Подведение итогов экспериментов по неформальному моделированию адмикса в популяциях

Выполняю с небольшим опозданием данное ранее обещание и расскажу о слабых местах выявления процентов этнического происхождения с помощью анализа результатов ДНК-тестирования. Последние лет пять этот тип изучения этно-популяционного происхождения с привлечением данных генетики вошел в моду — в 2011 году, когда я первый раз провел подобный анализ существовало все 2 крупные компании в пакет клиентских услуг которых входило проведение подобных анализов клиентских данных. Ровно столько же было заметных в инете любителей, предлагающих более развернутый и разжеванный вариант подобного разбора этнопроисхождения добровольных участников своих проектов. Главным инструментым и тех и других являлись программы типа Admixture и STRUCTURE (разработанные академическими биоинформатиками для решения одной из задач популяционный генетики — а именно определения этнической субструктуры в структуре изучемых в ходе конкретного исследования национальной или региональной выборки народонаселения).
Прошло лет 6, я провел более тысячи подобных экспериментальных анализов — на принципиально разных выборках и образцах аутосомных снипов представителей разных народов. Каждый из таких экспериментов хотя бы немного отличался от других — и не только числом заранее заданных предковых компонентов этнических популяций, но и разнообразием самих этих популяций, их числом и качеством генетипированных в этих популяциях снипов, — например степенью сцепления снипов между собой, процентом минорных вариантов, количеством снипов, соотношение гомо- и гетерозиготных аллельных вариантов. На первом этапе основной проблемой являлась недостаточная представленность отдельных этносов в выборке вкупе с неполным совпадением популяций по числу генотипированных снипов
Позднее я частично научился обходить проблему за счет импутирования аллельных вариантов недостающих (негенотипированных) снипов по большим референсным панелям. В частности используемый Сергеем Козловым калькулятор K27 был сделан мною как раз с использованием таких импутированых вариантов.
Еще позже — после прорыва в области изучения палеоДНК — появилась возможность не угадывать предковые компоненты слепым перибором числка K (предковых компонентов), а задавать заведомо предковые популяции людей (жителей мезолита, неолита и бронзового века) в качестве чистых предковых популяций К современного народонаселения. Таков, например мой этнокалькулятор K11 Ancient, загруженный зимой этого года на Gedmatch.
Всего же за это время я разработал не менее 60 разных моделей в интервале от K=7 до K33, причем для многих K я разработал сразу несколько моделей.

Все эти модели (только калькуляторы; без инструментов поиска ближайших к тестируемому популяций) я размещаю в открытый доступ на OneDrive (ссылка открывается при нажатии на картинку). Эти файлы работают с программой DIYDodecad, инструкцию использования которой можно найти на сайте Диеникиса

























































Я решил подвести итог этому направлению своей деятельности, на которое ушло много сил, cредств и почти все мое свободное время. Вместо этого я переключусь на более точные формальные методы определения этнического происхождения, разработанный в генетической лаборатории Дэвида Райха из Гарварда.

Главная причина — в силу своего перфекционизма я не был доволен точностью определения частот конкретных предковых компонентов в состав генома отдельно взятых людей. Кроме того, этой зимой в ходе бесед с подобным же любителем насчет проблем Admixture, мы обнаружили ряд причин, приводящих при анализе данных отдельно взятых людей к странным и заведомо неверным комбинациям этнического раскалада предков.
Есть еще одна причина — перенасыщение данного маленького сегмента на рынке инетрпретации генетических данных. В настоящий момент существует уже целый ряд компаний (не менее дюжины), вышедших на рынок ДНК-генеалогии в относительно недавнее время. Каждая из них разработала свой алгоритм и красивый графический интерфейс для визуализации данных по прогнозируемому этнопроисхождению клиента. Увеличилось число крепких и активных любителей (я знаю не менее 10 таких людей), занимающихся в принципе тем же самым, причем иногда качества полученных ими моделей этнического происхождения выше таковых в коммерческих компаниях. Благодаря их усилиям, число доступных этнопопуляционных калькуляторов увеличилось буквально в разы.

