все эти виды статистик были введены в научный оборот попгенетики биоинформатиком Ником Паттерсоном в статье 2012 года.

Статистика f3 используется в двух целях:

  1. в качестве теста  сигнала «адмикса» двух популяций-источников (A и B) в «целевой популяции» (С)
  2. для измерения общего разделяемого дрейфа двух тестовых популяций  (А и В) по отношению к  внешней группе (С).


В этой публикации я приведу пример первого случая использования. Статистика f3 в обоих случаях определяется как произведение разниц частот аллелей  между популяции C, А и В, соответственно:

  1. F3=<(c-a)(c-b)>

Итак, первый случай употребления (для определения сигнала смешивания), белорусы выступают в качестве тестовой популяции, две референсные популяции образованы пермутацией имеющихся у меня популяций

Итак, промежуточные результаты (я выбрал только комбинации с негативным значением Z, свидетельствующие о сигнале смешивания) :

Следующий тип статистики — f4, — реализован в программе qpDstat в виде D-статистки. Это формальный тест адмикса четырех групп (таксонов или популяций), позволяющий определить направления потока вливания генов. Немного теории:

Для любых 4-х популяций (W, X, Y, Z), qpDstat вычисляет D-статистику следующего вида

num = (w — х) (у — z)
den = (w + х — 2wx) (у + z — 2yz)

D = num / den

Результат qpDstat показывает направления вливания генов. Таким образом, для 4 групп (W, X, Y, Z) верно следующее положение:

Если значение Z положительное ( + ), то обмен генами происходил либо между W и Y, либо между X и Z
Если значение Z отрицательное (-), то обмен генами происходил либо между W и Z,  либо между X и Y.

 Кроме определения направления генного дрейфа, очень важным практическим применением D-статистики служит определения «левых» и «правых» популяций для теста qpAdm (о нем чуть позднее). Так, например,  комбинация из двух первых популяций left {L,L}  и двух правых популяций {R, R} должна быть выбрана таким образом, чтобы значение Z в D-статистике
a) было неотрицательным, и b) имело высокое абсолютное значения.  Я решил последовать совету и сгенерировал 225822 комбинаций из четырех популяций {W,Y,X,Z}, где W — фиксированная первая таргетная популяция «левого» списка, в нашем случае белорусы, Y — одна из имеющихся групп палеогеномов, X и Z — пермутация из 16 «чистых» современных популяций описанных в работе Lazaridis et al. 2016.

Итак, вот результаты (и снова я не привожу полный список, а только те комбинации, которые могут быть использованы для выбора состава «левых» и «правых» популяций.  и последующего моделирования в qpAdm):

Этюд на тему ДНК-генеалогия.

Мой блог посвящен преимущественно тематике аутосомной ДНК, однако время от времени я затрагиваю тему однородительских маркеров происхождения (Y-ДНК и митоДНК).  Начну заметку издалека.
Среди обывателей села Стахова бытует легенда, о том, что род Вереничей пришли на земли пинского Полесья из Югославии.К сожалению, как и в большинстве подобных легенд, cовершено невозможно разобраться в том, где правда, а где позднейшие выдумки. Так и в этом случае. Ни в одном из имеющихся e меня исторических документах нет даже и намека на балканское происхождение Вереничей. Даже в самых ранних документах (например, в «Ревизии пущ и переходов звериных в бывшем Великом княжестве Литовском с присовокуплением грамот и привилегий на входы в пущи и на земли, составленной старостою мстибоговским Григорием Богдановичем Воловичем в 1559 г. «, или в «Писцовой книге Пинского староства Лаврина Воина, 1561—66«) уже видно, что даже в то время род Вереничей на Полесье считался «издавним«.



Так в ревизии Воловича (1559 года) читаем, что

«Павел Веренич на дворище у Стохови жъ не покладалъ листовъ, только давность, и на другое дворище у Дубой».


Слово давность означает существование в течение долгого времени, издревле, искони. Происходящие от корня этого слова прилагательные и наречия попадаются в разных актах с конца XIII века. Как юридический термин существительное <давность> употреблялось уже весьма рано в западнорусском законодательстве; собственно же в России оно появляется в виде термина лишь с XVIII века. Выражение земская давность было юридическим термином в Литовском Статуте, из которого заимствовано русским законодательство.

 



В строго юридическом смысле срок давности владения определялся десятью годами. Впрочем, здесь давность может употребляться в другом значении. Так, в актовых материалах все той же «Ревизии пущ и переходов звериных в бывшем Великом княжестве Литовском с присовокуплением грамот и привилеев на входы в пущи и на земли, составленная старостою мстибогским Григорием Богдановичем Воловичем» в числе прочих землевладельцев Пинского повета упомянуты Грынь Веренич с братом Павлом «с имений своих стародавних [т.е. с незапамятных времен] военную службу служащих«. Судя по этому, Вереничи могли появится в Стахове уже в середине 15 века, если не раньше.
Когда, откуда, и при каких обстоятельствах — обо всем этом известные мне историко-юридические источники умалчивают. Более поздние документы не только не дают ответа на эти вопросы, а скорее еще больше запутывают ситуацию. Так например в «Выводе фамилии урожденных Стаховских придомка Веренич» (Год 1802 Месяца ноября двадцать второго дня на на сессии Депутации выводовой Губернии Минской) читаем следущее:

«Принесена была просьба от фамилии древней родовитой панской шляхты урождённых Вереничей Стаховских герба “Огончик” (пол-стрелы белой на половине перстня стоящей, в поле красном, над шлемом две женские руки вытянутые вверх) которая на наследственных землях и осадах в повете пинском лежащих от найяснейшых времён королевства Польского, прерогативами шляхетства пользовалась, и клейнотом родовитости неискаженно и непрерывно пользовались. [стр. 616] В потверждение указов найяснейшей воли – линия родословной своей вместе с документами перед депутацией выводовой губернии Минской составлена, потверждена доводами и внесена в дворянские книги Минской губернии в соответстии с законом.Родословие своего дома разделили на две линии. Дух родных братьев Семена и Дмитрия Вереничей Стаховских за родоначальников взяли, и от них до себя довели. И правдивость этого они через доказательства и документы следующим порядком довели. Семен и Дмитрий Вереничи Стаховские братья между собой родные. В повете Пинском осели и дали начало своему роду и фамилии. И в подтверждение своего первого поколения они предъявили привилегию от наияснейшего короля польского Сигизмунда Августа за год тысяча пятьсот шестьдесят шестой от июня двадцатого дня где, между другими для шляхты пинской пожалованиями за военную службу выше упомянутым Семену и Дмитрию Вереничам Стаховским земли в наследственное владение в повете Пинском лежащими дворища Веренича в Стахове и Дубой называющееся им и потомкам их пожаловал…»

Содержание начала текста весьма типично для подобных документов, но здесь нет сведений о точном времени появления Вереничей в Стахове, не говоря уже о явных хронологических несуразицах, которые я разбирал в другой заметке.

  1. Во-первых, под «привелем» 1566 года понимается общий «привилей» Сигизмунда-Августа, данные всей пинской шляхте в подтверждение их землевладельческих и шляхецких прав.
  2. Во-вторых, Семен и Дмитрий жили не в 1566 году, а как минимум на сто лет раньше — около 1456-1466 годов. В доказательство верности моих вычислений можно привести следующие аргументы. В решении судей Главного Трибунала ВКЛ от 1637 года упоминается о привелее кн. Марии Семеновны (+1501) ( в документе ошибочно указано Ярославовны) и ее сына кн. Василия Семеновича (+1495) от 6998 года индикта 8 (1490 года согласно современному летоисчислению), в котором подтверждается совместное владение Волошиным (sic!) Павлом и Ходором Вереничами даниной своей бабки в селе Тупчицы, Согласно родословной, Павел — сын Дмитрия и племянник Семена. В следующем по времени привилее кн. Федора Ивановича Ярославича от 26 апреля 1514 данном дочерям Антона (Андрей?) Дмитриевича Веренича потдверждается их вотчинное права на земли пожалованные их отцу в Стахове, Дубое и Тупчицах. Очевидно, Антон(или Андрей) — тоже сын Дмитрия, и более того, в 1514 году его дочери были уже совершеннолетними.
  3. В-третьих, в переписе войска литовского 1528 года упомянут пинский боярин Верениш (sic!), который служил «сам со своего имения». Далее, из судебного дела от 26 марта 1543 года по иску Пашки Павлова и его братьи Игнатия и Гаврила к Ваське Лозичу, который унаследовал по своей жене Ульяне Лукашевичевой Веренич часть имений Дубой и Стахово. мы узнаем, что в 1543 году внуки Дмитрия (Пашко Павлович и его двоюродные братья Гавриил и Игнат Васильевич) были уже взрослыми, так же как и покойная Ульяна Лукьяновна (дочь Лукьяна Семеновича, внучка Семена Веренича), после смерти которой третья часть дворища Веренич в Дубое и дворища Веренич в Стахово перешла к Ваське Лозичу.

 



Далее, в 1554 году — за 12 лет до указанной в привелее даты — в материалах, собранных в ходе ревизии пущ и переходов лесных -упомянуются Грынь Веренич с (троюродным) братом Павлом с имений своих стародавных военную службу служащих. Как известно, Грынь — внук Семена, а Павел или Пашко — внук Дмитрия. О самих Семене и Дмитрии ни слова, хотя если бы они жили в это время, то скорее всего именно они или их сыновья были бы записаны как старшие в своем роду, но никак не их внуки.В 1559 году, по все той же ревизии Воловича, в числе земян Стаховских опять упоминается Павел Веренич, правда, уже без Гриня. В тексте четко сказано, что Павел не покладал листов (т.е. не предъявил привелея), только давность на дворище у Стахова и другое дворище у Дубоя. Поскольку большую часть книги Воловича составляют привелеи, выданные или подтвержденные королевой Боной, следовательно, от Боны Вереничи привлеев не получали, по крайней мере, на земли в Дубое и Стахове.Все вышесказанное означает, что уже задолго до 1566 года Вереничи владели своими дворищами и землями на основании вотчинного права, и что феодальные права Вереничей на эти земли восходят — как минимум -временам кн. Марии Семеновны и ее сына Василия (то есть к периду между 1475-1490 гг).


