Подведение итогов экспериментов по неформальному моделированию адмикса в популяциях

Выполняю с небольшим опозданием данное ранее обещание и расскажу о слабых местах выявления процентов этнического происхождения с помощью анализа результатов ДНК-тестирования. Последние лет пять этот тип изучения этно-популяционного происхождения с привлечением данных генетики вошел в моду — в 2011 году, когда я первый раз провел подобный анализ существовало все 2 крупные компании в пакет клиентских услуг которых входило проведение подобных анализов клиентских данных. Ровно столько же было заметных в инете любителей, предлагающих более развернутый и разжеванный вариант подобного разбора этнопроисхождения добровольных участников своих проектов. Главным инструментым и тех и других являлись программы типа Admixture и STRUCTURE (разработанные академическими биоинформатиками для решения одной из задач популяционный генетики — а именно определения этнической субструктуры в структуре изучемых в ходе конкретного исследования национальной или региональной выборки народонаселения).
Прошло лет 6, я провел более тысячи подобных экспериментальных анализов — на принципиально разных выборках и образцах аутосомных снипов представителей разных народов. Каждый из таких экспериментов хотя бы немного отличался от других — и не только числом заранее заданных предковых компонентов этнических популяций, но и разнообразием самих этих популяций, их числом и качеством генетипированных в этих популяциях снипов, — например степенью сцепления снипов между собой, процентом минорных вариантов, количеством снипов, соотношение гомо- и гетерозиготных аллельных вариантов. На первом этапе основной проблемой являлась недостаточная представленность отдельных этносов в выборке вкупе с неполным совпадением популяций по числу генотипированных снипов
Позднее я частично научился обходить проблему за счет импутирования аллельных вариантов недостающих (негенотипированных) снипов по большим референсным панелям. В частности используемый Сергеем Козловым калькулятор K27 был сделан мною как раз с использованием таких импутированых вариантов.
Еще позже — после прорыва в области изучения палеоДНК — появилась возможность не угадывать предковые компоненты слепым перибором числка K (предковых компонентов), а задавать заведомо предковые популяции людей (жителей мезолита, неолита и бронзового века) в качестве чистых предковых популяций К современного народонаселения. Таков, например мой этнокалькулятор K11 Ancient, загруженный зимой этого года на Gedmatch.
Всего же за это время я разработал не менее 60 разных моделей в интервале от K=7 до K33, причем для многих K я разработал сразу несколько моделей.

Все эти модели (только калькуляторы; без инструментов поиска ближайших к тестируемому популяций) я размещаю в открытый доступ на OneDrive (ссылка открывается при нажатии на картинку). Эти файлы работают с программой DIYDodecad, инструкцию использования которой можно найти на сайте Диеникиса

























































Я решил подвести итог этому направлению своей деятельности, на которое ушло много сил, cредств и почти все мое свободное время. Вместо этого я переключусь на более точные формальные методы определения этнического происхождения, разработанный в генетической лаборатории Дэвида Райха из Гарварда.

Главная причина — в силу своего перфекционизма я не был доволен точностью определения частот конкретных предковых компонентов в состав генома отдельно взятых людей. Кроме того, этой зимой в ходе бесед с подобным же любителем насчет проблем Admixture, мы обнаружили ряд причин, приводящих при анализе данных отдельно взятых людей к странным и заведомо неверным комбинациям этнического раскалада предков.
Есть еще одна причина — перенасыщение данного маленького сегмента на рынке инетрпретации генетических данных. В настоящий момент существует уже целый ряд компаний (не менее дюжины), вышедших на рынок ДНК-генеалогии в относительно недавнее время. Каждая из них разработала свой алгоритм и красивый графический интерфейс для визуализации данных по прогнозируемому этнопроисхождению клиента. Увеличилось число крепких и активных любителей (я знаю не менее 10 таких людей), занимающихся в принципе тем же самым, причем иногда качества полученных ими моделей этнического происхождения выше таковых в коммерческих компаниях. Благодаря их усилиям, число доступных этнопопуляционных калькуляторов увеличилось буквально в разы.

Но перейдем к конкретике. Часто люди систематически получают странные результаты — таких примеров можно приводить много. Причем иногда такие странные и неверные расклады можно встретить в больших этнических сообществах — например у чеченцев стабильно в MyHeritage выскакивают в раскаладе предковых групп одинаковые 10-15% жителей Британских остров.
Этот, конечно, нелепый пример, отлично иллюстрирует первую проблемы, связанную с разделением выборки и клиентской базы на кластеры. В отличии от любителей; большинство коммерческих компаний (за исключенеим разве что FTDNA, где алгоритм опеределения процентов этнического происхождения разработал как раз любитель) не занимаются поисками настоящих предковых компонентов — вроде европейских охотников-собирателей, земледельцев и скотоводов бронзового века. Вместо этого все образцы популяций — преимущественно из академических источников — объединяются по географическому признаку в отдельные кластеры — например скандинавский или балканские кластеры. Кластеры задаются как условные предковые компоненты (их может быть довольно много — как например в компании AncestryDNA), якобы позволяющие в данном случае более точно выявить недавнее этнопопуляционное происхождение клиента. И что хуже всего в эти же кластеры включают данные самих клиентов — очень часто просто со слов клиента о своем этническом происхождении (как было в своем время в 23andme), хотя в последнее время в некоторых компаниях (AncestryDNAO) алгоритм усовершенствовали путем включения дополнительных фильтров для отсеивания (например с помощью определения в анализе главных компонентов резко отличающихся и резко выделяющихся в плане этнического происхождения клиентов). Тем не менее, даже самое методичное применение всевозможных дополнительных фильтров не может гарантировать повышение точности предика этнического происхождения. Проблема что в человеческих популяциях — за исключением небольшого количества изолированных задрейфованных популяций вроде нганасан, чукчей, ульчей, калашей, папуасов — ни в одной из этнических групп компоненты не являются дискретными, а представляют собой градиенты частот аллелей, очень часто с большим расбросом из-за чего хвосты частот распределния этих частот перекрываются. На практике этот феномен приводит к появлению в индивидуальных клиентских данных фантомных компонентов — например у европейцев часто появляются всевозможные невозможные компонентоы происхождения — Amerindian, Papuan, Onge и так далее. Подобный подход только вносит сумятицу или — говоря статистическим языком — шум в результаты.

Очевидно, что данная проблема связана с классической проблемой статистики — проблемой организации и подразделения выборки. Схожей по характеру проблемой являеется проблема разнообразия выборки используемой для определения компонентов происхождения. Очевидно, что очень сложно впихнуть все генетическое разнообразие человечества в относительно небольшую выборку — даже еслии ее размер достигает полмиллиона или больше образцов (как у 23andme). Проблема в сверхпредставленности отдельных этнических или квазиэтнических групп в подобных базах данных (западных европейцев, американцев, финнов, ашкеназов и так далее). При неравномерности выборки наблюдается другой классический статистический эффект — искажение результатов выборки в сторону наиболее представленных групп (как было в свое время в 23andme, когда наблюдался эффект сверхпредставленности евреев-ашкеназов в количестве так называех генетических совпаденцев).
Еще одна схожая проблема — в количестве совпадающих снипов (одинакового числа снипов) между тестируемыми индивидуальными образцами и референсными группами. Это проблема затрагивает, правда, только калькуляторы разработанные любителями на базе DIYDodecad — в алгоритмах коммерческих компаний число снипов в рефренсных популяциях и индивидуальных образцах одинаково, т.к. анализируются только те образцы, которые тестировались самой компанией. В вышеупомянутых же этнопопуляционных калькуляторах анализируемые всегда «кроссплатформены» — и если разработчик использовал для разработки калькулятора только те снипы, которые содержаться в чипах 23andme, тогда при анализе данных полученных в компаниях FTDNA или AncestryDNA совпадением снипов будет частичным (так как снипы генотипируемые в этих компаниях совпадают лишь частично). В итоге ситуация в которой сравниваются аллельные частоты снипов референсных популяций (полученные при одном количестве снипов) с аллельными частотами снипов индивида (полученные при совсем другом количестве снипов). Элементарная логика подсказывает что в таком случае будет наблюдаться искажение результатов в совершенно непредсказуемую сторону.
К счастью, у обеих проблем есть разумные решения. Число совпадающих снипов между чипами FTDNA, 23andme (разных версий) и AncestryDNA составляет примерно 300 000, что достатчно для создания калькуляторов приемлемых для анализа данных от всех этих компаний. Решение первой же проблемы тоже есть, но его стоимость немыслимо выскоа — необходимл использовать примерно несколько десятков миллионов ПОЛНЫХ геномов популяций людей со всего мира. Разумеется, никакие любители никогда в жизни не смогут собрать такое количество данных необходимых для создания сверхточных калькуляторов.

Все вышеперечисленные проблемы — сущая мелочь в сравнении с настоящими проблемами, обусловленными алгоритмической стороной вопроса. Дело в том, что все компании (и разумееися любители) — так или иначе — при вычислении аллельных частот в компонентах референсных популяций используют программы использующие парадигму Admixture/Structure. А они используют ML-алгоритмы, минимизирующие ГРУППОВЫЕ частоты аллелей между всеми образцами выборки, т.е. аллельные частоты ПОЛНОСТЬЮ зависят от состава исходной выборки, даже в случае так называемого supervised («обучаемого») анализа, в ходе которого некоторые популяции принимаются за исходные «чистые предковые группы». Поскольку в ранних версиях Admixture, отсутствовала опция фиксирования одной из вычисляемых матрицы (P- матрица аллельных частот снипов в каждом из гипотетических компонентов происхождения; Q-матрица — матрица индивидуальных коэффициентов вклада предковых компонентов в индивидуальный геном с общей построковой суммой в 100%), и практически все компании использовали один и тот же алгоритм (он в во всех подобных программх схож — хотя разняться его имплементации и способы оптимизации функции правдоподобия), то все они подвергнуты искажению истинных частот аллелей. Этот косяк вносит решающий вклад в появление фантомных компонентов происхождения.