Но перейдем к конкретике. Часто люди систематически получают странные результаты — таких примеров можно приводить много. Причем иногда такие странные и неверные расклады можно встретить в больших этнических сообществах — например у чеченцев стабильно в MyHeritage выскакивают в раскаладе предковых групп одинаковые 10-15% жителей Британских остров.
Этот, конечно, нелепый пример, отлично иллюстрирует первую проблемы, связанную с разделением выборки и клиентской базы на кластеры. В отличии от любителей; большинство коммерческих компаний (за исключенеим разве что FTDNA, где алгоритм опеределения процентов этнического происхождения разработал как раз любитель) не занимаются поисками настоящих предковых компонентов — вроде европейских охотников-собирателей, земледельцев и скотоводов бронзового века. Вместо этого все образцы популяций — преимущественно из академических источников — объединяются по географическому признаку в отдельные кластеры — например скандинавский или балканские кластеры. Кластеры задаются как условные предковые компоненты (их может быть довольно много — как например в компании AncestryDNA), якобы позволяющие в данном случае более точно выявить недавнее этнопопуляционное происхождение клиента. И что хуже всего в эти же кластеры включают данные самих клиентов — очень часто просто со слов клиента о своем этническом происхождении (как было в своем время в 23andme), хотя в последнее время в некоторых компаниях (AncestryDNAO) алгоритм усовершенствовали путем включения дополнительных фильтров для отсеивания (например с помощью определения в анализе главных компонентов резко отличающихся и резко выделяющихся в плане этнического происхождения клиентов). Тем не менее, даже самое методичное применение всевозможных дополнительных фильтров не может гарантировать повышение точности предика этнического происхождения. Проблема что в человеческих популяциях — за исключением небольшого количества изолированных задрейфованных популяций вроде нганасан, чукчей, ульчей, калашей, папуасов — ни в одной из этнических групп компоненты не являются дискретными, а представляют собой градиенты частот аллелей, очень часто с большим расбросом из-за чего хвосты частот распределния этих частот перекрываются. На практике этот феномен приводит к появлению в индивидуальных клиентских данных фантомных компонентов — например у европейцев часто появляются всевозможные невозможные компонентоы происхождения — Amerindian, Papuan, Onge и так далее. Подобный подход только вносит сумятицу или — говоря статистическим языком — шум в результаты.

Очевидно, что данная проблема связана с классической проблемой статистики — проблемой организации и подразделения выборки. Схожей по характеру проблемой являеется проблема разнообразия выборки используемой для определения компонентов происхождения. Очевидно, что очень сложно впихнуть все генетическое разнообразие человечества в относительно небольшую выборку — даже еслии ее размер достигает полмиллиона или больше образцов (как у 23andme). Проблема в сверхпредставленности отдельных этнических или квазиэтнических групп в подобных базах данных (западных европейцев, американцев, финнов, ашкеназов и так далее). При неравномерности выборки наблюдается другой классический статистический эффект — искажение результатов выборки в сторону наиболее представленных групп (как было в свое время в 23andme, когда наблюдался эффект сверхпредставленности евреев-ашкеназов в количестве так называех генетических совпаденцев).
Еще одна схожая проблема — в количестве совпадающих снипов (одинакового числа снипов) между тестируемыми индивидуальными образцами и референсными группами. Это проблема затрагивает, правда, только калькуляторы разработанные любителями на базе DIYDodecad — в алгоритмах коммерческих компаний число снипов в рефренсных популяциях и индивидуальных образцах одинаково, т.к. анализируются только те образцы, которые тестировались самой компанией. В вышеупомянутых же этнопопуляционных калькуляторах анализируемые всегда «кроссплатформены» — и если разработчик использовал для разработки калькулятора только те снипы, которые содержаться в чипах 23andme, тогда при анализе данных полученных в компаниях FTDNA или AncestryDNA совпадением снипов будет частичным (так как снипы генотипируемые в этих компаниях совпадают лишь частично). В итоге ситуация в которой сравниваются аллельные частоты снипов референсных популяций (полученные при одном количестве снипов) с аллельными частотами снипов индивида (полученные при совсем другом количестве снипов). Элементарная логика подсказывает что в таком случае будет наблюдаться искажение результатов в совершенно непредсказуемую сторону.
К счастью, у обеих проблем есть разумные решения. Число совпадающих снипов между чипами FTDNA, 23andme (разных версий) и AncestryDNA составляет примерно 300 000, что достатчно для создания калькуляторов приемлемых для анализа данных от всех этих компаний. Решение первой же проблемы тоже есть, но его стоимость немыслимо выскоа — необходимл использовать примерно несколько десятков миллионов ПОЛНЫХ геномов популяций людей со всего мира. Разумеется, никакие любители никогда в жизни не смогут собрать такое количество данных необходимых для создания сверхточных калькуляторов.