Реконструкция позволяет очертить интервал появления Вереничей в Стахове — но с обстоятельствами появления по-прежнему нет никакой ясности. Поскольку скудные исторические свидетельства обходят  этот вопрос сторонй, то можно обратиться к преданиями. Среди старожилов села Стахова якобы сохранилось следующее якобы древнее предание:


Когда-то, давным-давно, жил на Полесье князь Карачинский (sic!). В его владениях находился большой дремучий бор, около которого проходил торговый шлях. По прошествии времени, в этом бору поселилось 100 половцев, которые совершали нападения на проезжающих купцов и селян. Князь, прослышав о разбойниках, повелел своим «палявничим» (охотникам) узнать, где находится разбойничье логово. Один из охотников решил проследить путь до логово половцев и стал делать топором зарубки на деревьях. Услышав стук топора, войны князя отправились в сторону, где раздавалось эхо стука топора. Таким образом, они вышли прямиком на логово разбойников и истребили их. В награду за верную службу, князь наградил находчивого охотника землям, где находился стан половцев. Охотник постоянно носил с собой «Ксендз Лаврентий Янович, каноник венденский, в своей речи на погребении Элжбеты с Стаховских Каренжины, жены вилькомирского судьи, изданной в сборнике «Золотой улов на реках и водах смертности сего мира и т.д» (Вильно 1665 г.) размещает следущее предание, относящиеся к истории Стахова.: «Князь Карачевский, владелец обширных волостей, лежащих на Пинщине, крайне скудными силами 100 половцев положил трупами и на там же месте похоронил, как и по ныне свидетельсвтуют о том курганы того места. За это мужесто правящий князь ему отдал в удел это поле, а также столько земли, сколько мог объять звонкий звук трубы. Отсель то земельное надание стало называтся Стоховым, потому что там похоронено сто убитых врагов.» (веренька, вярэнька), и поэтому его прозвали Веренькой. Его потомки приняли прозвище родоначальника в качестве фамилии.


К сожалению, изучение этого предания показывает его недавнее происхождение. Скорее всего, оно выписано из 9-го тома «Полного географического описания нашего отечества» изданного в 1905 году В.П.Семеновым-Тян-Шанским , куда, в свою очередь перекочевало из известного издания «Słownik geograficzny Królestwa Polskiego» изданного в 1880–1902 гг., а именно из 11 тома, в котором на стр.171-172 была размещена довольно объемная статья Александра Ельского и Эдварда Руликовского о Стахове. Именно с подачи Руликовского в этой статье была размещена выписка из издания 17 века:

«Ксендз Лаврентий Янович, каноник венденский, в своей речи на погребении Элжбеты с Стаховских Каренжины, жены вилькомирского судьи, изданной в сборнике «Золотой улов на реках и водах смертности сего мира и т.д» (Вильно 1665 г.) размещает следущее предание, относящиеся к истории Стахова: «Князь Карачевский, владелец обширных волостей, лежащих на Пинщине, крайне скудными силами 100 половцев положил трупами и на там же месте похоронил, как и по ныне свидетельствуют о том курганы того места. За это мужесто правящий князь ему отдал в удел это поле, а также столько земли, сколько мог объять звонкий звук трубы. Отсель то земельное надание стало называтся Стоховым, потому что там похоронено сто убитых врагов.»

 


В приведенном отрывке приводится родословное предание рода Стаховских герба Огоньчик, (проживавшего в мстиславском, виленском, новогрудском и пр. воеводствах ВКЛ), генеалогическая связь которого с Вереничами пока никак не проясняется. Главным фигурантом здесь выступает князь Карачевский (которого, видимо, Cтаховские считали своим предком), а вовсе не «охотник с сумкой из бересты». Можно с уверенностью сказать, что «легенда старожилов» Стахова появилась самое ранее в начале 20 века в среде «грамотеев» села Стахове как результат переосмысления текста статьи их энциклопедического справочника,  а затем объединения легенды об основании Стахова с народной этимологии фамилии Веренич.



Итак, и этот источник не дал нам ничего ценного. Поскольку возможности документальной генеалогии на этом этапе практически исчерпываются (и открытие новых источников вряд ли предвидится), остается обратится к новой отрасли — ДНК-генеалогии.

Генетическая генеалогия использует ДНК-тесты совместно с традиционными генеалогическими методами исследования. Каждый человек несёт в себе своего рода «биологический документ», который не может быть утерян — это ДНК человека. Методы генетической генеалогии позволяют получить доступ к той части ДНК, которая передаётся неизменной от отца к сыну по прямой мужской линии — Y-хромосоме. ДНК-тест Y-хромосомы позволяет, например, двум мужчинам определить, разделяют ли они общего предка по мужской линии или нет. ДНК-тесты не просто помощь в генеалогических исследованиях — это современный передовой инструмент, который генеалоги могут использовать для того, чтобы установить или опровергнуть родственные связи между несколькими людьми.

Итак, в 2008 году узнал свою Y-хромосомную гаплогруппу (I2a). Немного терминологии для читателей, далеких от науки:

Гаплогруппа (в популяционной генетике человека — науке, изучающей генетическую историю человечества) — группа схожих гаплотипов, имеющих общего предка, у которого в обоих гаплотипах имела место одна и та же мутация — однонуклеотидный полиморфизм.

 

 

Позднее протестировались еще 2 Веренича, и наши гаплогруппы совпали, что подтверждается достоверность официальной родословной. Казалось бы, после всех усилий, можно было бы легко определить ареал, откуда появились предки Вереничей (очевидно, что это ареал с наибольшей частотой или наибольшим разнообразием гаплогруппы I2a). На поверку же все оказалось гораздо сложнее. Географический ареал гаплогруппы I2a (вернее ее восточноевропейской, «динарской» ветви) характеризуется бимодальным распределением — в восточной Европе они приходятся на регион Полесье-Карпаты и на регион Балкан (с макисмальной частотой в Боснии-Герцеговине).

По иронии cудьбы, именно с этими двумя регионами связаны две наиболее вероятные версии происхождения Вереничей. Таким образом, знание одной лишь корневой гаплогруппы мне, по большому счету, не помогло ни подтвердить, ни опровергнуть одну из этих альтернативных версий.

Тупиковая ситуация изменилась лишь после того, как один из Вереничей сделал полный сиквенс Y-хромосомы (BigY в FTDNA). Благодаря ему удалось достаточно точно позиционировать расположение нашей ветви-кластера внутри общей структуры филогенетического дерева I2a.Благодаря присутствию Y-хромосомного сиквенса (YF03602) представителя рода Вереничей в базе данных yfull.com (спасибо за помощь Vladimir Semargl и Vadim Urasin) представляется возможным оценить возраст моего кластера. На настоящий момент в него входит еще один полный сиквенс Y-хромосомы (YF04188), о хозяине которого мне ничего неизвестно.

Возраст линии Вереничей оценивается в 1438 лет до настоящего времени, линии YF04188 — всего лишь в 546 лет.По расчету снип-мутаций возраст I-Y17665 (и возможно I-A7318) оценивается примерно в 1000 лет (т.е. временами Киевской Руси), а возраст родительской ветви A1328 в 1850 лет до настоящего времени (начало нашей эры). Возраст, определенный по снипам, указывает на время выделения ветви I-A1328, хотя возраст последнего общего предка (определенный по значениям других маркеров Y-хромосомы) чуть ниже -1400 лет (т. е примерно 5-6 века нашей эры). То есть ветвь моих прямых предков в это время прошла пресловутое бутылочное горлышко, сопровождаемое, как правило, падением числа представителей линии и уменьшением разнообразия.

Здесь начинается самое интересное.



Недавно, зайдя на сайт проекта I2a в FTDNA, я обнаружил результаты некоего Враньешевич из Черногории. Я бы не обратил на него внимание, если бы он не попал в тот же кластер, что и я (в этот кластер входит ветвь Вереничей, гаплогруппа (I2-A7318, т.е подветвь I-A1328)).Я решил рассчитать возраст I-A1328 с помощью калькулятора semargl.me и стандартных для набора 37 маркеров скорости мутации. К сожалению, в базе данных Semargl немного гаплотипов из конкретно моего кластера и ближайщих к нему братских кластеров. В общем возраст, по ASD методу получилось что возраст моего кластераI (Y17665) — 1050 лет, а при подключении (в качестве outgroup) гаплотипа из I-A1328* возраст кластера I-A1328* составил примерно 1850 лет. То есть, это верхний интервал временного промежутка, когда мог жить последний мой общий предок (MRCA) и Враньешевича.

I2a2 ‘Dinaric’ ..L621>CTS10228>S17250>Y4882>A1328>A7318 (I-A7318)

568 362501 Verenich Werenicz,Werenich,Verenich,Werenitz,Stachowski. Belarus I-A7318

I2a2 ‘Dinaric’ ..L621>CTS10228>S17250>Y4882>A1328 (I-A1328)
564 E13120 Vranjesevic Vranjesevic Milan-Mico, birth 1913, death 1992 Bosnia and Herzegovina I-A1328


Нижний интервал можно определить с помощью калькулятора McDonald. Для вычисления дистанции в годах я сравнил значения 67-маркерного гаплотипа одного из Вереничей с аналогичными маркерами гаплотипа Враньешевича. 10 маркеров имеют другое значения. Получается разница в 10 маркеров на 67 маркерных гаплотипах.