То, что вычисленные таким способом значения (скажем русского) могут очень сильно отличаться в сравнении с индивидуальными частотами аллелей (для примера такого же русского из той же скажем Орловской области) — было впервые замечено геномным блоггером Polako.
К сожалению, в силу своем личной ненависти к первоначальному разработчику DIYDodecad — греку Диенекису Понтикосу — он не смог дать формальное объяснение феномена и назвал этот феномен «эффектом калькулятора» (как бы намекая на косорукость кода этой утилиты). На самом деле сам калькулятор здесь не причем — все дела в приниципиальных различиях между определение происхождения на основании частот аллелей вычисленных по группе образцов и тем же самым вычислением аллелей, но уже не в группе, а в индивидуальныом порядке. В этом легко убедиться самому — возьмите клиентские данные, например, норвежца. Вставьте его в большую выборку образцов (например 2000 человек) и прогоните в программе ADMIXTURE задав такое количество гипотетических предковых популяций (K), при котором становится заметна субструктура генофонда популяций на внутриконтинентальном уровне. А затем возьмите того же самого норвежца, но уже в единственном числе, и зафиксировав полученные в предыдущем шаге аллельные частоты в виде предковых популяций. Вы увидите, что различия между результатами анализа одних и тех же данных могут достигать 20 а то и более процентов. Это-то и есть ядро так называемого пресловутого эффекта калькулятора. Очевидно, что и Оракул (т.е. инструмент определения ближайших к клиенту этнических популяций а также моделирования происхождения клиента через набор из 2, 3, 4 популяций) в этом случае (искаженных аллельных частот) будет искусственно создавать фантомные предковые популяций. Например, у русского из Владимирской области могут появиться в качестве шведы,
эстонцы или англичане из Кента.

Строго говоря, первым написал об этой проблема некий Vikas Bansal — автор программы iAdmix:

«For comparison, we also ran ADMIXTURE (in supervised mode using the HapMap reference panel of individuals) on the same dataset (see Figure 1(b)). The European and African admixture estimates for each individual were highly consistent between the two methods. For some individuals, the European component of ancestry using our method was split between the TSI and CEU populations. This could reflect one important difference between the two methods in how they use data from reference individuals. Our method finds a maximum likelihood estimate of the admixture coefficients for each individual using the fixed set of allele frequencies. In contrast, ADMIXTURE, in the supervised mode, utilizes data for all individuals (both the reference populations and the individual(s) being analyzed) to estimate the allele frequencies for each cluster or population and maximize the likelihood function summed across all individuals. Therefore, the allele frequencies are determined not only by the genotypes of the reference individuals but also by the individual(s) that are analyzed for admixture. To confirm this, we estimated allele frequencies by running ADMIXTURE twice: (1) using 800 reference individuals simulated using allele frequencies for 8 HapMap populations (100 individuals per population, see previous section) and (2) 800 reference individuals and 1 additional individual with 100% CEU ancestry simulated using the HapMap allele frequencies. Subsequently, we used our method to estimate admixture coefficients for the simulated CEU individual using the two sets of allele frequencies separately. We found that using the first set of allele frequencies, the admixture coefficients for both CEU and TSI were non-zero. In contrast, using the second set of allele frequencies, only the CEU admixture coefficient was non-zero. This was similar to the results observed in the analysis of the Mozabite data and provided an empirical validation of our hypothesis regarding the difference in the admixture coefficients estimated by the two methods.»

Реклама

Формальный анализ смешивания предковых популяций: белорусы, часть 2

Итак, после определения значимых для формального статистического моделирования комбинаций предковых популяций (или вернее, их суррогатов) представляется возможным смоделировать две вещи. Во-первых, необходимое с точки зрения статистики, число «импульсов» или «потоков» смешивания, а во-вторых, пропорции вклада «предковых» групп в генофонд белорусов.

Результаты анализа в программах qp3Pop и qpDstat показали, что в референтной группы белорусов присутствуют сигналы смешивания трех групп — мезолитических охотников-собирателей Европы (WHG), неолитических популяций земледельцев с Ближнего Востока и cибирских охотников-собирателей (чьи потомки в составе индоевропейцев) распространили свои гены по всей Европе.

Но меня больше интересует вопрос оценки величины доли вклада так называемого «базального компонента»(Basal Eurasian):

«четвертый элемент» — тот «базальный» компонент генофонда Европы, который проявился при моделировании истории сложения генофонда Европы в работе [Lazaridis et al., 2014] (см. раздел 8.4, рис 8.20) — предковой евразийской группой, которая внесла свой большой вклад и в геном неолитических земледельцев. Из аналогичной по методам модели, созданной в рассматриваемой работе [Seguin-Orlando et al., 2014], следует (рис. 8.6), что в геном человека из Костенок эти таинственные «базальные евразийцы» внесли не менее важный вклад, чем и верхнепалеолитические западные евразийцы. Также из модели следует, что он имел и общих, хотя и более отдаленных предков с древними северными евразийцами восточного ствола.

В этих целях я решил использовать в качестве суррогата базального евразийского генома геном Mota (древнего жителя Африки), примерно половину генома которого составлял тот самый пресловутый базальный компонент (результат обратных миграций натуфийского населния Ближнего Востока в восточную Африки)

Итак, в начале используем программу qpWave из того же пакета Admixtools

parameter file: qpWave.par

THE INPUT PARAMETERS

##PARAMETER NAME: VALUE
indivname: data.ind
snpname: data.snp
genotypename: data.geno
popleft: left
popright: right
maxrank: 6

qp4wave2 version: 200

left pops:
Levant_N
Mota
WHG
EHG

right pops:
Han
Onge
Papuan
Kostenki14
Ust_Ishim
Siberian_Upper_Paleolithic

0 Levant_N 13
1 Mota 1
2 WHG 2
3 EHG 3
4 Han 33
5 Onge 15
6 Papuan 14
7 Kostenki14 1
8 Ust_Ishim 1
9 Siberian_Upper_Paleolithic 1
jackknife block size: 0.050
snps: 572603 indivs: 84
number of blocks for block jackknife: 719
dof (jackknife): 631.955
numsnps used: 177238
f4info:
f4rank: 0 dof: 15 chisq: 574.447 tail: 9.47752373e-113 dofdiff: 0 chisqdiff: 0.000 taildiff: 1

<cf4info:
f4rank: 1 dof: 8 chisq: 115.553 tail: 2.7408605e-21 dofdiff: 7 chisqdiff: 458.894 taildiff: 5.4614954e-95
B:
scale 1.000
Onge -0.475
Papuan -0.521
Kostenki14 0.069
Ust_Ishim -0.746
Siberian_Upper_Paleolithic 1.986
A:
scale 290.851
Mota -0.932
WHG 0.299
EHG 1.429

f4info:
f4rank: 2 dof: 3 chisq: 8.502 tail: 0.036691843 dofdiff: 5 chisqdiff: 107.050 taildiff: 1.7204978e-21
B:
scale 1.000 1.000
Onge -0.462 -0.050
Papuan -0.522 -0.105
Kostenki14 0.288 2.189
Ust_Ishim -0.733 0.378
Siberian_Upper_Paleolithic 1.973 -0.232
A:
scale 286.604 578.115
Mota -0.951 -1.197
WHG 0.385 0.752
EHG 1.396 -1.001

f4info:
f4rank: 3 dof: 0 chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 8.502 taildiff: 0.036691843
B:
scale 1.000 1.000 1.000
Onge -0.400 -0.203 1.065
Papuan -0.459 -0.258 0.882
Kostenki14 0.299 2.175 0.273
Ust_Ishim -0.645 0.116 1.513
Siberian_Upper_Paleolithic 2.031 -0.382 0.850
A:
scale 282.949 595.536 1395.824
Mota -0.857 -1.172 0.944
WHG 0.466 0.827 1.449
EHG 1.431 -0.971 0.093

## end of run

Нас интересует статистика f4rank 2, и как видно она убедительна: chisq: 8.502 tail: 0.036691843 dofdiff: 5 chisqdiff: 107.050 taildiff: 1.7204978e-21.  То есть, для моделирования референсной популяции достаточно трех «источников» (в f4rank 3, т.е с 4 предковыми популяциями, статистика гораздо хуже: chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 8.502 taildiff: 0.036691843 ).

Следующим этапом будет оценка пропорций «адмикса», образованного смешением трех «источников»:

 

parameter file: qpAdm.par

THE INPUT PARAMETERS

##PARAMETER NAME: VALUE
genotypename: data.geno
snpname: data.snp
indivname: data.ind
popleft: left
popright: right
maxrank: 8

qpAdm version: 200

left pops:
Belarusian
Mota
WHG
EHG
right pops:
Han
Onge
Papuan
Kostenki14
Ust_Ishim
Siberian_Upper_Paleolithic
0 Belarusian 25
1 Mota 1
2 WHG 2
3 EHG 3
4 Han 33
5 Onge 15
6 Papuan 14
7 Kostenki14 1
8 Ust_Ishim 1
9 Siberian_Upper_Paleolithic 1
jackknife block size: 0.050
snps: 572603 indivs: 96
number of blocks for block jackknife: 719
dof (jackknife): 628.796
numsnps used: 227599
codimension 1
f4info:
f4rank: 2 dof: 3 chisq: 20.724 tail: 0.000120097824 dofdiff: 5 chisqdiff: -20.724 taildiff: 1
B:
scale 1.000 1.000
Onge -0.502 0.176
Papuan -0.562 0.218
Kostenki14 0.442 2.074
Ust_Ishim -0.735 0.779
Siberian_Upper_Paleolithic 1.923 -0.110
A:
scale 285.645 552.926
Mota -1.490 -0.238
WHG 0.017 1.685
EHG 0.883 -0.324
full rank 1
f4info:
f4rank: 3 dof: 0 chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 20.724 taildiff: 0.000120097824
B:
scale 1.000 1.000 1.000
Onge -0.502 0.178 0.403
Papuan -0.599 0.280 0.995
Kostenki14 0.455 2.029 -0.773
Ust_Ishim -0.773 0.879 1.373
Siberian_Upper_Paleolithic 1.893 0.008 1.168
A:
scale 288.199 555.700 1346.772
Mota -1.449 -0.056 0.947
WHG 0.026 1.726 0.141
EHG 0.948 -0.132 1.444
best coefficients: 0.318 0.148 0.534
ssres:
0.000295769 0.000789821 0.000059100 0.001247609 0.001271289
0.335431254 0.895733409 0.067025433 1.414909018 1.441765444

Jackknife mean: 0.316895017 0.150748678 0.532356305
std. errors: 0.035 0.067 0.045
error covariance (* 1000000)
1212 -1838 625
-1838 4506 -2668
625 -2668 2043
fixed pat wt dof chisq tail prob
000 0 3 20.724 0.000120098 0.318 0.148 0.534
001 1 4 125.483 0 -0.088 1.088 0.000 infeasible
010 1 4 25.750 3.55457e-05 0.378 0.000 0.622
100 1 4 102.973 2.28952e-21 0.000 0.702 0.298
011 2 5 336.445 0 1.000 0.000 0.000
101 2 5 127.950 6.47788e-26 0.000 1.000 0.000
110 2 5 184.757 0 0.000 -0.000 1.000
best pat: 000 0.000120098 - -
best pat: 010 3.55457e-05 chi(nested): 5.025 p-value for nested model: 0.0249831
best pat: 101 6.47788e-26 chi(nested): 102.201 p-value for nested model: 5.01661e-24

end of run

Итак, лучшими коэффициентам (пропорциями адмикса) являются 0.318 0.148 0.534. То есть референсная популяция белорусов может быть смоделирована как 30 % базального компонента, 15% компонента мезолитических охотников собирателей и 53% компонента жителей степи бронзового века («индоевропейцев»). Очевидно, что большая часть базального компонента попала в Европу вместе неолитическими земледельцами, а оставшаяся часть — была принесена индоевропейцами.