Все вышеперечисленные проблемы — сущая мелочь в сравнении с настоящими проблемами, обусловленными алгоритмической стороной вопроса. Дело в том, что все компании (и разумееися любители) — так или иначе — при вычислении аллельных частот в компонентах референсных популяций используют программы использующие парадигму Admixture/Structure. А они используют ML-алгоритмы, минимизирующие ГРУППОВЫЕ частоты аллелей между всеми образцами выборки, т.е. аллельные частоты ПОЛНОСТЬЮ зависят от состава исходной выборки, даже в случае так называемого supervised («обучаемого») анализа, в ходе которого некоторые популяции принимаются за исходные «чистые предковые группы». Поскольку в ранних версиях Admixture, отсутствовала опция фиксирования одной из вычисляемых матрицы (P- матрица аллельных частот снипов в каждом из гипотетических компонентов происхождения; Q-матрица — матрица индивидуальных коэффициентов вклада предковых компонентов в индивидуальный геном с общей построковой суммой в 100%), и практически все компании использовали один и тот же алгоритм (он в во всех подобных программх схож — хотя разняться его имплементации и способы оптимизации функции правдоподобия), то все они подвергнуты искажению истинных частот аллелей. Этот косяк вносит решающий вклад в появление фантомных компонентов происхождения.

То, что вычисленные таким способом значения (скажем русского) могут очень сильно отличаться в сравнении с индивидуальными частотами аллелей (для примера такого же русского из той же скажем Орловской области) — было впервые замечено геномным блоггером Polako.
К сожалению, в силу своем личной ненависти к первоначальному разработчику DIYDodecad — греку Диенекису Понтикосу — он не смог дать формальное объяснение феномена и назвал этот феномен «эффектом калькулятора» (как бы намекая на косорукость кода этой утилиты). На самом деле сам калькулятор здесь не причем — все дела в приниципиальных различиях между определение происхождения на основании частот аллелей вычисленных по группе образцов и тем же самым вычислением аллелей, но уже не в группе, а в индивидуальныом порядке. В этом легко убедиться самому — возьмите клиентские данные, например, норвежца. Вставьте его в большую выборку образцов (например 2000 человек) и прогоните в программе ADMIXTURE задав такое количество гипотетических предковых популяций (K), при котором становится заметна субструктура генофонда популяций на внутриконтинентальном уровне. А затем возьмите того же самого норвежца, но уже в единственном числе, и зафиксировав полученные в предыдущем шаге аллельные частоты в виде предковых популяций. Вы увидите, что различия между результатами анализа одних и тех же данных могут достигать 20 а то и более процентов. Это-то и есть ядро так называемого пресловутого эффекта калькулятора. Очевидно, что и Оракул (т.е. инструмент определения ближайших к клиенту этнических популяций а также моделирования происхождения клиента через набор из 2, 3, 4 популяций) в этом случае (искаженных аллельных частот) будет искусственно создавать фантомные предковые популяций. Например, у русского из Владимирской области могут появиться в качестве шведы,
эстонцы или англичане из Кента.