Generations Probability Cumulative
1 0.000000 0.000
2 0.000000 0.000
3 0.000000 0.000
4 0.000004 0.000
5 0.000022 0.000
6 0.000091 0.000
7 0.000279 0.000
8 0.000699 0.001
9 0.001495 0.003
10 0.002825 0.005
11 0.004827 0.010
12 0.007592 0.018
13 0.011137 0.029
14 0.015396 0.044
15 0.020223 0.065
16 0.025408 0.090
17 0.030697 0.121
18 0.035824 0.157
19 0.040537 0.197
20 0.044616 0.242
21 0.047893 0.290
22 0.050258 0.340
23 0.051662 0.391
24 0.052111 0.444
25 0.051660 0.495
26 0.050401 0.546
27 0.048451 0.594
28 0.045943 0.640
29 0.043014 0.683
30 0.039796 0.723
31 0.036412 0.759
32 0.032973 0.792
33 0.029568 0.822
34 0.026274 0.848
35 0.023146 0.871
36 0.020225 0.891
37 0.017537 0.909
38 0.015097 0.924
39 0.012906 0.937
40 0.010961 0.948
41 0.009252 0.957

 

14202591_10210357856572557_5019604267960638228_n-1 14199500_10210357943174722_1769976137139415870_n

Пик гистограммы приходится на интервал между 21-30 поколениями, начиная с 26 поколения кумулятивная вероятность родства достигает убедительных значений достигая 0.95 в 41 поколении. Т.е. нижняя граница приходится примерно интервал в 600-1025 лет до настоящего времени — другими словами между 15 и 10 веками нашей эры.

Разумеется, c генеалогической точки зрения, исследование нижнего интервала (с общим предков в 14-15 веках нашей веры) более перспективен, тем более что я проследил свою прямую мужскую линию до 19 поколения.

Но насколько возможен факт наличия общего прямого мужского предка белоруса и черногорца в 21-30 поколениях? Дает ли генеалогия Вереничей предпосылки для такого утверждения? Прямых предпосылок, разумеется, нет.


Зато есть соображение ономастического характера. Один из сыновей второго родоночальника — Дмитра — Василь носил прозвище Волошин — так обычно в русских землях называли валахов, хотя часто прозвище Волошин не имело этнической коннотации и могло выступать в качестве отыменного прозвища: например, Володшин cын -> Волошин или Власий -> Волос -> Волошин. Наконец, составитель документа или переписчик мог сделать обычную описку. Впрочем, последнее опровергает существование 2 топонимов в окрестностях Стахова — урочища и острова Волошиново — причем именно там находились в 16-17 веках владения потомков Дмитра Веренича (старшим сыном которого являлся Василь Волошин). Кстати, любопытно отметить, что иногда в документах 16 века фамилия Веренич записывается не с окончанием —ч, а с более традиционным для южных славян окончанием — ш (Верениш)

А как же тогда быть с Вранешьевичем? Какое отношение он может иметь к валахам?

Лет 8 тому назад я порылся в исторических документах и обнаружил, что похожая фамилия Вранчич (в хорватском произношении Веранчич) действительно существовала на территории так называемого царства Сербия. После фактического распада Сербского царства (около 1366-1371 года), часть Вранчичей переселилось в Южную Сербию и Черногорию (где потомок Вранчичей воевода Радич Црноевич основал династию Црноевичей, которая в 15 веке праваила Зетой и Черногорией), другая перешла на службу к усилившемуся после падения «црства Српскаго» боснийскому королю Стефану Твртко I, который в 1370 и 1389 годах принял титул короля сербов, Боснии (1379) , Далмации и Хорватии (1389). Эти боснийские Вранчичи после падения Боснии (1463 год) под ударами турков частью переселились в Далмацию (г.Шибеник), которая с1420 была под венецианским владычеством, другая переселилась на границу Герцеговины и Черногории, где владели под турками «хематом» Вранеш, названого так в честь «валашского» князя Херака Вранеша (Вранеш — это герцеговинское диалектное видоизменение имени Вранчич).»Из возможных потомков Вранчичей, оставшихся в восточной Боснии и Герцеговине, особого внимания заслуживает «влашский» (sic!) кнез Херак (Владиславич?) Враньеш.

Казалось бы, вышеприведенные рассуждения выглядят убедительно. На самом же деле, остается главная проблема — дело в том, что фактически на протяжении 14-17 веков неизвестно никаких миграций жителей Балкан и влахов на территорию Полесья. Да, действительно была т.н. валашская колонизация, но она затрагивала главным образом территорию юго-западной Украины (прежде всего «червонной Руси» и «любельской земли», т.е. земли вокруг Львова, Звенигорода, Галича, Теребовля, Санока, Кросно, Белза, Замосця, Холма (Хелма). Причем интенсивность расселения «валахов» даже в этих регионах резко уменьшалось по мере продвижения на север (см. приложенную ниже карту).

14212036_10210384176630542_5840107323456791924_n

Например, на ближайшей к Полесью Волыни встречаются лишь фрагментарные упоминания бояр «Волошинов» в документах Метрики Литовской начала 16 века — они касаются пожалования земель в кременецком повете, т.е на рубеже ВКЛ и русского воеводства короны Польской (причем многие из этих «волошинов» носят чисто румынские имена Негое, Урсул и так далее). Такой же фрагментарный характер носят и земельные пожалования «волошинам» и на Подолье. И уж совсем единичные упоминания Волошинов мы находим в документах Метрики Литовской, касающихся земель современной Беларуси. Правда, на Брестчине одна семья «волошинов» — Ходько, Зань и Васько — получила в начале 16 века привелей на имение Чернско (от них происходит род Черских в брестском воеводстве, который вымер в 17 веке).

Размышления над эффективностью алгоритма SPA

Перед тем,  как закрыть тему SPA, я решил поразмышлять о причинах неточности определения географического ареала происхождения с помощью генома. Те, кто воспользовался моей моделью для программы SPA (последняя версия — сентябрь 2016 года), могли убедится в том, что даже при наличии большого количества маркеров, модель не во всех случаях точно определяет ареал происхождения (даже с поправкой на погрешность радиусом в 500 км).
В основу алгоритма SPA положены примерно те же самые предпосылки, что и в случае с классическим анализом главных компонент (PCA)

  • Первая предпосылка  подхода SPA состоит в том, что частота аллели каждого SNP в популяции может быть смоделирована в виде непрерывной двумерной функции на карте. Другими словами, при выборе хромосомы индивидуума из локации с позицией (х, у) на карте, вероятность наблюдения минорного аллеля в SNP j на хромосоме может быть сформулирована в виде функции F (х, у), где Fj является непрерывной функцией, описывающей поведение частоты аллеля в зависимости от географического положения
  • Затем на основании сказанного делается упрощающее предположение, что эта функция является экземпляром логистической функции

 

где х представляет собой вектор переменных, указывающих географическое местоположение и а и Ь коэффициенты функции. Авторы понимают каждую из этих функций, как функцию FJ функции наклона градиента частота в SNP J. Эта функция кодирует крутизну склона по норме а, при этом предпологается что смещение параметра b фиксировано. Кроме того, направленность наклона  кодируется в значении вектора а.  Более подробно, θj = арктангенс (aj(1) / aj(2)) могут быть приняты в знчения угла для SNP j, где aj(1)  и aj(2)  являются первым и вторым элементами вектора а.

Поскольку SPA имеет явные географические координаты, подход может быть расширен для систем за пределами обычной картезианской двумерной плоскости координат. В качестве демонстрации этого, авторы программы SPA использовали алгоритм для анализа пространственной структуры населения земного шара, в которой двухмерное отображение на двухмерной плоскости не может точно фиксировать структуру популяции. Таким образом, каждый индивид проецируется на точку земного шара в трехмерном пространстве. Соответственно, авторы использовали трехмерный вектор х (с ограничением || х || равным определенной константе), чтобы представить индивидуальную позицию.

Используя данные (генотипы индивидов из различных популяций из  HGDP), авторы обнаружили что пространственная топология расположения индивидов в пространстве SPA мы наблюдали, что сильно напоминала топологию географической карту мира. В частности, люди из того же континента были сгруппированы вместе, а континенты были разделены примерно так, как это следовало бы ожидать из пространственного расположения.

ng-2285-f3

 

Главная проблема метода состояла в другом. Несмотря на точность топологии взаимного расположения индивидов,  на карте SPA сильно искажены расстояния между континентами.

Например, продольный размер континента Евразии составил 92 градусов в  SPA-пространстве земного шара, в то время как в пространстве реального земного шара — 150 градусов. Продольное расстояние между Европой и Северной Америкой составило 167 градусов на SPA карте земного шара, в то время как на самом деле оно составляет 90 градусов.  Любопытно отметить, что мой опыт работы с этой программы показал, что наибольшую проблему составляют географические координаты долготы, в то время как широты предсказываются довольно точно. То есть по какой-то причине (несимметричность генетических градиентов в направлении север-юг и направлении восток-запад?) пространство SPA очень сильно искажается в продольном измерении (т.е в долготу).
По этой причине, вычисленные географические точки происхождения для европейцев часто оказываются в Атлантическом океана и так далее.

Я решил использовать данные импутированных генотипов для европейских популяций (я занимался их импутацией на протяжении последнего полгода). На этот раз я ограничился только европейскими популяциями. Я  сделал два разных набора с разным числом снипов — один с 1 062 376 снипами, которые содержатся в платформах генотиприрования клиентов 23andme и FTDNA, другой — примерно 590 395 снипов.  Обе модели можно скачать с Google Drive  (здесь и здесь).

Несмотря на тщательный подбор снипов, обе модели продолжают страдать характерным сдвигом географических долгот, а это означает, что данная проблема обусловлена не выборкой генотипов, а самим алгоритмом программы (т.е. улучшение качества выборки или увеличение количества снипов не приводит к повышению точности даже в том случае, если мы используем для тренировки программы на обучающей выборке  индивидов с известной географической локацией).

Это хорошо видно на полученных в ходе анализа моих собственных данных географических координатах 2 точек происхождения (одна из них в Гренландии,  другая в Средиземном море)

untitled

Разумеется, вряд ли можно говорить о точности подобных вычислений. В ходе размышлений над способом решения проблемы я вспомнил о существовании ортогонального прокрустового анализа.