 

Формальный анализ модели смешивания предковых популяций: белорусы

Перед подготовкой релиза новых калькуляторов K16 и K11 на Gedmatch, я решил провести пилотный (пробный) анализ референсной популяции белорусов (в которую входят публичные образцы из  базы данных HumanOrigin, EGDP новой панели референсных геномов Эстонского биоцентра, а также данные белорусов — участников моего проекта MDLP). Основным инструментом формального анализа надежности модели будет известный и популярный пакет Admixtools.
Перед тем, как дать краткое описание первых шагов, хочу отметить трудности работы с Admixtools — в первую очередь, крайнее низкую степень документированности (описания) практических аспектов работы большинства входящих в пакет инструментов. Данное обстоятельство существенным образом снижает темп изучения этого все более популярного пакета (с другой стороны, похоже что лаконичность изложения задумывалась изначально, для отсеивания слабо мотивированных дилетантов-любителей). Второе обстоятельство, затрудняющее использование Admixtools, заключается в необходимости компилировать отдельные компоненты пакета.

Пакет содержит шесть программ

 

convertf: программа конвертирования форматов
qp3Pop: формальный анализ сигнала "смешивания" в трех популяциях
qpBound: программа, вычисляющая верхнюю и нижнюю границу смешивания в трех популяциях (2 референсные популяции и 1 одна популяция, предположительно образованная за счет смешивания двух референсных популяций) 
qpDstat: формальный анализ "адмикса" в 4 популяциях
qpF4Ratio: программа для определения пропорций адмикса за счет проведения 2 f4-тестов
rolloff:  программа датировки адмикса.

В приницпе, четкого порядка работы с этими программами нет, однако авторы рекомендуют следовать приведенному списку (т.е. начинать с qp3Pop и заканчивать rolloff)

Outgroup-статистика f3 является крайне полезным аналитическим инструментом для понимания взаимных отношений разных популяций: основная задача теста состоит в определении характера этих отношений. Образована ли целевая популяция (target) за счет смешивания двух рефересных популяций, или же  популяции представляют собой две простые ветви популяционного дерева человечества (т.е. в образовании таргетной популяций не участвовали референсные популяции)

Статистика f3, так же, как два других вида статистик — f4 и f2 — представляют собой меру корреляции частот аллелей между рассматриваемыми популяциями. Все эти виды статистик были введены в научный оборот попгенетики биоинформатиком Ником Паттерсоном в статье 2012 года.

Статистика f3 используется в двух целях:

  1. в качестве теста  сигнала «адмикса» двух популяций-источников (A и B) в «целевой популяции» (С)
  2. для измерения общего разделяемого дрейфа двух тестовых популяций  (А и В) по отношению к  внешней группе (С).


В этой публикации я приведу пример первого случая использования. Статистика f3 в обоих случаях определяется как произведение разниц частот аллелей  между популяции C, А и В, соответственно:

  1. F3=<(c-a)(c-b)>

Итак, первый случай употребления (для определения сигнала смешивания), белорусы выступают в качестве тестовой популяции, две референсные популяции образованы пермутацией имеющихся у меня популяций

Итак, промежуточные результаты (я выбрал только комбинации с негативным значением Z, свидетельствующие о сигнале смешивания) :

Следующий тип статистики — f4, — реализован в программе qpDstat в виде D-статистки. Это формальный тест адмикса четырех групп (таксонов или популяций), позволяющий определить направления потока вливания генов. Немного теории:

Для любых 4-х популяций (W, X, Y, Z), qpDstat вычисляет D-статистику следующего вида

num = (w — х) (у — z)
den = (w + х — 2wx) (у + z — 2yz)

D = num / den

Результат qpDstat показывает направления вливания генов. Таким образом, для 4 групп (W, X, Y, Z) верно следующее положение:

Если значение Z положительное ( + ), то обмен генами происходил либо между W и Y, либо между X и Z
Если значение Z отрицательное (-), то обмен генами происходил либо между W и Z,  либо между X и Y.

 Кроме определения направления генного дрейфа, очень важным практическим применением D-статистики служит определения «левых» и «правых» популяций для теста qpAdm (о нем чуть позднее). Так, например,  комбинация из двух первых популяций left {L,L}  и двух правых популяций {R, R} должна быть выбрана таким образом, чтобы значение Z в D-статистике
a) было неотрицательным, и b) имело высокое абсолютное значения.  Я решил последовать совету и сгенерировал 225822 комбинаций из четырех популяций {W,Y,X,Z}, где W — фиксированная первая таргетная популяция «левого» списка, в нашем случае белорусы, Y — одна из имеющихся групп палеогеномов, X и Z — пермутация из 16 «чистых» современных популяций описанных в работе Lazaridis et al. 2016.

Итак, вот результаты (и снова я не привожу полный список, а только те комбинации, которые могут быть использованы для выбора состава «левых» и «правых» популяций.  и последующего моделирования в qpAdm):

Размышления над эффективностью алгоритма SPA

Перед тем,  как закрыть тему SPA, я решил поразмышлять о причинах неточности определения географического ареала происхождения с помощью генома. Те, кто воспользовался моей моделью для программы SPA (последняя версия — сентябрь 2016 года), могли убедится в том, что даже при наличии большого количества маркеров, модель не во всех случаях точно определяет ареал происхождения (даже с поправкой на погрешность радиусом в 500 км).
В основу алгоритма SPA положены примерно те же самые предпосылки, что и в случае с классическим анализом главных компонент (PCA)

  • Первая предпосылка  подхода SPA состоит в том, что частота аллели каждого SNP в популяции может быть смоделирована в виде непрерывной двумерной функции на карте. Другими словами, при выборе хромосомы индивидуума из локации с позицией (х, у) на карте, вероятность наблюдения минорного аллеля в SNP j на хромосоме может быть сформулирована в виде функции F (х, у), где Fj является непрерывной функцией, описывающей поведение частоты аллеля в зависимости от географического положения
  • Затем на основании сказанного делается упрощающее предположение, что эта функция является экземпляром логистической функции

 

где х представляет собой вектор переменных, указывающих географическое местоположение и а и Ь коэффициенты функции. Авторы понимают каждую из этих функций, как функцию FJ функции наклона градиента частота в SNP J. Эта функция кодирует крутизну склона по норме а, при этом предпологается что смещение параметра b фиксировано. Кроме того, направленность наклона  кодируется в значении вектора а.  Более подробно, θj = арктангенс (aj(1) / aj(2)) могут быть приняты в знчения угла для SNP j, где aj(1)  и aj(2)  являются первым и вторым элементами вектора а.

Поскольку SPA имеет явные географические координаты, подход может быть расширен для систем за пределами обычной картезианской двумерной плоскости координат. В качестве демонстрации этого, авторы программы SPA использовали алгоритм для анализа пространственной структуры населения земного шара, в которой двухмерное отображение на двухмерной плоскости не может точно фиксировать структуру популяции. Таким образом, каждый индивид проецируется на точку земного шара в трехмерном пространстве. Соответственно, авторы использовали трехмерный вектор х (с ограничением || х || равным определенной константе), чтобы представить индивидуальную позицию.

Используя данные (генотипы индивидов из различных популяций из  HGDP), авторы обнаружили что пространственная топология расположения индивидов в пространстве SPA мы наблюдали, что сильно напоминала топологию географической карту мира. В частности, люди из того же континента были сгруппированы вместе, а континенты были разделены примерно так, как это следовало бы ожидать из пространственного расположения.

ng-2285-f3

 

Главная проблема метода состояла в другом. Несмотря на точность топологии взаимного расположения индивидов,  на карте SPA сильно искажены расстояния между континентами.

Например, продольный размер континента Евразии составил 92 градусов в  SPA-пространстве земного шара, в то время как в пространстве реального земного шара — 150 градусов. Продольное расстояние между Европой и Северной Америкой составило 167 градусов на SPA карте земного шара, в то время как на самом деле оно составляет 90 градусов.  Любопытно отметить, что мой опыт работы с этой программы показал, что наибольшую проблему составляют географические координаты долготы, в то время как широты предсказываются довольно точно. То есть по какой-то причине (несимметричность генетических градиентов в направлении север-юг и направлении восток-запад?) пространство SPA очень сильно искажается в продольном измерении (т.е в долготу).
По этой причине, вычисленные географические точки происхождения для европейцев часто оказываются в Атлантическом океана и так далее.

Я решил использовать данные импутированных генотипов для европейских популяций (я занимался их импутацией на протяжении последнего полгода). На этот раз я ограничился только европейскими популяциями. Я  сделал два разных набора с разным числом снипов — один с 1 062 376 снипами, которые содержатся в платформах генотиприрования клиентов 23andme и FTDNA, другой — примерно 590 395 снипов.  Обе модели можно скачать с Google Drive  (здесь и здесь).

Несмотря на тщательный подбор снипов, обе модели продолжают страдать характерным сдвигом географических долгот, а это означает, что данная проблема обусловлена не выборкой генотипов, а самим алгоритмом программы (т.е. улучшение качества выборки или увеличение количества снипов не приводит к повышению точности даже в том случае, если мы используем для тренировки программы на обучающей выборке  индивидов с известной географической локацией).

Это хорошо видно на полученных в ходе анализа моих собственных данных географических координатах 2 точек происхождения (одна из них в Гренландии,  другая в Средиземном море)

untitled

Разумеется, вряд ли можно говорить о точности подобных вычислений. В ходе размышлений над способом решения проблемы я вспомнил о существовании ортогонального прокрустового анализа.

Я взял две матрицы — одну с географическими координатами (фактически центроиды — географические центры стран) и  вторую с предсказанными  (в модели 1M cнипов) величинами географических координат тех же самых образцов (с усредненными значениями по этносам), а затем совершил прокрустово преобразование в программе R, получив новую матрицу с преобразованными значениями координат. Ниже виден результат операции (преобразованные усредненные координаты образцов спроецированы вместе с центроидами на карту Европы). И хотя координаты по-прежнему немного сдвинуты относительно истинных, в целом результат уже гораздо лучше (правдоподобнее).rplot14При проведении прокрустова анализа, кроме Xnew (трансформированной матрицы),  мы получили значения матрицы вращения R, s- коэффициент масштабирования и tt — вектор трансляции координат, минимизирующие дистанцию между матрицей предсказанных координат и матрицей географических координат.