Строго говоря, первым написал об этой проблема некий Vikas Bansal — автор программы iAdmix:

«For comparison, we also ran ADMIXTURE (in supervised mode using the HapMap reference panel of individuals) on the same dataset (see Figure 1(b)). The European and African admixture estimates for each individual were highly consistent between the two methods. For some individuals, the European component of ancestry using our method was split between the TSI and CEU populations. This could reflect one important difference between the two methods in how they use data from reference individuals. Our method finds a maximum likelihood estimate of the admixture coefficients for each individual using the fixed set of allele frequencies. In contrast, ADMIXTURE, in the supervised mode, utilizes data for all individuals (both the reference populations and the individual(s) being analyzed) to estimate the allele frequencies for each cluster or population and maximize the likelihood function summed across all individuals. Therefore, the allele frequencies are determined not only by the genotypes of the reference individuals but also by the individual(s) that are analyzed for admixture. To confirm this, we estimated allele frequencies by running ADMIXTURE twice: (1) using 800 reference individuals simulated using allele frequencies for 8 HapMap populations (100 individuals per population, see previous section) and (2) 800 reference individuals and 1 additional individual with 100% CEU ancestry simulated using the HapMap allele frequencies. Subsequently, we used our method to estimate admixture coefficients for the simulated CEU individual using the two sets of allele frequencies separately. We found that using the first set of allele frequencies, the admixture coefficients for both CEU and TSI were non-zero. In contrast, using the second set of allele frequencies, only the CEU admixture coefficient was non-zero. This was similar to the results observed in the analysis of the Mozabite data and provided an empirical validation of our hypothesis regarding the difference in the admixture coefficients estimated by the two methods.»

Реклама

Формальный анализ смешивания предковых популяций: белорусы, часть 2

Итак, после определения значимых для формального статистического моделирования комбинаций предковых популяций (или вернее, их суррогатов) представляется возможным смоделировать две вещи. Во-первых, необходимое с точки зрения статистики, число «импульсов» или «потоков» смешивания, а во-вторых, пропорции вклада «предковых» групп в генофонд белорусов.

Результаты анализа в программах qp3Pop и qpDstat показали, что в референтной группы белорусов присутствуют сигналы смешивания трех групп — мезолитических охотников-собирателей Европы (WHG), неолитических популяций земледельцев с Ближнего Востока и cибирских охотников-собирателей (чьи потомки в составе индоевропейцев) распространили свои гены по всей Европе.

Но меня больше интересует вопрос оценки величины доли вклада так называемого «базального компонента»(Basal Eurasian):

«четвертый элемент» — тот «базальный» компонент генофонда Европы, который проявился при моделировании истории сложения генофонда Европы в работе [Lazaridis et al., 2014] (см. раздел 8.4, рис 8.20) — предковой евразийской группой, которая внесла свой большой вклад и в геном неолитических земледельцев. Из аналогичной по методам модели, созданной в рассматриваемой работе [Seguin-Orlando et al., 2014], следует (рис. 8.6), что в геном человека из Костенок эти таинственные «базальные евразийцы» внесли не менее важный вклад, чем и верхнепалеолитические западные евразийцы. Также из модели следует, что он имел и общих, хотя и более отдаленных предков с древними северными евразийцами восточного ствола.