Я взял две матрицы — одну с географическими координатами (фактически центроиды — географические центры стран) и  вторую с предсказанными  (в модели 1M cнипов) величинами географических координат тех же самых образцов (с усредненными значениями по этносам), а затем совершил прокрустово преобразование в программе R, получив новую матрицу с преобразованными значениями координат. Ниже виден результат операции (преобразованные усредненные координаты образцов спроецированы вместе с центроидами на карту Европы). И хотя координаты по-прежнему немного сдвинуты относительно истинных, в целом результат уже гораздо лучше (правдоподобнее).rplot14При проведении прокрустова анализа, кроме Xnew (трансформированной матрицы),  мы получили значения матрицы вращения R, s- коэффициент масштабирования и tt — вектор трансляции координат, минимизирующие дистанцию между матрицей предсказанных координат и матрицей географических координат.

Эти значения можно использовать для коррекции значений географических координат, рассчитанных в SPA. Я снова использую свои данные (2 предсказанные точки географического происхождения Xp):


Xt=sRXp + 1tt


При подстановке Xp получаем следующие значения

точка A:  60.245448+-11.059673 северной широты;  21.394898 +- -5.979712  восточной долготы (северо-западная Балтика и Скандинавия)

точка B: 43.000748+-8.801889 северной широты;  20.725216+-52.159598 восточной долготы (юго-восточная Европа, Балканы и Греция).

 

 

 

 

 

ALDER анализ происхождения белорусов и поляков

В качестве одного из метода проверки надежности импутированных снипов для анализа популяционной истории различных этнических групп, я использовал метод ALDER (он представляет собой более продвинутую версию алгоритма ROLOFF, описанного в известной работе Patterson et al. 2012).

Метод ALDER  выявляет нюансы популяционной истории через оценку двух важных параметров: а) рекомбинации — процесса обмена участками между разными молекулами ДНК, который напоминает перемешивание игральных карт в колоде (у человека он обязательно происходит при образовании половых клеток) и б) неравновесия по сцеплению — явления, при котором несколько участков ДНК передаются вместе блоками, которые формируются несколько по-разному в разных популяциях из-за того, что в разных популяциях наследуются разные комбинации сегментов ДНК. Таким образом, метод основан на выявлении специфических для каждой популяции сцепленных участков ДНК и на оценке доли общих сегментов в выборках сравниваемых популяций. При этом метод ALDER на основе оценки неравновесия по сцеплению определяет правдоподобность того, что две выбранные группы являются предковыми по отношению к анализируемым популяциям. Кроме того, метод позволяет также установить время смешения через оценку доли рекомбинаций на поколение.
Как было сказано выше, метод ALDER представляет собой расширенный вариант алгоритма ROLLOFF.Этот метод позволяет производить математическую оценку как времени, так как и уровня адмикса. Оценка производится на основании анализа неравновесия по сцеплению между SNP-ами. Тут необходимо вспомнить стандартное определение неравновесия по сцеплению.Неравновесием по сцеплению (часто используется английская аббревиатура LD) называется неслучайная связь между двумя аллелями, в силу которой определенные комбинации аллелей встречаются наиболее часть. В теории,  чем дальше друг от друга находятся SNP-ы ,тем меньше будет уровень LD. Темп угасания снижения  LD в адмиксе напрямую связана с числом поколений, прошедших с момента адмикса,  так как c возрастанием числа поколений увлечивается число рекомбинаций произошедших между  двумя отдельными SNP-ами. Проще говоря: Rolloff соответствует экспоненциальной кривой угасания уровня LD от расстояния, и эта скорость экспоненциального снижения как раз и используется  для оценки числа поколений, так и уровня адмикса в анализируемой популяии. Учитывая, что одно поколение примерно равно 29 лет, можно преобразовать число поколений в года.В качестве двух тестовых популяций я использовал две группы — выборку белорусов (данные публичной коллекции эстонского биоцентра, вошедшие позднее в стандартный набор популяций лаборатории Райха, а также данные белорусов, собранные мной в проекте MDLP) и выборку поляков (из публичной коллекции эстонского биоцентра, а также данные поляков из выборки моего проекта MDLP).   В 2012 году я уже проводил анализ ROLLOFF белорусов, поэтому было интересно посмотреть, как изменится картина после добавления новых палеогеномов и импутированных (негенотипированных) снипов. Для полноты эксперимента, я также включил данные поляков, чтобы посмотреть, работает ли метод на данных, полученных с помощью других платформ генотипирования (NB:когда я проводил анализ, у меня еще не было данных поляков из кураторской базы данных лаборатории Reich).

В качественных референсных популяций (кандидатов в предковые популяции) я использовал набор из 400 популяций в моей расширенной выборки.  Программа работает в три этапа:

  • На первом этапе определяется статистическая значимость сравнения амплитуд угасания 2-референсной LD(в случае наличия такой значимость программа пишет success)

Cледующие комбинации дали положительный результат

Belarusian Andronovo.SG Chukchis
Belarusian Andronovo.SG Koryaks
Belarusian Armenian_Martuni Karelia_HG
Belarusian Bashkir Turkish_Jewish
Belarusian Nordic_LN.SG Villabruna
Belarusian Turkish_Jewish Uzbek
Belarusian Anatolia_Neolithic Brahui
Belarusian Anatolia_Neolithic Burusho
Belarusian Anatolia_Neolithic Itelmen
Belarusian Anatolia_Neolithic Koryak
Belarusian Anatolia_Neolithic Mixtec
Belarusian Anatolia_Neolithic Pathan
Belarusian Anatolia_Neolithic Mala
Belarusian Anatolia_Neolithic Turkmen
Belarusian Anatolia_Neolithic Uygur
Belarusian Druze Selkup
Belarusian Mala Syrian
Belarusian Mixtec Spain_EN
Belarusian Anatolia_Neolithic Brahui
Belarusian Anatolia_Neolithic Burusho
Belarusian Anatolia_Neolithic Chukchi
Belarusian Anatolia_Neolithic Selkup
Belarusian Anatolia_Neolithic Sindhi
Belarusian Anatolia_Neolithic Uygur
Belarusian British-Roman Koryak
Belarusian British-Roman Mixtec
Belarusian Chukchi Mala
Belarusian Itelmen Uzbek_WGA
Belarusian LBK_EN Selkup
Belarusian Selkup Turkish_Trabzon
Belarusian Abhkasian Lahu
Belarusian Ami_Coriell Uzbek_WGA
Belarusian Anatolia_Neolithic Chukchi
Belarusian Anatolia_Neolithic Daur
Anatolia_Neolithic Han
Anatolia_Neolithic Han_NChina
Anatolia_Neolithic Miao
Anatolia_Neolithic Turkmen
Belarusian Atayal_Coriell Uzbek_WGA
Belarusian British-Roman Mixtec
Belarusian Chukchi Mala
Belarusian Dai Greek_Islands
Belarusian Dai Uzbek_WGA
Belarusian Daur North_Ossetian
Belarusian Daur Uzbek_WGA
Belarusian Eskimo_Chaplin LBK_EN
Belarusian Georgian Lahu
Belarusian Georgian Yi
Belarusian Greek_Islands Han
Belarusian Greek_Islands Miao
Belarusian Greek_Islands Mixtec
Belarusian Greek_Islands Nganasan
Belarusian Greek_Islands Ulchi
Belarusian Greek_Islands Xibo
Belarusian Han Uzbek_WGA
Belarusian Han Yemenite_Jew
Belarusian Han_NChina Uzbek_WGA
Belarusian Han_NChina Yemenite_Jew
Belarusian Japanese Uzbek_WGA
Belarusian Korean Uzbek_WGA
Belarusian Lahu Turkish_Jew
Belarusian Lahu Uzbek_WGA
Belarusian Lahu Yemenite_Jew
Belarusian LBK_EN Selkup
Belarusian Miao Uzbek_WGA
Belarusian Miao Yemenite_Jew
Belarusian Naxi Uzbek_WGA
Belarusian Oroqen Uzbek_WGA
Belarusian She Uzbek_WGA
Belarusian Tu Uzbek_WGA
Belarusian Tujia Uzbek_WGA
Belarusian Tujia Yemenite_Jew
Belarusian Ulchi Uzbek_WGA
Belarusian Uzbek_WGA Xibo
Belarusian Uzbek_WGA Yi
Belarusian Uzbek_WGA Yukagir_Tundra
Belarusian Yemenite_Jew Yi
  • На втором — cоответствие скоростей угасания LD в попарном сравнении с референсными популяциями (программа выдает предупреждение, если амплитуды угасания LD несовместимы).  Как видно, большинство триплетов (таргетная популяция + 2 референса) имеет несовместимые амплитуды угасания LD.