Эти значения можно использовать для коррекции значений географических координат, рассчитанных в SPA. Я снова использую свои данные (2 предсказанные точки географического происхождения Xp):


Xt=sRXp + 1tt


При подстановке Xp получаем следующие значения

точка A:  60.245448+-11.059673 северной широты;  21.394898 +- -5.979712  восточной долготы (северо-западная Балтика и Скандинавия)

точка B: 43.000748+-8.801889 северной широты;  20.725216+-52.159598 восточной долготы (юго-восточная Европа, Балканы и Греция).

 

 

 

 

 

Анализ древней ДНК – проблемы, их преодоление и результаты

На портале Генофонд.ру размещен реферат важной статьи, подводящей промежуточные итоги изучения древней ДНК. Я позволю себе удовольствие процитировать себе некоторые места этого замечательного обзора, написанного ув. Надеждой Марковой

Термин «древняя ДНК» возник в научной литературе в 1980-х годах в связи с появлением новой области исследований, которая получила название «молекулярная палеонтология». С развитием сначала методов ДНК-амплификации (полимеразной цепной реакции), а потом методов секвенирования нового поколения эта область получила мощный толчок к развитию и сегодня стала основным средством реконструкции эволюции живых организмов, и в том числе реконструкции истории человека.

Революция в эволюционной генетике

Исследование древней ДНК совершило революцию в эволюционной генетике, так как появилась возможность напрямую исследовать прошлое, законсервированное в «капсуле времени» ДНК, пишут авторы статьи. Работы последних десятилетий показали, что древняя ДНК может сохраняться в костях, зубах, мумифицированных и замороженных тканях, и может быть извлечена из этих древних образцов. Впервые древняя ДНК была извлечена в 1984 г. (Higuchi et al.) из высохшей мышцы вымершего родственника зебры. Но ее анализ целиком зависел от развития технологий, поэтому стал возможен с появлением ДНК-амплификации (метод полимеразно-цепной реакции – ПЦР), и вышел на новый уровень с появлением методов секвенирования нового поколения. На рисунке авторы представили основные вехи в истории изучения древней ДНК.

О методологии исследования палео-ДНК

Методы палеогенетики оказались незаменимы, чтобы разобраться в  ключевых этапах человеческой цивилизации. Например, понять, как именно происходила смена обществ охотников-собирателей на первых земледельцев, как распространялось по Европе сельское хозяйство – имела ли место передача технологий от одних популяций другим или же происходила смена самих популяций («циркуляция идей или людей»). Анализ древней ДНК показал, что между периодами 8 и 5 тысяч лет назад Европа не была генетически однородной: первые земледельцы с Ближнего Востока мигрировали в Западную Европу и  смешивались там с местными охотниками-собирателями. В Восточную Европу около  6-5 тыс. лет назад туда пришли группы людей из Анатолии, которые смешавшись с охотниками-собирателями, дали начало популяциям скотоводов, наиболее успешная из которых известна по ямной культуре.  Полагают, что именно миграции ямников из понто-каспийских степей на запад и на восток около 4,5 тыс. лет назад можно связать с распространением технологий и, возможно, языков индоевропейской семьи.

Древняя ДНК может помочь и в изучении развития признаков, характерных только для Homosapiens, таких как речь, подчеркивают авторы статьи. Изучение генетических вариаций, связанных с языком, дает информацию о том, когда мог возникнуть сложный  язык, присущий человеку. Так, было показано, что определенный вариант гена FOXP2 (именно его в первую очередь связывают с развитием речи)  имелся уже у неандертальцев. Вероятно, считают специалисты, этот вариант возник у общих предков неандертальцев и современного человека.

Древняя ДНК помогает в изучении адаптации человека к разным условиям среды. При анализе древних геномов в них были выявлены сигналы отбора, связанных с изменением диеты, чувствительностью к ультрафиолету  и пр. Так, становится ясно, как распространялись по Европе такие черты, как светлая кожа и толерантность  к лактозе (способность переваривать молоко во взрослом возрасте).

Трудности в изучении палео-ДНК и их преодоление

Одна из основных проблем, с которыми сталкиваются исследователи древней ДНК, это ее деградация, которая неизбежно происходит со временем.  Обычно ДНК из древних образцов сильно фрагментирована, загрязнена микробной ДНК и химически модифицирована. Причем степень деградации  в больше степени зависит от условий, в которых находился древних образец (температура, влажность), чем от его возраста. Последние исследования показали, что теоретический предел возраста образца, из которого можно извлечь ДНК, составляет 1-1,5 млн лет. Авторы описывают методы, которыми можно преодолеть трудности, связанные с особенностями древней ДНК.

Фрагментация ДНК может быть частично преодолена с помощью современных протоколов, позволяющих извлекать и анализировать очень короткие фрагменты, длиной 50-70 нуклеотидов. К тому же, методы секвенирования нового поколения ориентированы на анализ коротких фрагментов, длина которых составляет 50-100 нуклеотидов.

Большую проблему составляет контаминация древней ДНК современной ДНК. Преодолеть ее нужно путем строгого соблюдения протоколов, учитывающих правила сбора образов, обработки рабочих помещений, применение методов ДНК-аутентификации, независимой перепроверки результатов и пр. Развиваются также методы механической и химической деконтаминации – авторы их описывают.

Еще одна важная проблема – посмертное изменение ДНК из-за гидролиза и окисления, вызывающее деаминацию нуклеотидов, которая ведет к ложным результатам ПЦР. Авторы описывают несколько молекулярно-генетических и биоинформатичесих подходов для преодоления этой проблемы, с ними можно ознакомиться в тексте статьи.

Инструменты анализа

С увеличением числа образцов древней ДНК ученые получают возможность исследовать древнюю генетическую изменчивость на популяционном уровне и сравнивать ее с современной. Различные методы (PCA, STRUCTURE, ADMIXTURE, SPAMIX, SPA, ADMIXTOOLS, GPS, LAMP, HAPMIX,  reAdmix, MUTLIMIX, mSpectrum, SABER и др.), которые были разработаны для анализа современных популяций, применяются и к древним популяциям. В комбинации с антропологическими данными и историческими  сведениями они позволяют реконструировать пути миграций, определять состав предков той или иной популяции, выяснять географическое  происхождение гаплотипов.

Эпигенетика и палео-ДНК

Фенотипическое проявление генотипической изменчивости зависит не только от изменчивости тех или иных аллелей в геноме, но и от степени экспрессии генов, а она во многом определяется химическими модификациями, не затрагивающими последовательность нуклеотидов в ДНК, то есть эпигенетическими. Это метилирование ДНК, модификация белков-гистонов, спектр некодирующей РНК. Последние исследования показали, что некоторые эпигенетические модификации сохраняются и postmortem. Так, удалось картировать метилирование генома неандертальцев и денисовцев. Выяснилось, что некоторые гены были более метилированы у древних людей, чем у современных. Анализ метилирования позволяет также определить возраст индивида (как современного – что важно для криминалистики, так и древнего).

ALDER анализ происхождения белорусов и поляков

В качестве одного из метода проверки надежности импутированных снипов для анализа популяционной истории различных этнических групп, я использовал метод ALDER (он представляет собой более продвинутую версию алгоритма ROLOFF, описанного в известной работе Patterson et al. 2012).

Метод ALDER  выявляет нюансы популяционной истории через оценку двух важных параметров: а) рекомбинации — процесса обмена участками между разными молекулами ДНК, который напоминает перемешивание игральных карт в колоде (у человека он обязательно происходит при образовании половых клеток) и б) неравновесия по сцеплению — явления, при котором несколько участков ДНК передаются вместе блоками, которые формируются несколько по-разному в разных популяциях из-за того, что в разных популяциях наследуются разные комбинации сегментов ДНК. Таким образом, метод основан на выявлении специфических для каждой популяции сцепленных участков ДНК и на оценке доли общих сегментов в выборках сравниваемых популяций. При этом метод ALDER на основе оценки неравновесия по сцеплению определяет правдоподобность того, что две выбранные группы являются предковыми по отношению к анализируемым популяциям. Кроме того, метод позволяет также установить время смешения через оценку доли рекомбинаций на поколение.
Как было сказано выше, метод ALDER представляет собой расширенный вариант алгоритма ROLLOFF.Этот метод позволяет производить математическую оценку как времени, так как и уровня адмикса. Оценка производится на основании анализа неравновесия по сцеплению между SNP-ами. Тут необходимо вспомнить стандартное определение неравновесия по сцеплению.Неравновесием по сцеплению (часто используется английская аббревиатура LD) называется неслучайная связь между двумя аллелями, в силу которой определенные комбинации аллелей встречаются наиболее часть. В теории,  чем дальше друг от друга находятся SNP-ы ,тем меньше будет уровень LD. Темп угасания снижения  LD в адмиксе напрямую связана с числом поколений, прошедших с момента адмикса,  так как c возрастанием числа поколений увлечивается число рекомбинаций произошедших между  двумя отдельными SNP-ами. Проще говоря: Rolloff соответствует экспоненциальной кривой угасания уровня LD от расстояния, и эта скорость экспоненциального снижения как раз и используется  для оценки числа поколений, так и уровня адмикса в анализируемой популяии. Учитывая, что одно поколение примерно равно 29 лет, можно преобразовать число поколений в года.В качестве двух тестовых популяций я использовал две группы — выборку белорусов (данные публичной коллекции эстонского биоцентра, вошедшие позднее в стандартный набор популяций лаборатории Райха, а также данные белорусов, собранные мной в проекте MDLP) и выборку поляков (из публичной коллекции эстонского биоцентра, а также данные поляков из выборки моего проекта MDLP).   В 2012 году я уже проводил анализ ROLLOFF белорусов, поэтому было интересно посмотреть, как изменится картина после добавления новых палеогеномов и импутированных (негенотипированных) снипов. Для полноты эксперимента, я также включил данные поляков, чтобы посмотреть, работает ли метод на данных, полученных с помощью других платформ генотипирования (NB:когда я проводил анализ, у меня еще не было данных поляков из кураторской базы данных лаборатории Reich).