В этих целях я решил использовать в качестве суррогата базального евразийского генома геном Mota (древнего жителя Африки), примерно половину генома которого составлял тот самый пресловутый базальный компонент (результат обратных миграций натуфийского населния Ближнего Востока в восточную Африки)

Итак, в начале используем программу qpWave из того же пакета Admixtools

parameter file: qpWave.par

THE INPUT PARAMETERS

##PARAMETER NAME: VALUE
indivname: data.ind
snpname: data.snp
genotypename: data.geno
popleft: left
popright: right
maxrank: 6

qp4wave2 version: 200

left pops:
Levant_N
Mota
WHG
EHG

right pops:
Han
Onge
Papuan
Kostenki14
Ust_Ishim
Siberian_Upper_Paleolithic

0 Levant_N 13
1 Mota 1
2 WHG 2
3 EHG 3
4 Han 33
5 Onge 15
6 Papuan 14
7 Kostenki14 1
8 Ust_Ishim 1
9 Siberian_Upper_Paleolithic 1
jackknife block size: 0.050
snps: 572603 indivs: 84
number of blocks for block jackknife: 719
dof (jackknife): 631.955
numsnps used: 177238
f4info:
f4rank: 0 dof: 15 chisq: 574.447 tail: 9.47752373e-113 dofdiff: 0 chisqdiff: 0.000 taildiff: 1

<cf4info:
f4rank: 1 dof: 8 chisq: 115.553 tail: 2.7408605e-21 dofdiff: 7 chisqdiff: 458.894 taildiff: 5.4614954e-95
B:
scale 1.000
Onge -0.475
Papuan -0.521
Kostenki14 0.069
Ust_Ishim -0.746
Siberian_Upper_Paleolithic 1.986
A:
scale 290.851
Mota -0.932
WHG 0.299
EHG 1.429

f4info:
f4rank: 2 dof: 3 chisq: 8.502 tail: 0.036691843 dofdiff: 5 chisqdiff: 107.050 taildiff: 1.7204978e-21
B:
scale 1.000 1.000
Onge -0.462 -0.050
Papuan -0.522 -0.105
Kostenki14 0.288 2.189
Ust_Ishim -0.733 0.378
Siberian_Upper_Paleolithic 1.973 -0.232
A:
scale 286.604 578.115
Mota -0.951 -1.197
WHG 0.385 0.752
EHG 1.396 -1.001

f4info:
f4rank: 3 dof: 0 chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 8.502 taildiff: 0.036691843
B:
scale 1.000 1.000 1.000
Onge -0.400 -0.203 1.065
Papuan -0.459 -0.258 0.882
Kostenki14 0.299 2.175 0.273
Ust_Ishim -0.645 0.116 1.513
Siberian_Upper_Paleolithic 2.031 -0.382 0.850
A:
scale 282.949 595.536 1395.824
Mota -0.857 -1.172 0.944
WHG 0.466 0.827 1.449
EHG 1.431 -0.971 0.093

## end of run

Нас интересует статистика f4rank 2, и как видно она убедительна: chisq: 8.502 tail: 0.036691843 dofdiff: 5 chisqdiff: 107.050 taildiff: 1.7204978e-21.  То есть, для моделирования референсной популяции достаточно трех «источников» (в f4rank 3, т.е с 4 предковыми популяциями, статистика гораздо хуже: chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 8.502 taildiff: 0.036691843 ).

Следующим этапом будет оценка пропорций «адмикса», образованного смешением трех «источников»:

 

parameter file: qpAdm.par

THE INPUT PARAMETERS

##PARAMETER NAME: VALUE
genotypename: data.geno
snpname: data.snp
indivname: data.ind
popleft: left
popright: right
maxrank: 8