DATA: success (warning: decay rates inconsistent) 0.028 Belarusian Andronovo.SG Chukchis 4.64 2.80 2.11 85% 244.96 +/- 44.45 0.00055485 +/- 0.00011964 262.22 +/- 50.30 0.00029724 +/- 0.00010632 105.99 +/- 50.22 0.00013405 +/- 0.00003707
DATA: success (warning: decay rates inconsistent) 3.8e-05 Belarusian Andronovo.SG Koryaks 5.86 2.80 2.36 85% 241.36 +/- 36.30 0.00059837 +/- 0.00010219 262.22 +/- 50.30 0.00029724 +/- 0.00010632 105.75 +/- 44.80 0.00011083 +/- 0.00002791
DATA: success (warning: decay rates inconsistent) 0.037 Belarusian Armenian_Martuni Karelia_HG 4.58 2.20 3.48 53% 206.14 +/- 39.11 0.00072944 +/- 0.00015918 324.91 +/- 90.64 0.00018302 +/- 0.00008311 189.01 +/- 42.42 0.00043186 +/- 0.00012423
DATA: success (warning: decay rates inconsistent) 0.044 Belarusian Bashkir Turkish_Jewish 4.55 2.70 2.53 83% 121.78 +/- 24.93 0.00009384 +/- 0.00002064 153.64 +/- 48.19 0.00006384 +/- 0.00002366 296.25 +/- 73.05 0.00014988 +/- 0.00005929
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Nordic_LN.SG Villabruna 4.54 2.19 5.01 30% 160.01 +/- 35.24 0.00086280 +/- 0.00018037 139.86 +/- 63.88 0.00033916 +/- 0.00014340 117.88 +/- 23.51 0.00043952 +/- 0.00008295
DATA: success (warning: decay rates inconsistent) 0.0032 Belarusian Turkish_Jewish Uzbek 5.07 2.53 2.35 112% 116.58 +/- 23.00 0.00008493 +/- 0.00001382 296.25 +/- 73.05 0.00014988 +/- 0.00005929 83.46 +/- 35.51 0.00004275 +/- 0.00001721
DATA: success (warning: decay rates inconsistent) 0.0066 Belarusian Anatolia_Neolithic Brahui 4.18 4.42 2.87 37% 63.78 +/- 15.17 0.00000803 +/- 0.00000192 92.46 +/- 19.49 0.00001427 +/- 0.00000323 88.94 +/- 27.82 0.00000775 +/- 0.00000270
DATA: success (warning: decay rates inconsistent) 0.019 Belarusian Anatolia_Neolithic Burusho 3.93 4.42 2.19 47% 93.43 +/- 9.05 0.00001536 +/- 0.00000390 92.46 +/- 19.49 0.00001427 +/- 0.00000323 149.25 +/- 37.02 0.00001357 +/- 0.00000621
DATA: success (warning: decay rates inconsistent) 0.035 Belarusian Anatolia_Neolithic Itelmen 3.79 4.42 2.15 64% 69.11 +/- 15.92 0.00002889 +/- 0.00000762 92.46 +/- 19.49 0.00001427 +/- 0.00000323 134.23 +/- 58.31 0.00003278 +/- 0.00001523
DATA: success (warning: decay rates inconsistent) 0.023 Belarusian Anatolia_Neolithic Koryak 3.90 4.42 2.30 30% 82.94 +/- 21.28 0.00003363 +/- 0.00000828 92.46 +/- 19.49 0.00001427 +/- 0.00000323 111.83 +/- 48.56 0.00002562 +/- 0.00000985
DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.90 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Mixtec 3.87 4.42 2.73 71% 71.36 +/- 14.69 0.00003027 +/- 0.00000782 92.46 +/- 19.49 0.00001427 +/- 0.00000323 149.36 +/- 43.83 0.00002944 +/- 0.00001080
DATA: success (warning: decay rates inconsistent) 0.019 Belarusian Anatolia_Neolithic Pathan 3.93 4.42 2.02 42% 104.78 +/- 14.08 0.00001497 +/- 0.00000380 92.46 +/- 19.49 0.00001427 +/- 0.00000323 141.03 +/- 36.42 0.00001165 +/- 0.00000577
DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success (warning: decay rates inconsistent) 0.026 Belarusian Anatolia_Neolithic Uygur 3.87 4.42 2.54 56% 71.95 +/- 14.95 0.00001528 +/- 0.00000395 92.46 +/- 19.49 0.00001427 +/- 0.00000323 127.39 +/- 37.67 0.00001541 +/- 0.00000606
DATA: success (warning: decay rates inconsistent) 0.02 Belarusian Druze Selkup 3.93 2.02 3.14 73% 51.53 +/- 13.06 0.00001224 +/- 0.00000311 110.46 +/- 43.38 0.00001040 +/- 0.00000516 59.53 +/- 18.98 0.00000945 +/- 0.00000299
DATA: success (warning: decay rates inconsistent) 0.044 Belarusian Mala Syrian 3.73 3.87 2.84 28% 72.39 +/- 19.33 0.00000805 +/- 0.00000216 87.55 +/- 18.75 0.00001071 +/- 0.00000277 96.31 +/- 27.52 0.00000993 +/- 0.00000350
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Mixtec Spain_EN 3.85 2.73 2.67 26% 114.65 +/- 21.37 0.00005462 +/- 0.00001417 149.36 +/- 43.83 0.00002944 +/- 0.00001080 117.07 +/- 30.31 0.00002193 +/- 0.00000820
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Anatolia_Neolithic Brahui 3.70 3.45 2.55 32% 63.07 +/- 15.18 0.00000871 +/- 0.00000235 81.39 +/- 21.48 0.00001207 +/- 0.00000349 87.19 +/- 27.66 0.00000771 +/- 0.00000303
DATA: success (warning: decay rates inconsistent) 0.039 Belarusian Anatolia_Neolithic Burusho 3.74 3.45 2.00 61% 89.47 +/- 10.12 0.00001582 +/- 0.00000423 81.39 +/- 21.48 0.00001207 +/- 0.00000349 152.62 +/- 45.80 0.00001482 +/- 0.00000742
DATA: success (warning: decay rates inconsistent) 0.0013 Belarusian Anatolia_Neolithic Chukchi 4.52 3.45 2.79 35% 77.64 +/- 16.37 0.00003602 +/- 0.00000797 81.39 +/- 21.48 0.00001207 +/- 0.00000349 110.36 +/- 39.54 0.00002861 +/- 0.00000981
DATA: success (warning: decay rates inconsistent) 0.038 Belarusian Anatolia_Neolithic Selkup 3.74 3.45 2.41 38% 55.27 +/- 13.63 0.00002155 +/- 0.00000576 81.39 +/- 21.48 0.00001207 +/- 0.00000349 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Anatolia_Neolithic Sindhi 3.83 3.45 2.68 61% 65.40 +/- 9.12 0.00001072 +/- 0.00000280 81.39 +/- 21.48 0.00001207 +/- 0.00000349 122.70 +/- 32.60 0.00001132 +/- 0.00000423
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.00000250 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Uygur 3.85 3.45 2.16 37% 70.37 +/- 13.51 0.00001582 +/- 0.00000411 81.39 +/- 21.48 0.00001207 +/- 0.00000349 102.34 +/- 33.39 0.00001107 +/- 0.00000512
DATA: success (warning: decay rates inconsistent) 0.021 Belarusian British-Roman Koryak 3.89 2.37 2.28 74% 62.36 +/- 16.01 0.00003903 +/- 0.00000934 52.03 +/- 19.63 0.00002305 +/- 0.00000974 113.23 +/- 49.75 0.00002665 +/- 0.00001027
DATA: success (warning: decay rates inconsistent) 0.0084 Belarusian British-Roman Mixtec 4.11 2.37 2.50 80% 64.78 +/- 15.52 0.00004703 +/- 0.00001145 52.03 +/- 19.63 0.00002305 +/- 0.00000974 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success (warning: decay rates inconsistent) 0.01 Belarusian Chukchi Mala 4.06 2.79 4.06 60% 172.83 +/- 30.55 0.00002691 +/- 0.00000663 110.36 +/- 39.54 0.00002861 +/- 0.00000981 93.18 +/- 21.71 0.00001222 +/- 0.00000301
DATA: success (warning: decay rates inconsistent) 0.047 Belarusian Itelmen Uzbek_WGA 3.69 2.36 2.20 54% 142.22 +/- 27.73 0.00006725 +/- 0.00001821 129.35 +/- 53.29 0.00003152 +/- 0.00001338 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.009 Belarusian LBK_EN Selkup 4.09 2.18 2.41 67% 67.83 +/- 16.58 0.00002655 +/- 0.00000641 115.11 +/- 38.65 0.00001960 +/- 0.00000899 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 0.05 Belarusian Selkup Turkish_Trabzon 3.68 2.41 2.11 32% 56.53 +/- 15.37 0.00001451 +/- 0.00000330 57.06 +/- 20.02 0.00000933 +/- 0.00000386 77.83 +/- 33.34 0.00000751 +/- 0.00000355
DATA: success (warning: decay rates inconsistent) 0.017 Belarusian Abhkasian Lahu 4.21 2.47 2.97 174% 32.04 +/- 6.68 0.00001002 +/- 0.00000238 3.95 +/- 1.60 0.00000098 +/- 0.00000024 57.34 +/- 19.33 0.00001384 +/- 0.00000369
DATA: success (warning: decay rates inconsistent) 0.00018 Belarusian Ami_Coriell Uzbek_WGA 5.15 2.09 2.20 63% 162.32 +/- 22.43 0.00007649 +/- 0.00001486 118.09 +/- 56.57 0.00002688 +/- 0.00001279 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0041 Belarusian Anatolia_Neolithic Chukchi 4.52 3.45 2.79 35% 77.64 +/- 16.37 0.00003602 +/- 0.00000797 81.39 +/- 21.48 0.00001207 +/- 0.00000349 110.36 +/- 39.54 0.00002861 +/- 0.00000981
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Daur 4.12 3.45 2.63 47% 73.39 +/- 17.81 0.00002378 +/- 0.00000569 81.39 +/- 21.48 0.00001207 +/- 0.00000349 118.84 +/- 40.98 0.00002486 +/- 0.00000947