В качественных референсных популяций (кандидатов в предковые популяции) я использовал набор из 400 популяций в моей расширенной выборки.  Программа работает в три этапа:

  • На первом этапе определяется статистическая значимость сравнения амплитуд угасания 2-референсной LD(в случае наличия такой значимость программа пишет success)

Cледующие комбинации дали положительный результат

Belarusian Andronovo.SG Chukchis
Belarusian Andronovo.SG Koryaks
Belarusian Armenian_Martuni Karelia_HG
Belarusian Bashkir Turkish_Jewish
Belarusian Nordic_LN.SG Villabruna
Belarusian Turkish_Jewish Uzbek
Belarusian Anatolia_Neolithic Brahui
Belarusian Anatolia_Neolithic Burusho
Belarusian Anatolia_Neolithic Itelmen
Belarusian Anatolia_Neolithic Koryak
Belarusian Anatolia_Neolithic Mixtec
Belarusian Anatolia_Neolithic Pathan
Belarusian Anatolia_Neolithic Mala
Belarusian Anatolia_Neolithic Turkmen
Belarusian Anatolia_Neolithic Uygur
Belarusian Druze Selkup
Belarusian Mala Syrian
Belarusian Mixtec Spain_EN
Belarusian Anatolia_Neolithic Brahui
Belarusian Anatolia_Neolithic Burusho
Belarusian Anatolia_Neolithic Chukchi
Belarusian Anatolia_Neolithic Selkup
Belarusian Anatolia_Neolithic Sindhi
Belarusian Anatolia_Neolithic Uygur
Belarusian British-Roman Koryak
Belarusian British-Roman Mixtec
Belarusian Chukchi Mala
Belarusian Itelmen Uzbek_WGA
Belarusian LBK_EN Selkup
Belarusian Selkup Turkish_Trabzon
Belarusian Abhkasian Lahu
Belarusian Ami_Coriell Uzbek_WGA
Belarusian Anatolia_Neolithic Chukchi
Belarusian Anatolia_Neolithic Daur
Anatolia_Neolithic Han
Anatolia_Neolithic Han_NChina
Anatolia_Neolithic Miao
Anatolia_Neolithic Turkmen
Belarusian Atayal_Coriell Uzbek_WGA
Belarusian British-Roman Mixtec
Belarusian Chukchi Mala
Belarusian Dai Greek_Islands
Belarusian Dai Uzbek_WGA
Belarusian Daur North_Ossetian
Belarusian Daur Uzbek_WGA
Belarusian Eskimo_Chaplin LBK_EN
Belarusian Georgian Lahu
Belarusian Georgian Yi
Belarusian Greek_Islands Han
Belarusian Greek_Islands Miao
Belarusian Greek_Islands Mixtec
Belarusian Greek_Islands Nganasan
Belarusian Greek_Islands Ulchi
Belarusian Greek_Islands Xibo
Belarusian Han Uzbek_WGA
Belarusian Han Yemenite_Jew
Belarusian Han_NChina Uzbek_WGA
Belarusian Han_NChina Yemenite_Jew
Belarusian Japanese Uzbek_WGA
Belarusian Korean Uzbek_WGA
Belarusian Lahu Turkish_Jew
Belarusian Lahu Uzbek_WGA
Belarusian Lahu Yemenite_Jew
Belarusian LBK_EN Selkup
Belarusian Miao Uzbek_WGA
Belarusian Miao Yemenite_Jew
Belarusian Naxi Uzbek_WGA
Belarusian Oroqen Uzbek_WGA
Belarusian She Uzbek_WGA
Belarusian Tu Uzbek_WGA
Belarusian Tujia Uzbek_WGA
Belarusian Tujia Yemenite_Jew
Belarusian Ulchi Uzbek_WGA
Belarusian Uzbek_WGA Xibo
Belarusian Uzbek_WGA Yi
Belarusian Uzbek_WGA Yukagir_Tundra
Belarusian Yemenite_Jew Yi
  • На втором — cоответствие скоростей угасания LD в попарном сравнении с референсными популяциями (программа выдает предупреждение, если амплитуды угасания LD несовместимы).  Как видно, большинство триплетов (таргетная популяция + 2 референса) имеет несовместимые амплитуды угасания LD.