DATA: success 0.05 Belarusian Anatolia_Neolithic Han 3.96 3.45 3.00 17% 79.39 +/- 18.74 0.00002687 +/- 0.00000678 81.39 +/- 21.48 0.00001207 +/- 0.00000349 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.00002310 +/- 0.00000644
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.20 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.00000250 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success (warning: decay rates inconsistent) 0.00046 Belarusian Atayal_Coriell Uzbek_WGA 4.97 2.02 2.20 53% 179.16 +/- 31.95 0.00008213 +/- 0.00001654 130.82 +/- 54.40 0.00002576 +/- 0.00001275 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian British-Roman Mixtec 4.11 2.37 2.50 80% 64.78 +/- 15.52 0.00004703 +/- 0.00001145 52.03 +/- 19.63 0.00002305 +/- 0.00000974 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success (warning: decay rates inconsistent) 0.033 Belarusian Chukchi Mala 4.06 2.79 4.06 60% 172.83 +/- 30.55 0.00002691 +/- 0.00000663 110.36 +/- 39.54 0.00002861 +/- 0.00000981 93.18 +/- 21.71 0.00001222 +/- 0.00000301
DATA: success (warning: decay rates inconsistent) 0.009 Belarusian Dai Greek_Islands 4.35 3.05 2.28 32% 122.32 +/- 24.18 0.00004797 +/- 0.00001103 88.71 +/- 29.04 0.00001846 +/- 0.00000511 102.11 +/- 26.83 0.00001569 +/- 0.00000687
DATA: success (warning: decay rates inconsistent) 0.049 Belarusian Dai Uzbek_WGA 3.97 3.05 2.20 87% 160.47 +/- 30.16 0.00006276 +/- 0.00001582 88.71 +/- 29.04 0.00001846 +/- 0.00000511 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0015 Belarusian Daur North_Ossetian 4.73 2.63 2.09 122% 42.94 +/- 8.92 0.00000724 +/- 0.00000153 118.84 +/- 40.98 0.00002486 +/- 0.00000947 178.58 +/- 51.90 0.00001887 +/- 0.00000901
DATA: success (warning: decay rates inconsistent) 0.047 Belarusian Daur Uzbek_WGA 3.97 2.63 2.20 62% 164.70 +/- 29.83 0.00008292 +/- 0.00002087 118.84 +/- 40.98 0.00002486 +/- 0.00000947 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.00086 Belarusian Eskimo_Chaplin LBK_EN 4.84 2.29 2.18 73% 53.65 +/- 11.08 0.00002657 +/- 0.00000479 63.81 +/- 27.89 0.00001618 +/- 0.00000586 115.11 +/- 38.65 0.00001960 +/- 0.00000899
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Georgian Lahu 4.10 2.89 2.97 166% 43.55 +/- 10.61 0.00001537 +/- 0.00000311 5.27 +/- 1.82 0.00000079 +/- 0.00000023 57.34 +/- 19.33 0.00001384 +/- 0.00000369
DATA: success (warning: decay rates inconsistent) 0.05 Belarusian Georgian Yi 3.96 2.89 3.26 179% 35.28 +/- 8.91 0.00000897 +/- 0.00000226 5.27 +/- 1.82 0.00000079 +/- 0.00000023 93.65 +/- 25.60 0.00002033 +/- 0.00000624
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3.00 15% 108.92 +/- 26.70 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.50 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.20 2.28 3.37 15% 118.40 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.90 0.00002845 +/- 0.00000805
DATA: success (warning: decay rates inconsistent) 0.042 Belarusian Greek_Islands Xibo 4.00 2.28 2.59 37% 101.05 +/- 22.65 0.00003689 +/- 0.00000922 102.11 +/- 26.83 0.00001569 +/- 0.00000687 70.25 +/- 27.10 0.00001649 +/- 0.00000507
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success (warning: decay rates inconsistent) 1.8e-05 Belarusian Han Uzbek_WGA 5.56 3.00 2.20 83% 145.83 +/- 21.23 0.00006518 +/- 0.00001171 93.68 +/- 31.25 0.00002137 +/- 0.00000623 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.023 Belarusian Han Yemenite_Jew 4.14 3.00 2.19 41% 101.08 +/- 19.78 0.00002665 +/- 0.00000644 93.68 +/- 31.25 0.00002137 +/- 0.00000623 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.00017 Belarusian Han_NChina Uzbek_WGA 5.15 3.58 2.20 76% 147.58 +/- 21.48 0.00006493 +/- 0.00001261 101.71 +/- 28.43 0.00002310 +/- 0.00000644 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.021 Belarusian Han_NChina Yemenite_Jew 4.16 3.58 2.19 47% 88.25 +/- 14.91 0.00002464 +/- 0.00000593 101.71 +/- 28.43 0.00002310 +/- 0.00000644 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Japanese Uzbek_WGA 3.99 2.51 2.20 76% 158.76 +/- 32.98 0.00007182 +/- 0.00001802 101.02 +/- 40.27 0.00002259 +/- 0.00000766 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.034 Belarusian Korean Uzbek_WGA 4.05 3.28 2.20 72% 147.50 +/- 22.94 0.00006552 +/- 0.00001618 106.54 +/- 29.46 0.00002451 +/- 0.00000748 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0022 Belarusian Lahu Turkish_Jew 4.65 2.97 3.22 53% 53.69 +/- 9.97 0.00001763 +/- 0.00000379 57.34 +/- 19.33 0.00001384 +/- 0.00000369 92.56 +/- 21.52 0.00000780 +/- 0.00000242
DATA: success (warning: decay rates inconsistent) 7.8e-06 Belarusian Lahu Uzbek_WGA 5.70 2.97 2.20 119% 125.65 +/- 17.75 0.00006183 +/- 0.00001084 57.34 +/- 19.33 0.00001384 +/- 0.00000369 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.028 Belarusian Lahu Yemenite_Jew 4.10 2.97 2.19 85% 73.51 +/- 17.32 0.00002186 +/- 0.00000534 57.34 +/- 19.33 0.00001384 +/- 0.00000369 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.029 Belarusian LBK_EN Selkup 4.09 2.18 2.41 67% 67.83 +/- 16.58 0.00002655 +/- 0.00000641 115.11 +/- 38.65 0.00001960 +/- 0.00000899 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 3e-05 Belarusian Miao Uzbek_WGA 5.47 3.63 2.20 89% 141.79 +/- 17.01 0.00005964 +/- 0.00001090 86.31 +/- 23.79 0.00001726 +/- 0.00000411 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.012 Belarusian Miao Yemenite_Jew 4.29 3.63 2.19 49% 96.51 +/- 17.73 0.00002466 +/- 0.00000575 86.31 +/- 23.79 0.00001726 +/- 0.00000411 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.036 Belarusian Naxi Uzbek_WGA 4.04 2.35 2.20 87% 150.57 +/- 27.26 0.00006598 +/- 0.00001633 88.34 +/- 37.62 0.00001891 +/- 0.00000714 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0037 Belarusian Oroqen Uzbek_WGA 4.54 2.50 2.20 75% 159.87 +/- 26.32 0.00007776 +/- 0.00001713 102.18 +/- 40.85 0.00002369 +/- 0.00000834 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.043 Belarusian She Uzbek_WGA 3.99 3.16 2.20 70% 177.32 +/- 34.01 0.00008208 +/- 0.00002055 108.68 +/- 31.62 0.00002238 +/- 0.00000708 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.029 Belarusian Tu Uzbek_WGA 4.09 2.28 2.20 85% 150.44 +/- 31.12 0.00006074 +/- 0.00001485 91.29 +/- 40.04 0.00001929 +/- 0.00000802 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.001 Belarusian Tujia Uzbek_WGA 4.80 2.09 2.20 61% 164.13 +/- 25.59 0.00008133 +/- 0.00001693 120.48 +/- 57.69 0.00002290 +/- 0.00001057 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.00002290 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.0053 Belarusian Ulchi Uzbek_WGA 4.47 3.37 2.20 65% 153.49 +/- 25.35 0.00007000 +/- 0.00001567 114.38 +/- 33.90 0.00002845 +/- 0.00000805 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.00055 Belarusian Uzbek_WGA Xibo 4.93 2.20 2.59 105% 129.90 +/- 24.58 0.00005579 +/- 0.00001132 225.56 +/- 61.89 0.00007507 +/- 0.00003406 70.25 +/- 27.10 0.00001649 +/- 0.00000507
DATA: success (warning: decay rates inconsistent) 0.00062 Belarusian Uzbek_WGA Yi 4.91 2.20 3.26 83% 156.22 +/- 22.94 0.00007252 +/- 0.00001478 225.56 +/- 61.89 0.00007507 +/- 0.00003406 93.65 +/- 25.60 0.00002033 +/- 0.00000624
DATA: success (warning: decay rates inconsistent) 0.011 Belarusian Uzbek_WGA Yukagir_Tundra 4.31 2.20 2.55 61% 182.09 +/- 32.35 0.00008497 +/- 0.00001970 225.56 +/- 61.89 0.00007507 +/- 0.00003406 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success (warning: decay rates inconsistent) 0.048 Belarusian Yemenite_Jew Yi 3.97 2.19 3.26 41% 130.87 +/- 22.50 0.00003478 +/- 0.00000876 142.22 +/- 61.15 0.00001902 +/- 0.00000870 93.65 +/- 25.60 0.00002033 +/- 0.00000624

После отсеивания не очень пригодных для дальнейшего анализа триплетов  у нас осталась следующие комбинации:

DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.9 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.05 Belarusian Anatolia_Neolithic Han 3.96 3.45 3 17% 79.39 +/- 18.74 0.00002687 +/- 0.00000678 81.39 +/- 21.48 0.00001207 +/- 0.00000349 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.0000231 +/- 0.00000644
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.2 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3 15% 108.92 +/- 26.7 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.5 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.2 2.28 3.37 15% 118.4 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.9 0.00002845 +/- 0.00000805
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.0000229 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.0000087

На третьем этапе программа определяет статистическая значимость комбинации (p-статистику):

P-значение (англ. P-value) — величина, используемая при тестировании статистических гипотез. Фактически это вероятность ошибки при отклонении нулевой гипотезы (ошибки первого рода). Проверка гипотез с помощью P-значения является альтернативой классической процедуре проверки через критическое значение распределения.

Обычно P-значение равно вероятности того, что случайная величина с данным распределением (распределением тестовой статистики при нулевой гипотезе) примет значение, не меньшее, чем фактическое значение тестовой статистики.

Отберем значения P меньше 0.05

DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.0000231 +/- 0.00000644
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.5 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.9 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.2 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.2 2.28 3.37 15% 118.4 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.9 0.00002845 +/- 0.00000805
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.0000229 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.0000087
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3 15% 108.92 +/- 26.7 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623

Получаем следующие пары (с датировкой адмикса в поколениях и годах)

Таргет Референс 1 Референс 2 Поколения Погрешность Года Погрешность
Belarusian Anatolia_Neolithic Turkmen 85.64 +/- 28.96 2483.56 +/- 839.84
Belarusian Anatolia_Neolithic Turkmen 72.89 +/- 23.73 2113.81 +/- 688.17
Belarusian Anatolia_Neolithic Han_NChina 101.71 +/- 28.43 2949.59 +/- 824.47
Belarusian Anatolia_Neolithic Turkmen 72.89 +/- 23.73 2113.81 +/- 688.17
Belarusian Greek_Islands Mixtec 121.19 +/- 40.18 3514.51 +/- 1165.22
Belarusian Greek_Islands Yukagir_Tundra 119.62 +/- 45.23 3468.98 +/- 1311.67
Belarusian Anatolia_Neolithic Mala 87.55 +/- 18.75 2538.95 +/- 543.75
Belarusian Anatolia_Neolithic Miao 86.31 +/- 23.79 2502.99 +/- 689.91
Belarusian Greek_Islands Ulchi 114.38 +/- 33.9 3317.02 +/- 983.1
Belarusian Tujia Yemenite_Jew 142.22 +/- 61.15 4124.38 +/- 1773.35
Belarusian Greek_Islands Miao 86.31 +/- 23.79 2502.99 +/- 689.91
Belarusian Greek_Islands Nganasan 97.92 +/- 45.95 2839.68 +/- 1332.55
Belarusian Greek_Islands Han 93.68 +/- 31.25 2716.72 +/- 906.25
Belarusian Anatolia_Neolithic Han 93.68 +/- 31.25 2716.72 +/- 906.25

О чем свидетельствует результаты? Результаты указывают на наличие сигнала смешивания предковых популяций белорусов с неолитическими земледельцами (ближневосточные популяции и популяции ближнего Востока здесь выступают в качестве суррогата неолитических популяций), и с рядом восточноазиатских, сибирских и америндских популяций (здесь они выступают в качестве суррогата сибирского вклада в генофонд восточной Европы) cо средним интервалом смешения примерно 2850 +- 950 лет назад, т.е в период бронзового века.

Ниже приведены графики угасания LD в комбинации Anatolian-Neolithic + Mala

Затем я уменьшил масштаб подгонки (fitting) кривых угасания LD до 0.5 сантиморганид и взял в качестве референса  палеогеномы с хорошим покрытием

Эксперимент с Loschbour + Stuttgart оказался неудачным.

Более правдоподобна комбинация андроновцев (Andronovo) и чукчей (дата адмикса — 125+-60 поколений тому назад)

Вторая попытка подгонки референсных популяций Loschbour и Stuttgart в качестве предковых групп оказался более удачным (дата адмикса — приблизительно 445 +- 56 поколений тому назад, времена энеолита)

Адмикс с сибирскими палеопопуляциями (MA1) примерно в два раза «моложе» (258 +- 42 поколения, бронзовый век)

Еще один вариант адмикса между палеолитическими жителями Европы и MA1 (датировка — 393 +- 75 поколений)

Теперь о поляках. К сожалению, результаты оказались гораздо более зашумленными, так как использовались данные генотипирования на платформе Illumina, имеющей меньшее пересечение снипов со снипами платформы Affymetrix HumanOrigins. Несмотря на это, программа ALDER нашла три комбинации, пусть и с несовместимой амплитудой угасания LD.

DATA: success (warning: decay rates inconsistent) 0.011 Pole Eskimo_Sireniki Irish-BA 3.87 2.01 2.53 40% 146.66 +/- 27.30 0.00035747 +/- 0.00009228 161.51 +/- 69.51 0.00013202 +/- 0.00006577 107.56 +/- 33.31 0.00015435 +/- 0.00006109
DATA: success (warning: decay rates inconsistent) 0.0068 Pole Eskimo_Sireniki Remedello_BA.SG 3.99 2.01 2.57 49% 110.88 +/- 21.02 0.00024049 +/- 0.00006022 161.51 +/- 69.51 0.00013202 +/- 0.00006577 182.60 +/- 39.99 0.00014922 +/- 0.00005796
DATA: success (warning: decay rates inconsistent) 0.035 Pole Eskimo_Chaplin Remedello_BA.SG 3.59 2.51 2.57 56% 102.38 +/- 21.46 0.00022199 +/- 0.00006181 126.26 +/- 42.96 0.00009643 +/- 0.00003846 182.60 +/- 39.99 0.00014922 +/- 0.00005796

Здесь тоже виден слабый сигнал адмикса популяций бронзового века из Западной Европы (Remedello и ирландского бронзового века) c америндскими популяциями.

Впрочем, дополнительный анализ в программе ROLLOFF (с уменьшенным масштабом подгонки — fitting) выдал правдоподобные (c низким значением P) варианты. Например, вариант Bichon + Georgian_Kakheti: 151.41 +/-38.18, p= 4.7e-06

Очень хорошим вариантом оказался вариант адмикса Esperstedt_MN-Halberstadt_LBA: (дата адмикса — 163.80 +/- 34.11), p=4.8e-07

Обновление проекта: окончание первой фазы

После нескольких лет практически полного пассивного бездействия в области изучения генетической вариативности популяций населения Восточной Европы, я решил продолжить свои скромные изыскания в этом вопросе. Примерно год ушел на пересборку и соединение различных выборок популяций (выборки разных исследований содержат разное количество частично перекрывающихся снипов, и это обстоятельство существенно влияет на качество и значимость получаемыых в анализе таких выборок результатов). К сожалению, разница в частотах минорных снипов в выборках одних и тех же этнических групп, но генотипированных на разных платформах Illumina и Affy,  приводит к существенному снижению качества импутирования недостающих маркеров. Это очень плохо, так как во многих из разработанных методик анализа генетического разнообразия,  надежность результатов напрямую зависит от полноты генотипирования, т.е. в идеале во всех популяциях должны быть равномерно представлены все снипы, т.е маркеры из полного объединенного набора.  Вопреки моим ожиданиям, у этой проблемы не существует тривиального решения, поэтому я решил отложить задачу импутации отсутствующих генотипов в образцах выборки на дальнейшее (чуть позже я поделюсь своими соображениями о том, как сделать результат импутирования более точным).

Ровно год назад я сообщил о том, что в основу (базу) новой выборки будут положены полный публичный кураторский набор контрольных популяционных групп лаборатории Райха, что и было выполнено частично, хотя запланированную процедуру импутирования так и не удалось завершить в силу огромной компьютерной ресурсозатратности задачи.

Все же, с учетом тяжелых уроков всех предыдущих ошибок (в том числе и при работе с палеогеномами человека), мне все же удалось собрать набор из примерно 6500 сэмплов из более чем 250 этно-популяционных групп со всего земного шара. На этом можно считать первую фазу законченной.

В качестве предварительной иллюстрации надежности результатов можно привести график PCA (анализа главных компонентов генетической вариативности в западноевразийских популяциях из описанной выше сводной выборки, после применения соответствующих фильтров контроля качества снипов).

West-Eurasia (modern and ancient samples)

Как мне кажется, получился неплохой график PC (анализа главных компонент) древних и современных групп народонаселения, причем  хорошо видно на какие современные группы накладываются палеогеномы.
Но теперь другая проблема — я не могу сохранить этот график в формате PDF (видимо, разработчики Plotly отключили эту опцию в бесплатной версии). Можно выгрузить графику в файл png, но в отличие от векторного формата pdf, png — формат растровый, и улучшить качество графики уже не получится.

Поэтому я сделал альтернативные варианты (без использования пакета Plotly) графика с изображением положения популяций в пространстве двух главных компонентов генетического разнообразия Евразии.

После несколько лет практически полного отсутствия активности в области изучения генетической вариативности популяций населения Восточной Европы, я решил продолжить свои скромные изыскания в этом вопросе. Примерно год ушел на пересборку и соединение различных выборок популяций (выборки разных исследований содержат разное количество частично перекрывающихся снипов, и это обстоятельство существенно влияет на статистическое качество). К сожалению, разница в частотах минорных снипов в выборках одних и тех же этнических групп, но генотипированных на разных платформах Illumina и Affy,  приводит к существенному снижению импутирования недостающих маркеров. Это очень плохо, так как во многих из предложенных методик анализа генетического разнообразия,  надежность результатов напрямую зависит от полноты генотипирования, т.е. в идеале во всех популяциях должны быть равномерно представлены все снипы, т.е маркеры из полного объединенного набора.  Вопреки моим ожиданиям, у этой проблемы не существует тривиального решения, поэтому я решил отложить задачу импутации отсутствующих генотипов в образцах выборки на дальнейшее (чуть позже я поделюсь своими соображениями о том, как сделать результат импутирования более точным).

Ровно год назад я сообщил о том, что в основу (базу) новой выборки будут положены полный публичный кураторский набор контрольных популяционных групп лаборатории Райха, что и было выполнено частично, хотя запланированную процедуру импутирования так и не удалось завершить в силу огромной компьютерной ресурсозатратности задачи.

Все же, с учетом тяжелых уроков всех предыдущих ошибок (в том числе и при работе с палеогеномами человека), мне все же удалось собрать набор из примерно 6500 сэмплов из более чем 250 этно-популяционных групп со всего земного шара. На этом можно считать первую фазу законченной.

В качестве предварительной иллюстрации надежности результатов можно привести график PCA (анализа главных компонентов генетической вариативности в западноевразийских популяциях из описанной выше сводной выборки, после применения соответствующих фильтров контроля качества снипов).

West-Eurasia (modern and ancient samples)

Как мне кажется, получился неплохой график PC (анализа главных компонент) древних и современных групп народонаселения, причем  хорошо видно на какие современные группы накладываются палеогеномы.
Но теперь другая проблема — я не могу сохранить этот график в формате PDF (видимо, разработчики Plotly отключили эту опцию в бесплатной версии). Можно выгрузить графику в файл png, но в отличие от векторного формата pdf, png — формат растровый, и улучшить качество графики уже не получится.

Поэтому я сделал альтернативные варианты (без использования пакета Plotly) графика с изображением положения популяций в пространстве двух главных компонентов генетического разнообразия Евразии.

Еще раз о палеогеномах европейцев (к работе Haak et. al. 2015)

Еще когда появились первые анонсы препринта статьи Haak et al. 2015,  можно было сделать интуитивные предположения о том, что использованные в работе образцы палеогеномов будут всесторонне изучены не только авторами статьи, но и многочисленными любителями, причем ожидаемая степень детализации полученной картины генетического разнообразия  будет предположительно выше именно у последних (т.е всевозможных геномнных блоггеров).