DATA: success (warning: decay rates inconsistent) 0.028 Belarusian Andronovo.SG Chukchis 4.64 2.80 2.11 85% 244.96 +/- 44.45 0.00055485 +/- 0.00011964 262.22 +/- 50.30 0.00029724 +/- 0.00010632 105.99 +/- 50.22 0.00013405 +/- 0.00003707
DATA: success (warning: decay rates inconsistent) 3.8e-05 Belarusian Andronovo.SG Koryaks 5.86 2.80 2.36 85% 241.36 +/- 36.30 0.00059837 +/- 0.00010219 262.22 +/- 50.30 0.00029724 +/- 0.00010632 105.75 +/- 44.80 0.00011083 +/- 0.00002791
DATA: success (warning: decay rates inconsistent) 0.037 Belarusian Armenian_Martuni Karelia_HG 4.58 2.20 3.48 53% 206.14 +/- 39.11 0.00072944 +/- 0.00015918 324.91 +/- 90.64 0.00018302 +/- 0.00008311 189.01 +/- 42.42 0.00043186 +/- 0.00012423
DATA: success (warning: decay rates inconsistent) 0.044 Belarusian Bashkir Turkish_Jewish 4.55 2.70 2.53 83% 121.78 +/- 24.93 0.00009384 +/- 0.00002064 153.64 +/- 48.19 0.00006384 +/- 0.00002366 296.25 +/- 73.05 0.00014988 +/- 0.00005929
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Nordic_LN.SG Villabruna 4.54 2.19 5.01 30% 160.01 +/- 35.24 0.00086280 +/- 0.00018037 139.86 +/- 63.88 0.00033916 +/- 0.00014340 117.88 +/- 23.51 0.00043952 +/- 0.00008295
DATA: success (warning: decay rates inconsistent) 0.0032 Belarusian Turkish_Jewish Uzbek 5.07 2.53 2.35 112% 116.58 +/- 23.00 0.00008493 +/- 0.00001382 296.25 +/- 73.05 0.00014988 +/- 0.00005929 83.46 +/- 35.51 0.00004275 +/- 0.00001721
DATA: success (warning: decay rates inconsistent) 0.0066 Belarusian Anatolia_Neolithic Brahui 4.18 4.42 2.87 37% 63.78 +/- 15.17 0.00000803 +/- 0.00000192 92.46 +/- 19.49 0.00001427 +/- 0.00000323 88.94 +/- 27.82 0.00000775 +/- 0.00000270
DATA: success (warning: decay rates inconsistent) 0.019 Belarusian Anatolia_Neolithic Burusho 3.93 4.42 2.19 47% 93.43 +/- 9.05 0.00001536 +/- 0.00000390 92.46 +/- 19.49 0.00001427 +/- 0.00000323 149.25 +/- 37.02 0.00001357 +/- 0.00000621
DATA: success (warning: decay rates inconsistent) 0.035 Belarusian Anatolia_Neolithic Itelmen 3.79 4.42 2.15 64% 69.11 +/- 15.92 0.00002889 +/- 0.00000762 92.46 +/- 19.49 0.00001427 +/- 0.00000323 134.23 +/- 58.31 0.00003278 +/- 0.00001523
DATA: success (warning: decay rates inconsistent) 0.023 Belarusian Anatolia_Neolithic Koryak 3.90 4.42 2.30 30% 82.94 +/- 21.28 0.00003363 +/- 0.00000828 92.46 +/- 19.49 0.00001427 +/- 0.00000323 111.83 +/- 48.56 0.00002562 +/- 0.00000985
DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.90 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Mixtec 3.87 4.42 2.73 71% 71.36 +/- 14.69 0.00003027 +/- 0.00000782 92.46 +/- 19.49 0.00001427 +/- 0.00000323 149.36 +/- 43.83 0.00002944 +/- 0.00001080
DATA: success (warning: decay rates inconsistent) 0.019 Belarusian Anatolia_Neolithic Pathan 3.93 4.42 2.02 42% 104.78 +/- 14.08 0.00001497 +/- 0.00000380 92.46 +/- 19.49 0.00001427 +/- 0.00000323 141.03 +/- 36.42 0.00001165 +/- 0.00000577
DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success (warning: decay rates inconsistent) 0.026 Belarusian Anatolia_Neolithic Uygur 3.87 4.42 2.54 56% 71.95 +/- 14.95 0.00001528 +/- 0.00000395 92.46 +/- 19.49 0.00001427 +/- 0.00000323 127.39 +/- 37.67 0.00001541 +/- 0.00000606
DATA: success (warning: decay rates inconsistent) 0.02 Belarusian Druze Selkup 3.93 2.02 3.14 73% 51.53 +/- 13.06 0.00001224 +/- 0.00000311 110.46 +/- 43.38 0.00001040 +/- 0.00000516 59.53 +/- 18.98 0.00000945 +/- 0.00000299
DATA: success (warning: decay rates inconsistent) 0.044 Belarusian Mala Syrian 3.73 3.87 2.84 28% 72.39 +/- 19.33 0.00000805 +/- 0.00000216 87.55 +/- 18.75 0.00001071 +/- 0.00000277 96.31 +/- 27.52 0.00000993 +/- 0.00000350
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Mixtec Spain_EN 3.85 2.73 2.67 26% 114.65 +/- 21.37 0.00005462 +/- 0.00001417 149.36 +/- 43.83 0.00002944 +/- 0.00001080 117.07 +/- 30.31 0.00002193 +/- 0.00000820
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Anatolia_Neolithic Brahui 3.70 3.45 2.55 32% 63.07 +/- 15.18 0.00000871 +/- 0.00000235 81.39 +/- 21.48 0.00001207 +/- 0.00000349 87.19 +/- 27.66 0.00000771 +/- 0.00000303
DATA: success (warning: decay rates inconsistent) 0.039 Belarusian Anatolia_Neolithic Burusho 3.74 3.45 2.00 61% 89.47 +/- 10.12 0.00001582 +/- 0.00000423 81.39 +/- 21.48 0.00001207 +/- 0.00000349 152.62 +/- 45.80 0.00001482 +/- 0.00000742
DATA: success (warning: decay rates inconsistent) 0.0013 Belarusian Anatolia_Neolithic Chukchi 4.52 3.45 2.79 35% 77.64 +/- 16.37 0.00003602 +/- 0.00000797 81.39 +/- 21.48 0.00001207 +/- 0.00000349 110.36 +/- 39.54 0.00002861 +/- 0.00000981
DATA: success (warning: decay rates inconsistent) 0.038 Belarusian Anatolia_Neolithic Selkup 3.74 3.45 2.41 38% 55.27 +/- 13.63 0.00002155 +/- 0.00000576 81.39 +/- 21.48 0.00001207 +/- 0.00000349 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Anatolia_Neolithic Sindhi 3.83 3.45 2.68 61% 65.40 +/- 9.12 0.00001072 +/- 0.00000280 81.39 +/- 21.48 0.00001207 +/- 0.00000349 122.70 +/- 32.60 0.00001132 +/- 0.00000423
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.00000250 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Uygur 3.85 3.45 2.16 37% 70.37 +/- 13.51 0.00001582 +/- 0.00000411 81.39 +/- 21.48 0.00001207 +/- 0.00000349 102.34 +/- 33.39 0.00001107 +/- 0.00000512
DATA: success (warning: decay rates inconsistent) 0.021 Belarusian British-Roman Koryak 3.89 2.37 2.28 74% 62.36 +/- 16.01 0.00003903 +/- 0.00000934 52.03 +/- 19.63 0.00002305 +/- 0.00000974 113.23 +/- 49.75 0.00002665 +/- 0.00001027
DATA: success (warning: decay rates inconsistent) 0.0084 Belarusian British-Roman Mixtec 4.11 2.37 2.50 80% 64.78 +/- 15.52 0.00004703 +/- 0.00001145 52.03 +/- 19.63 0.00002305 +/- 0.00000974 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success (warning: decay rates inconsistent) 0.01 Belarusian Chukchi Mala 4.06 2.79 4.06 60% 172.83 +/- 30.55 0.00002691 +/- 0.00000663 110.36 +/- 39.54 0.00002861 +/- 0.00000981 93.18 +/- 21.71 0.00001222 +/- 0.00000301
DATA: success (warning: decay rates inconsistent) 0.047 Belarusian Itelmen Uzbek_WGA 3.69 2.36 2.20 54% 142.22 +/- 27.73 0.00006725 +/- 0.00001821 129.35 +/- 53.29 0.00003152 +/- 0.00001338 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.009 Belarusian LBK_EN Selkup 4.09 2.18 2.41 67% 67.83 +/- 16.58 0.00002655 +/- 0.00000641 115.11 +/- 38.65 0.00001960 +/- 0.00000899 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 0.05 Belarusian Selkup Turkish_Trabzon 3.68 2.41 2.11 32% 56.53 +/- 15.37 0.00001451 +/- 0.00000330 57.06 +/- 20.02 0.00000933 +/- 0.00000386 77.83 +/- 33.34 0.00000751 +/- 0.00000355
DATA: success (warning: decay rates inconsistent) 0.017 Belarusian Abhkasian Lahu 4.21 2.47 2.97 174% 32.04 +/- 6.68 0.00001002 +/- 0.00000238 3.95 +/- 1.60 0.00000098 +/- 0.00000024 57.34 +/- 19.33 0.00001384 +/- 0.00000369
DATA: success (warning: decay rates inconsistent) 0.00018 Belarusian Ami_Coriell Uzbek_WGA 5.15 2.09 2.20 63% 162.32 +/- 22.43 0.00007649 +/- 0.00001486 118.09 +/- 56.57 0.00002688 +/- 0.00001279 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0041 Belarusian Anatolia_Neolithic Chukchi 4.52 3.45 2.79 35% 77.64 +/- 16.37 0.00003602 +/- 0.00000797 81.39 +/- 21.48 0.00001207 +/- 0.00000349 110.36 +/- 39.54 0.00002861 +/- 0.00000981
DATA: success (warning: decay rates inconsistent) 0.025 Belarusian Anatolia_Neolithic Daur 4.12 3.45 2.63 47% 73.39 +/- 17.81 0.00002378 +/- 0.00000569 81.39 +/- 21.48 0.00001207 +/- 0.00000349 118.84 +/- 40.98 0.00002486 +/- 0.00000947
DATA: success 0.05 Belarusian Anatolia_Neolithic Han 3.96 3.45 3.00 17% 79.39 +/- 18.74 0.00002687 +/- 0.00000678 81.39 +/- 21.48 0.00001207 +/- 0.00000349 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.00002310 +/- 0.00000644
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.20 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.00000250 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success (warning: decay rates inconsistent) 0.00046 Belarusian Atayal_Coriell Uzbek_WGA 4.97 2.02 2.20 53% 179.16 +/- 31.95 0.00008213 +/- 0.00001654 130.82 +/- 54.40 0.00002576 +/- 0.00001275 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian British-Roman Mixtec 4.11 2.37 2.50 80% 64.78 +/- 15.52 0.00004703 +/- 0.00001145 52.03 +/- 19.63 0.00002305 +/- 0.00000974 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success (warning: decay rates inconsistent) 0.033 Belarusian Chukchi Mala 4.06 2.79 4.06 60% 172.83 +/- 30.55 0.00002691 +/- 0.00000663 110.36 +/- 39.54 0.00002861 +/- 0.00000981 93.18 +/- 21.71 0.00001222 +/- 0.00000301
DATA: success (warning: decay rates inconsistent) 0.009 Belarusian Dai Greek_Islands 4.35 3.05 2.28 32% 122.32 +/- 24.18 0.00004797 +/- 0.00001103 88.71 +/- 29.04 0.00001846 +/- 0.00000511 102.11 +/- 26.83 0.00001569 +/- 0.00000687
DATA: success (warning: decay rates inconsistent) 0.049 Belarusian Dai Uzbek_WGA 3.97 3.05 2.20 87% 160.47 +/- 30.16 0.00006276 +/- 0.00001582 88.71 +/- 29.04 0.00001846 +/- 0.00000511 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0015 Belarusian Daur North_Ossetian 4.73 2.63 2.09 122% 42.94 +/- 8.92 0.00000724 +/- 0.00000153 118.84 +/- 40.98 0.00002486 +/- 0.00000947 178.58 +/- 51.90 0.00001887 +/- 0.00000901
DATA: success (warning: decay rates inconsistent) 0.047 Belarusian Daur Uzbek_WGA 3.97 2.63 2.20 62% 164.70 +/- 29.83 0.00008292 +/- 0.00002087 118.84 +/- 40.98 0.00002486 +/- 0.00000947 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.00086 Belarusian Eskimo_Chaplin LBK_EN 4.84 2.29 2.18 73% 53.65 +/- 11.08 0.00002657 +/- 0.00000479 63.81 +/- 27.89 0.00001618 +/- 0.00000586 115.11 +/- 38.65 0.00001960 +/- 0.00000899
DATA: success (warning: decay rates inconsistent) 0.027 Belarusian Georgian Lahu 4.10 2.89 2.97 166% 43.55 +/- 10.61 0.00001537 +/- 0.00000311 5.27 +/- 1.82 0.00000079 +/- 0.00000023 57.34 +/- 19.33 0.00001384 +/- 0.00000369
DATA: success (warning: decay rates inconsistent) 0.05 Belarusian Georgian Yi 3.96 2.89 3.26 179% 35.28 +/- 8.91 0.00000897 +/- 0.00000226 5.27 +/- 1.82 0.00000079 +/- 0.00000023 93.65 +/- 25.60 0.00002033 +/- 0.00000624
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3.00 15% 108.92 +/- 26.70 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.50 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.20 2.28 3.37 15% 118.40 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.90 0.00002845 +/- 0.00000805
DATA: success (warning: decay rates inconsistent) 0.042 Belarusian Greek_Islands Xibo 4.00 2.28 2.59 37% 101.05 +/- 22.65 0.00003689 +/- 0.00000922 102.11 +/- 26.83 0.00001569 +/- 0.00000687 70.25 +/- 27.10 0.00001649 +/- 0.00000507
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success (warning: decay rates inconsistent) 1.8e-05 Belarusian Han Uzbek_WGA 5.56 3.00 2.20 83% 145.83 +/- 21.23 0.00006518 +/- 0.00001171 93.68 +/- 31.25 0.00002137 +/- 0.00000623 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.023 Belarusian Han Yemenite_Jew 4.14 3.00 2.19 41% 101.08 +/- 19.78 0.00002665 +/- 0.00000644 93.68 +/- 31.25 0.00002137 +/- 0.00000623 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.00017 Belarusian Han_NChina Uzbek_WGA 5.15 3.58 2.20 76% 147.58 +/- 21.48 0.00006493 +/- 0.00001261 101.71 +/- 28.43 0.00002310 +/- 0.00000644 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.021 Belarusian Han_NChina Yemenite_Jew 4.16 3.58 2.19 47% 88.25 +/- 14.91 0.00002464 +/- 0.00000593 101.71 +/- 28.43 0.00002310 +/- 0.00000644 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.045 Belarusian Japanese Uzbek_WGA 3.99 2.51 2.20 76% 158.76 +/- 32.98 0.00007182 +/- 0.00001802 101.02 +/- 40.27 0.00002259 +/- 0.00000766 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.034 Belarusian Korean Uzbek_WGA 4.05 3.28 2.20 72% 147.50 +/- 22.94 0.00006552 +/- 0.00001618 106.54 +/- 29.46 0.00002451 +/- 0.00000748 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0022 Belarusian Lahu Turkish_Jew 4.65 2.97 3.22 53% 53.69 +/- 9.97 0.00001763 +/- 0.00000379 57.34 +/- 19.33 0.00001384 +/- 0.00000369 92.56 +/- 21.52 0.00000780 +/- 0.00000242
DATA: success (warning: decay rates inconsistent) 7.8e-06 Belarusian Lahu Uzbek_WGA 5.70 2.97 2.20 119% 125.65 +/- 17.75 0.00006183 +/- 0.00001084 57.34 +/- 19.33 0.00001384 +/- 0.00000369 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.028 Belarusian Lahu Yemenite_Jew 4.10 2.97 2.19 85% 73.51 +/- 17.32 0.00002186 +/- 0.00000534 57.34 +/- 19.33 0.00001384 +/- 0.00000369 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.029 Belarusian LBK_EN Selkup 4.09 2.18 2.41 67% 67.83 +/- 16.58 0.00002655 +/- 0.00000641 115.11 +/- 38.65 0.00001960 +/- 0.00000899 57.06 +/- 20.02 0.00000933 +/- 0.00000386
DATA: success (warning: decay rates inconsistent) 3e-05 Belarusian Miao Uzbek_WGA 5.47 3.63 2.20 89% 141.79 +/- 17.01 0.00005964 +/- 0.00001090 86.31 +/- 23.79 0.00001726 +/- 0.00000411 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.012 Belarusian Miao Yemenite_Jew 4.29 3.63 2.19 49% 96.51 +/- 17.73 0.00002466 +/- 0.00000575 86.31 +/- 23.79 0.00001726 +/- 0.00000411 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.036 Belarusian Naxi Uzbek_WGA 4.04 2.35 2.20 87% 150.57 +/- 27.26 0.00006598 +/- 0.00001633 88.34 +/- 37.62 0.00001891 +/- 0.00000714 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.0037 Belarusian Oroqen Uzbek_WGA 4.54 2.50 2.20 75% 159.87 +/- 26.32 0.00007776 +/- 0.00001713 102.18 +/- 40.85 0.00002369 +/- 0.00000834 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.043 Belarusian She Uzbek_WGA 3.99 3.16 2.20 70% 177.32 +/- 34.01 0.00008208 +/- 0.00002055 108.68 +/- 31.62 0.00002238 +/- 0.00000708 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.029 Belarusian Tu Uzbek_WGA 4.09 2.28 2.20 85% 150.44 +/- 31.12 0.00006074 +/- 0.00001485 91.29 +/- 40.04 0.00001929 +/- 0.00000802 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.001 Belarusian Tujia Uzbek_WGA 4.80 2.09 2.20 61% 164.13 +/- 25.59 0.00008133 +/- 0.00001693 120.48 +/- 57.69 0.00002290 +/- 0.00001057 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.00002290 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.00000870
DATA: success (warning: decay rates inconsistent) 0.0053 Belarusian Ulchi Uzbek_WGA 4.47 3.37 2.20 65% 153.49 +/- 25.35 0.00007000 +/- 0.00001567 114.38 +/- 33.90 0.00002845 +/- 0.00000805 225.56 +/- 61.89 0.00007507 +/- 0.00003406
DATA: success (warning: decay rates inconsistent) 0.00055 Belarusian Uzbek_WGA Xibo 4.93 2.20 2.59 105% 129.90 +/- 24.58 0.00005579 +/- 0.00001132 225.56 +/- 61.89 0.00007507 +/- 0.00003406 70.25 +/- 27.10 0.00001649 +/- 0.00000507
DATA: success (warning: decay rates inconsistent) 0.00062 Belarusian Uzbek_WGA Yi 4.91 2.20 3.26 83% 156.22 +/- 22.94 0.00007252 +/- 0.00001478 225.56 +/- 61.89 0.00007507 +/- 0.00003406 93.65 +/- 25.60 0.00002033 +/- 0.00000624
DATA: success (warning: decay rates inconsistent) 0.011 Belarusian Uzbek_WGA Yukagir_Tundra 4.31 2.20 2.55 61% 182.09 +/- 32.35 0.00008497 +/- 0.00001970 225.56 +/- 61.89 0.00007507 +/- 0.00003406 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success (warning: decay rates inconsistent) 0.048 Belarusian Yemenite_Jew Yi 3.97 2.19 3.26 41% 130.87 +/- 22.50 0.00003478 +/- 0.00000876 142.22 +/- 61.15 0.00001902 +/- 0.00000870 93.65 +/- 25.60 0.00002033 +/- 0.00000624