Так оно и вышло. Давид Веселовский из Eurogenes провел целый ряд экспериментов с объединенным базовым набром «геномов» современных популяций и так называемых древних геномов.  В частности, в одном из своих анализов он задействовал новую программу qpAdm из последней версии пакета Admixtools,  и в ходе пробного моделирования геномов представителей ямной культуры из самарской культуры был наилучшая аппроксимация (fit, подгонка) была получена в комбинации  51.4% генома  охотников-собирателей Самары и  48.6 современных грузин (STD 0,032, chisq 3,890, р-value 2.20661e-22). Образцы палеогеномов представителей  шнуровой керамики могут быть в свою очередь смоделированы как 73% геномов ямников + 27% палеогеномов Esperstedt_MN (STD 0,060, chisq 2,621, р-value 9.74968e-06).

Это интересный результат, главным образом потому данные лингвистики позволяют предположить, что ранние индоевропейцы — по-видимому, кочевники ямной культуры или их предки — были в тесном контакте с прото-картвельскими популяциями.  Похожий результат был получен авторами статьи (у которых представители ямной культуры выступали как 50% -50% смесь геномов карельских охотников-собирателей и армян), а также в моих экспериментах, в которых геномы современных белорусов были представлены  гибридной моделью  современных геномов армян и палегеномов шведских охотников-собирателей Motala.

Впрочем, я согласен с Веселовским — главная проблема с подобными ретроспективными анализами заключается в том, что про причине отсутствия большого количества достоверных древних палеогеномов, популяционные генетики часто вынуждены моделировать древние популяции посредством комбинаций современных популяций. Как отмечает Веселовский, в генофонде современных грузин присутствует (по его оценке) 20% так называемого ANE-компонента, который, вероятно, прибыл на Кавказ из Евразийской степи. Если это так, то алгоритм qpAdm  может переоценить «кавказский» компонент в геномах ямников, по крайней мере, на 10%.

В другом своем анализе Веселовский уделил особое внимание  проблеме происхождения одного из основных компонентов в геноме древних ямников. Так например, анализ Admixture в Haak et al. 2015 включает в себя ряд интригующих компонентов с К = 16 до К = 20, которые, как правило составляют более 40% от генетической структуры потенциально прото-индо-европейских геномов ямников. Веселовский выделил компонент сигнализирующий этот тип «адмикса» и подробно изучил его. Заслуживает внимание тот факт, что компонент достигает своего пика на Кавказе и в горах Гиндукуша, и в целом показывает сильную корреляцию с регионами относительно высокой частоты связанных с палеогеномом MA1  компонентами происхождения (ANE). С другой стороны, другой компонент ямников достигает пиковых значений у  ранних европейских фермеров (EEF), у которых отсутствует компоент ANE.

Выделенные Веселовским 3 основные компоненты-составляющие геномов ямников были преобразованы в синтетические популяции (центрально-азиатская, европейская и неолитическая европейская), которые в свою очередь использовались в качестве подмножества для вычисления векторов загрузки (loadings) в PCA анализе полного набора современных популяций.

https://drive.google.com/file/d/0B9o3EYTdM8lQak82NFVYSUJfWGc/preview

Очевидно, более детальный расклад и анализ вклада различных компонентов геномов палеоевропейцев в геном современных жителей Европы можно найти в подробном анализе Сергея Козлова  «Палеоевропейцы из работы Haak et al, 2015 в свете анализа на IBD-сегменты«.

Как я уже упоминал ранее, мой опыт с «выведением» предкового аутосомного компонента индоевропейцев (обозначенного в статье Lazaridis et al. 2013 сокращением ANE) полностью удался. Поскольку всем очевидно, что этот компонент родственен «североиндийскому предковому компоненту» (ANI — обозначение из статьи Reich et al. 2009 и Moorjani et al 2011) о структуре генофонда индийских этнических групп), я взял 10 индийских этнических групп, имеющихся в кураторском наборе лаборатории Райха и проанализировал эту выборку в Admixture на пропорции вхождения их геномов в 2 априорно заданные кластеры. Первый кластер ANE был априорно задан 40 синтетическим индивидами, сгенерированными в программе Plink на основании расчитанных ранее частот аллелей «чистого» компонента ANE. В качестве дополнительного контрольного образца я использовал геном Malta1, т.к. он содержит в себе наивысшее содержание компонента ANE. Второй кластер был задан 4 индивидами Onge (одна из аборигенных народностей Андаманских островов). Как неоднократно указывалось в литературе, именно жители Андаманских островов являются самыми «чистыми» носителями т.н «южно-индийского» предкового компонента ASI (на континенте чистых носителей этого «компонента» не осталось, в том числе и среди популяций дравидов, ведда и мунда). После нескольких экспериментов по эвристическому методу проб и ошибок, я получил более или менее приемлимое разделение индивидов на 2 кластера, а затем вычислил частоты аллелей в каждом из этих кластеров. Любопытно, что в ходе опыта, удалось не только выделить компонент ANI, но и добиться неплохого уровня дискримнации между компонентом ANI, ANE, и благодаря этому, оба компонента могут быть включены в мой следующий этно-популяционный калькулятор.

Надежность компонентов я проверил на собственных данных. В рабочей модели калькулятора K14 удельное распределение этно-генографических компонентов моего генома выглядит следующим образом:

68.75% — европейский мезолитический компонент
13.12% — северо-евразийский компонент ANE
10.23% — европейский неолитический компонент
4% — ANI (северо-индийский предковый компонент)
1.6% — кавказский компонент
1.2% — алтайский компонент
0.2% — сибирский компонент

Затем я использовал 120 древних образцов аутосомной ДНК человека (начиная с верхнего палеолита до бронзового и железного веков) из последней работы и проработал их в бета-версии своего этно-популяционного калькулятора K14. Я надеялся выделить компонент ANE из ANI, но из таблицы видно, что это фактически один и тот же компонент

Когда я закончу полномерную импутацию всего набора данных от лаборатории Райха, я займусь проведением аналогичных экспериментов. А пока — примерно месяц назад я сообщил о начале первого этапа своего нового проекта. Согласно первоначальному замыслу, на первый этап — фазирование и импутация данных выборок из статей Haak et al .2015 (preprint) и Lazaridis et al. 2014 — я отводил месяц. Так оно и получилось.

В качестве затравки для импутирования я использовал набор 424329 снипов на 22 аутосомных хромосамх. Набор состоял из снипов, прошедших стандратный геномный контроль качества. Фазирование и импутация снипов я проводил с помощью пайплайна Molgenis.

По окончанию этого вычислительно-емкого процесса, мною был получен набор из примерно 5 миллионов снипов; после отсева не входящих в панели Illumina снипов у меня осталось 913841 снипов.

Ниже приведена похромосомная статистика снипов до и после импутации данных.
Как видно, на всех хромосомах (за исключением 19 и 20) количество снипов увеличилось примерно в два раза.

Для оценки качества импутации я сравнил импутированные генотипы своих данных с известными данными из своих сырых данных (снипы с иллюминовского чипсета 23andme) на предмет конкорданса (соответствия).
Оказалось, что у 6.5% импутированных генотипов оба варианта не совпадали с генотипам в rawdata от 23andme, у 17.33% — не совпадал один из двух вариантов. Таким образом, качество импутации составляет примерно 76.18%, что неплохо, учитывая что среднее значение качества импутации в программе IMPUTE v2 + SHAPEIT составляет примерно 69%.

11071088_10206257613949054_7906454924722989677_nChromosome Pre-imputation Post-imputation Percentage of imputed snps

1 36638 88155 41.56
2 40140 90003 44.60
3 33218 62030 53.55
4 23594 54462 43.32
5 19731 55284 35.69
6 27979 56485 49.53
7 22804 49172 46.38
8 23072 48756 47.32
9 19369 42438 45.64
10 25340 49666 51.02
11 23145 46434 49.84
12 16967 45668 37.15
13 14998 35626 42.10
14 15529 36429 42.63
15 14663 27844 52.66
16 15034 33806 44.47
17 7799 24949 31.26
18 11697 27709 42.21
19 7102 17715 40.09
20 12654 5054 -39.94
21 6495 2572 -39.60
22 6361 13584 46.83
424329 913841 36.74

Для проверки полезности полученного набора (объединенного набора «реальных» и импутированных снипов), я соединил его с 112 образцами человеческих палеогеномов из новой статьи Haak et al. 2015. Полученный таким образом набор я проанализировал методом выделения главных компонент, первые две из которых я впоследствии использовал для построения графика главных компонент. Как мне кажется, получилось красиво и правдоподобно.

Two first principal components

 

Через неделю работы в GoogleCloud, получил результаты второго цикла обработки (импутации и фазировки) палеогеномов. Напомню, задачей ставилось увеличение числа снипов палеогеномов до уровня, позволяющего проводить исследования с привлечением сторонних данных по современным человеческим популяциям (т.е не только по тем популяциям, которые включены в кураторский набор лаборатории Рейха, но и другим наборам, генотипированным на платформе Illumina; и что самое главное — с привлечением данных конкретных пользователей 23andme и FTDNA).

И если результатами первой части я был вполне доволен, то этого нельзя сказать о второй части. Теперь я понимаю, что ошибка содержалась в самом дизайне цикла второй части, в которой для импутации и фазирования использовались только реальные и «симуляционные» палеогеномы. В результате, хотя импутация и улучшила взаимное позиционирование палеогеномов в пространстве главных компонент генетического разнообразия, однако при слиянии импутированного в автономном режиме набора палеогеномов с набор полученным в первой части проекта, получилась картина. в которой палеогеномы образуют как бы параллельную субструктуру по отношению к современным популяциям.
Данное обстоятельство объясняется тем, что у древних геномов людей больше общего разнообразия между собой, чем с геномами современных людей (у которых в результате многочисленных генетических дрейфов и бутылочных горлышек большая часть разнообразия была потеряна). По этому причине, при независимой импутации древних геномов их сходство между собой только усилилось, а дистанция с современными популяциями увеличилась. Примечательно при этом, что пропорции вилкообразного разделения генетического разнообразия такие же, как и у современных людей.

На графике PCA эта ситуация прослеживается особенно хорошо, где отчетиливо видно наложение этих двух V-вилок друг на друга (см. нижний график)

Это означает одно — работу над проектом надо продолжить