После отсеивания не очень пригодных для дальнейшего анализа триплетов  у нас осталась следующие комбинации:

DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.9 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.05 Belarusian Anatolia_Neolithic Han 3.96 3.45 3 17% 79.39 +/- 18.74 0.00002687 +/- 0.00000678 81.39 +/- 21.48 0.00001207 +/- 0.00000349 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.0000231 +/- 0.00000644
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.2 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3 15% 108.92 +/- 26.7 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.5 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.2 2.28 3.37 15% 118.4 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.9 0.00002845 +/- 0.00000805
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.0000229 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.0000087

На третьем этапе программа определяет статистическая значимость комбинации (p-статистику):

P-значение (англ. P-value) — величина, используемая при тестировании статистических гипотез. Фактически это вероятность ошибки при отклонении нулевой гипотезы (ошибки первого рода). Проверка гипотез с помощью P-значения является альтернативой классической процедуре проверки через критическое значение распределения.

Обычно P-значение равно вероятности того, что случайная величина с данным распределением (распределением тестовой статистики при нулевой гипотезе) примет значение, не меньшее, чем фактическое значение тестовой статистики.

Отберем значения P меньше 0.05

DATA: success 0.00024 Belarusian Anatolia_Neolithic Turkmen 4.88 4.42 2.26 12% 81.66 +/- 10.18 0.00001288 +/- 0.00000264 92.46 +/- 19.49 0.00001427 +/- 0.00000323 85.64 +/- 28.96 0.00000855 +/- 0.00000378
DATA: success 0.00044 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.00052 Belarusian Anatolia_Neolithic Han_NChina 4.94 3.45 3.58 22% 81.48 +/- 14.68 0.00003182 +/- 0.00000644 81.39 +/- 21.48 0.00001207 +/- 0.00000349 101.71 +/- 28.43 0.0000231 +/- 0.00000644
DATA: success 0.0014 Belarusian Anatolia_Neolithic Turkmen 4.74 3.45 3.07 11% 76.01 +/- 10.03 0.00001185 +/- 0.0000025 81.39 +/- 21.48 0.00001207 +/- 0.00000349 72.89 +/- 23.73 0.00000681 +/- 0.00000206
DATA: success 0.0037 Belarusian Greek_Islands Mixtec 4.54 2.28 2.5 24% 95.62 +/- 12.99 0.00003944 +/- 0.00000868 102.11 +/- 26.83 0.00001569 +/- 0.00000687 121.19 +/- 40.18 0.00002185 +/- 0.00000872
DATA: success 0.0061 Belarusian Greek_Islands Yukagir_Tundra 4.44 2.28 2.55 18% 100.12 +/- 22.57 0.00004369 +/- 0.00000882 102.11 +/- 26.83 0.00001569 +/- 0.00000687 119.62 +/- 45.23 0.00002624 +/- 0.00001028
DATA: success 0.014 Belarusian Anatolia_Neolithic Mala 4.01 4.42 3.87 12% 81.9 +/- 17.24 0.00001547 +/- 0.00000385 92.46 +/- 19.49 0.00001427 +/- 0.00000323 87.55 +/- 18.75 0.00001071 +/- 0.00000277
DATA: success 0.018 Belarusian Anatolia_Neolithic Miao 4.2 3.45 3.63 10% 78.02 +/- 16.13 0.00002457 +/- 0.00000585 81.39 +/- 21.48 0.00001207 +/- 0.00000349 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.018 Belarusian Greek_Islands Ulchi 4.2 2.28 3.37 15% 118.4 +/- 24.18 0.00005248 +/- 0.00001249 102.11 +/- 26.83 0.00001569 +/- 0.00000687 114.38 +/- 33.9 0.00002845 +/- 0.00000805
DATA: success 0.022 Belarusian Tujia Yemenite_Jew 4.15 2.09 2.19 18% 118.59 +/- 25.68 0.00002955 +/- 0.00000711 120.48 +/- 57.69 0.0000229 +/- 0.00001057 142.22 +/- 61.15 0.00001902 +/- 0.0000087
DATA: success 0.044 Belarusian Greek_Islands Miao 3.99 2.28 3.63 18% 102.98 +/- 23.71 0.00003805 +/- 0.00000953 102.11 +/- 26.83 0.00001569 +/- 0.00000687 86.31 +/- 23.79 0.00001726 +/- 0.00000411
DATA: success 0.045 Belarusian Greek_Islands Nganasan 3.98 2.28 2.06 5% 96.79 +/- 24.29 0.00003965 +/- 0.00000954 102.11 +/- 26.83 0.00001569 +/- 0.00000687 97.92 +/- 45.95 0.00001669 +/- 0.00000809
DATA: success 0.049 Belarusian Greek_Islands Han 3.96 2.28 3 15% 108.92 +/- 26.7 0.00004292 +/- 0.00001083 102.11 +/- 26.83 0.00001569 +/- 0.00000687 93.68 +/- 31.25 0.00002137 +/- 0.00000623

Получаем следующие пары (с датировкой адмикса в поколениях и годах)

Таргет Референс 1 Референс 2 Поколения Погрешность Года Погрешность
Belarusian Anatolia_Neolithic Turkmen 85.64 +/- 28.96 2483.56 +/- 839.84
Belarusian Anatolia_Neolithic Turkmen 72.89 +/- 23.73 2113.81 +/- 688.17
Belarusian Anatolia_Neolithic Han_NChina 101.71 +/- 28.43 2949.59 +/- 824.47
Belarusian Anatolia_Neolithic Turkmen 72.89 +/- 23.73 2113.81 +/- 688.17
Belarusian Greek_Islands Mixtec 121.19 +/- 40.18 3514.51 +/- 1165.22
Belarusian Greek_Islands Yukagir_Tundra 119.62 +/- 45.23 3468.98 +/- 1311.67
Belarusian Anatolia_Neolithic Mala 87.55 +/- 18.75 2538.95 +/- 543.75
Belarusian Anatolia_Neolithic Miao 86.31 +/- 23.79 2502.99 +/- 689.91
Belarusian Greek_Islands Ulchi 114.38 +/- 33.9 3317.02 +/- 983.1
Belarusian Tujia Yemenite_Jew 142.22 +/- 61.15 4124.38 +/- 1773.35
Belarusian Greek_Islands Miao 86.31 +/- 23.79 2502.99 +/- 689.91
Belarusian Greek_Islands Nganasan 97.92 +/- 45.95 2839.68 +/- 1332.55
Belarusian Greek_Islands Han 93.68 +/- 31.25 2716.72 +/- 906.25
Belarusian Anatolia_Neolithic Han 93.68 +/- 31.25 2716.72 +/- 906.25

О чем свидетельствует результаты? Результаты указывают на наличие сигнала смешивания предковых популяций белорусов с неолитическими земледельцами (ближневосточные популяции и популяции ближнего Востока здесь выступают в качестве суррогата неолитических популяций), и с рядом восточноазиатских, сибирских и америндских популяций (здесь они выступают в качестве суррогата сибирского вклада в генофонд восточной Европы) cо средним интервалом смешения примерно 2850 +- 950 лет назад, т.е в период бронзового века.

Ниже приведены графики угасания LD в комбинации Anatolian-Neolithic + Mala

Затем я уменьшил масштаб подгонки (fitting) кривых угасания LD до 0.5 сантиморганид и взял в качестве референса  палеогеномы с хорошим покрытием

Эксперимент с Loschbour + Stuttgart оказался неудачным.

Более правдоподобна комбинация андроновцев (Andronovo) и чукчей (дата адмикса — 125+-60 поколений тому назад)

Вторая попытка подгонки референсных популяций Loschbour и Stuttgart в качестве предковых групп оказался более удачным (дата адмикса — приблизительно 445 +- 56 поколений тому назад, времена энеолита)

Адмикс с сибирскими палеопопуляциями (MA1) примерно в два раза «моложе» (258 +- 42 поколения, бронзовый век)

Еще один вариант адмикса между палеолитическими жителями Европы и MA1 (датировка — 393 +- 75 поколений)

Теперь о поляках. К сожалению, результаты оказались гораздо более зашумленными, так как использовались данные генотипирования на платформе Illumina, имеющей меньшее пересечение снипов со снипами платформы Affymetrix HumanOrigins. Несмотря на это, программа ALDER нашла три комбинации, пусть и с несовместимой амплитудой угасания LD.

DATA: success (warning: decay rates inconsistent) 0.011 Pole Eskimo_Sireniki Irish-BA 3.87 2.01 2.53 40% 146.66 +/- 27.30 0.00035747 +/- 0.00009228 161.51 +/- 69.51 0.00013202 +/- 0.00006577 107.56 +/- 33.31 0.00015435 +/- 0.00006109
DATA: success (warning: decay rates inconsistent) 0.0068 Pole Eskimo_Sireniki Remedello_BA.SG 3.99 2.01 2.57 49% 110.88 +/- 21.02 0.00024049 +/- 0.00006022 161.51 +/- 69.51 0.00013202 +/- 0.00006577 182.60 +/- 39.99 0.00014922 +/- 0.00005796
DATA: success (warning: decay rates inconsistent) 0.035 Pole Eskimo_Chaplin Remedello_BA.SG 3.59 2.51 2.57 56% 102.38 +/- 21.46 0.00022199 +/- 0.00006181 126.26 +/- 42.96 0.00009643 +/- 0.00003846 182.60 +/- 39.99 0.00014922 +/- 0.00005796

Здесь тоже виден слабый сигнал адмикса популяций бронзового века из Западной Европы (Remedello и ирландского бронзового века) c америндскими популяциями.

Впрочем, дополнительный анализ в программе ROLLOFF (с уменьшенным масштабом подгонки — fitting) выдал правдоподобные (c низким значением P) варианты. Например, вариант Bichon + Georgian_Kakheti: 151.41 +/-38.18, p= 4.7e-06

Очень хорошим вариантом оказался вариант адмикса Esperstedt_MN-Halberstadt_LBA: (дата адмикса — 163.80 +/- 34.11), p=4.8e-07

Окончание процесса фазирования и импутирования геномов

К середине мая этого года я закончил трудоемкий процесс импутации сборной солянки из 9000 публично доступных образцовых представителей  700 различных человеческих популяций, генотипированных в разное время на разных снип-платформах (главным образом — Illumina и Affymetrix)
Строго говоря, я планировал завершить этот этап работы намного раньше, но в ходе выполнения работ возник ряд обстоятельств, помешавших завершить этот этап в срок. Главным из них является смена сервера где я выполнял импутирование геномов. Я начал работать на сервере Мичиганского университета, однако в ходе процесса перешел на аналогичный сервис Института Сэнгера (имени того самого нобелевского лауреата, предложившего первый метод полного сиквенирования генома).
Это решение было продиктовано необходимостью использовать новейшую референсную панель аутосомных гаплотипов — Haplotype Reference Consortium (в нее входит примерно 30 тысяч, а после предстоящего этим летом обновления — свыше 50 тысяч — аутосомных геномов, т.е свыше 60 тыс. гаплотипов). Надо сказать, этнический состав выборки референсных геномов впечатляет, хотя и там по-прежнему наблюдается перекос в сторону европейских популяций. К сожалению, и эта новейшая выборка представлена преимущественно европейцами (поэтому вероятность  импутированных генотипов для европейских популяций оказались лучше аналогичных результатов в африканской и азиатской когортах), однако даже с учетом этого обстоятельства ее надежность в определении негенотипированных аллелей снипов выше 1000 Genomes (не говоря уже о HapMap):

1 UK10K 3715 3781 6.5x
2 Sardinia 3445 3514 4x
3 IBD 4478 4478 4x + 2x
4 GoT2D 2710 2974 4x/Exome
5 BRIDGES 2487 4000 6-8x (12x)
6 1000 Genomes 2495 2535 4x/Exome
7 GoNL 748 748 12x
8 AMD 3305 3305 4x
9 HUNT 1023 1254 4x
10 SiSu + Kuusamo 1918 1918 4x
11 INGI-FVG 250 250 4-10x
12 INGI-Val Borbera 225 225 6x
13 MCTFR 1325 1339 10x
14 HELIC 247 2000 4x (1x)
15 ORCADES 398 399 4x
16 inCHIANTI 676 680 7x
17 GECCO 1131 3000 4-6x
18 GPC 697 768 30x
19 Project MinE — NL 935 1250 45x
20 NEPTUNE 403 403 4x
Totals 32611 38821
22 French-Canadian 2000 5-6X End 2014
23 Converge 12000 1x Now
24 UG2G Uganda 2000 4x 2015
25 Arab Genomes 100 30x
26 Ashkenazi 128 CG Now
27 INGI-Carlantino 94 4x Now
28 CPROBE 80 80 4x

 

Cледуя рекомендациям, я получил набор из 9000 образцов, каждый из которых включает в себя набор из 20-30 миллионов снипов. К сожалению, из-за субоптимальности результатов в некоторых выборках (Xing et al, Henn et al. и ряде других), их придется исключить из тех видов анализа, которые требует максимальной точности исходных данных. Импутированные генотипы (выраженные через оцененные вероятности) были трансформированы с помощью программы Plink 1.9 в генотипы, причем выбирались варианты полиморфизмов с вероятностью 0.8 (—hardcallthreshold 0.8)

Для оценки полезности импутированных генотипов для популяционного анализа я использовал метрику nearest в программе Plink (матрица с дистанцией между ближайшими геномами) и кластерограммы IBS (идентичности по генотипам).

Таблица метрики nearest (Z-статистика)

А это кластерограмма с хорошо видно географической локализацией кластеров. Я использовал для кластеризации матрицы IBS несколько разных алгоритмов — наиболее убедительный вариант был получен с помощью алгоритма Ward

Другие варианты топологии кластерограмм в формате NEWICK и TRE можно посмотреть здесь (их можно открыть в любой программе для визуализации филогенетических деревьев).

Таким образом, для некоторых типов анализа в популяционной генетике использование импутированных снипов может сослужить хорошую службу, смягчая (или, наоборот, увеличивая) градиент частот аллелей).

Дополнительные анализы — fastIBD, IBS, анализ главных компонентов — образцов в выборке, только подтверждает это наблюдение:


Но самое лучшее подтверждение надежности импутированных снипов для анализа компонентов происхождения  было получено с помощью p-теста Z-статистики во время оценки правильности определенной топологии дерева компонентов (с допущением фактора смешивания предковых компонентов). Для этой цели я использовал стандартный инструмент — программу TreeMix. Я использовал только те снипы, которые встречаются в моей контрольной выборке (референсов каждого из компонента) с частотой выше 99 процентов. Как видно из нижеприведенного графика, компоненты выбраны правильно, а топология определяется практически безошибочно, несмотря даже на малое количество снипов (6 тысяч). Правильно определились и направления потоков генов, дрейфов генов (указаны стрелками). Тут в принципе мало нового — большинство этих эпизодов уже были описаны в отдельных работах генетиков. Так, виден поток генов от «денисовского» человека к усть-ишимцу, от которого в свою очередь идет поток генов к австралоидным популяциями. То есть денисовская примесь у папуасов могла достаться от сибирских популяциях близких к «усть-ишимцу». Виден также вклад ANE/EHG в геном североамериканцев -в интервале 10-15 процентов.

Принципально новым является лишь определенный программой дрейф генов в направлении от африканцев Khoisan к североафриканцами (в качестве референса которых взяты египтяне, бедуины и алжирцы). Скорее всего, это и есть тот самый пресловутый сигнал «египтского выхода» человечества из Африки, о котором недавно писалось в новейшей статье, а сам компонент -идентичен пресловутому Basal-Eurasian component


В начале июля  в связи с публикацией препринта о генофонде древних ближневосточных земледельцев решился все таки подписать заявление на имя Давида Рейха и Иосифа Лазаридис с ходатайством о доступе к полной версии их выборки (она включает много новых интересных для меня популяций — например, около сотни новых образцов шотландцев, шетландцев, ирландцев из разных областей Ирландии, немцев, сорбов и поляков из восточной и западной Польши).

Г-н Лазаридис был весьма любезен и буквально на следующий день после получения подписанного заявления предоставил мне доступ к этим данным. Я займусь их плотным изучением чуть позже. А пока любопытно посмотреть результаты пилотного Admixture анализа 5900 публичных доступных образцов. В качестве проверки надежности своего нового метода изучения древних и современных популяций людей, я провел 4 параллельных анализа Admixture c разным дефолтным значением предковых популяций (K).

Разумеется, в нашем случае число компонентов K заведомо больше 3, авторы статьи эмпирически показали что меньший разброс значений был получен при K=11. Поэтому я исходил из этой цифры, назначив три разных значения K — 10,11,13.
В первом варианте я использовал т.н unsupervised режим Admixture, т.е. программа должна была сама угадать и реконструировать частоты аллелей снипов в 10 реконструируемых предковых «компонентах» популяций.

Как и ожидалась, таковыми оказались африканский (пик у пигмеев и бушменов), америндский (пик у эксимосов и американских индейцев), сибирский (пиковые значение у нганасанов), южно-индийский компонент (пик в народностях Paniya и Mala), австрало-меланизийский, южно-восточноазиатский, три западно-евразийских компонента — 2 компонента западноевроп ейских и кавказских охотников-собирателей и неолитический; и наконец ближневосточный.

Разумеется, за исключением трех компонентов с пиками в древних геномах, данное распределение отражает cовременное распределение предковых компонентов.

Пришлось вручную выделять из ближневосточного компонента популяцию базальных европейцев (в качестве основы я взял геномы натуфийцев, т.е ближневосточный компонент — Levant_N — может быть разложен на два отдельных предковых компонента — неолитический и мезолитический «натуфийский»), а затем сгенерировать гипотетическую популяцию из 20 образцов состоящих на 100 процентов из натуфийского компонента. Именно этот компонент был включен в модель K11 под названием Levant_Mesolithic ( или Natufian). Этот компонент не стоит путать с компонентом Basal-Eurasian в калькуляторе Eurogenes K7 Basal-rich, так в в моей модели K11 основная часть базального компонента ушла в неолитические компоненты (т.е Natufian=Basal-Rich — Neolithic)

Гораздо сложнее ситуация обстояла с разделением компонента кавказских охотников-собирателей, которые наряду с американскими аборигенами несут в своем геноме значительные доли компонента древних северо-евразийцев. По этому причине очень сложно, например, разделить восточных охотников-собирателей (из мезолитических культур Карелии и Самары) и синхронным им кавказских охотников-собирателей.
Из-за присутствия компонента древних северо-евразийцев в их геноме, в Admixture компонент древних кавказцев увеличивается только за счет компонент восточных охотников-собирателей — и наоборот. Правда, можно попытаться выделить отдельный мезолитический компонент населения горного Загроса (Иран).

В случае успеха древние геномы жителей мезолитической Грузии можно будет представить как 20% компонента степных охотников-собирателей + 80% местного мезолитического субстрата.