qpAdm version: 200

left pops:
Belarusian
Mota
WHG
EHG
right pops:
Han
Onge
Papuan
Kostenki14
Ust_Ishim
Siberian_Upper_Paleolithic
0 Belarusian 25
1 Mota 1
2 WHG 2
3 EHG 3
4 Han 33
5 Onge 15
6 Papuan 14
7 Kostenki14 1
8 Ust_Ishim 1
9 Siberian_Upper_Paleolithic 1
jackknife block size: 0.050
snps: 572603 indivs: 96
number of blocks for block jackknife: 719
dof (jackknife): 628.796
numsnps used: 227599
codimension 1
f4info:
f4rank: 2 dof: 3 chisq: 20.724 tail: 0.000120097824 dofdiff: 5 chisqdiff: -20.724 taildiff: 1
B:
scale 1.000 1.000
Onge -0.502 0.176
Papuan -0.562 0.218
Kostenki14 0.442 2.074
Ust_Ishim -0.735 0.779
Siberian_Upper_Paleolithic 1.923 -0.110
A:
scale 285.645 552.926
Mota -1.490 -0.238
WHG 0.017 1.685
EHG 0.883 -0.324
full rank 1
f4info:
f4rank: 3 dof: 0 chisq: 0.000 tail: 1 dofdiff: 3 chisqdiff: 20.724 taildiff: 0.000120097824
B:
scale 1.000 1.000 1.000
Onge -0.502 0.178 0.403
Papuan -0.599 0.280 0.995
Kostenki14 0.455 2.029 -0.773
Ust_Ishim -0.773 0.879 1.373
Siberian_Upper_Paleolithic 1.893 0.008 1.168
A:
scale 288.199 555.700 1346.772
Mota -1.449 -0.056 0.947
WHG 0.026 1.726 0.141
EHG 0.948 -0.132 1.444
best coefficients: 0.318 0.148 0.534
ssres:
0.000295769 0.000789821 0.000059100 0.001247609 0.001271289
0.335431254 0.895733409 0.067025433 1.414909018 1.441765444

Jackknife mean: 0.316895017 0.150748678 0.532356305
std. errors: 0.035 0.067 0.045
error covariance (* 1000000)
1212 -1838 625
-1838 4506 -2668
625 -2668 2043
fixed pat wt dof chisq tail prob
000 0 3 20.724 0.000120098 0.318 0.148 0.534
001 1 4 125.483 0 -0.088 1.088 0.000 infeasible
010 1 4 25.750 3.55457e-05 0.378 0.000 0.622
100 1 4 102.973 2.28952e-21 0.000 0.702 0.298
011 2 5 336.445 0 1.000 0.000 0.000
101 2 5 127.950 6.47788e-26 0.000 1.000 0.000
110 2 5 184.757 0 0.000 -0.000 1.000
best pat: 000 0.000120098 - -
best pat: 010 3.55457e-05 chi(nested): 5.025 p-value for nested model: 0.0249831
best pat: 101 6.47788e-26 chi(nested): 102.201 p-value for nested model: 5.01661e-24

end of run

Итак, лучшими коэффициентам (пропорциями адмикса) являются 0.318 0.148 0.534. То есть референсная популяция белорусов может быть смоделирована как 30 % базального компонента, 15% компонента мезолитических охотников собирателей и 53% компонента жителей степи бронзового века («индоевропейцев»). Очевидно, что большая часть базального компонента попала в Европу вместе неолитическими земледельцами, а оставшаяся часть — была принесена индоевропейцами.

 

Размышления над эффективностью алгоритма SPA

Перед тем,  как закрыть тему SPA, я решил поразмышлять о причинах неточности определения географического ареала происхождения с помощью генома. Те, кто воспользовался моей моделью для программы SPA (последняя версия — сентябрь 2016 года), могли убедится в том, что даже при наличии большого количества маркеров, модель не во всех случаях точно определяет ареал происхождения (даже с поправкой на погрешность радиусом в 500 км).
В основу алгоритма SPA положены примерно те же самые предпосылки, что и в случае с классическим анализом главных компонент (PCA)

  • Первая предпосылка  подхода SPA состоит в том, что частота аллели каждого SNP в популяции может быть смоделирована в виде непрерывной двумерной функции на карте. Другими словами, при выборе хромосомы индивидуума из локации с позицией (х, у) на карте, вероятность наблюдения минорного аллеля в SNP j на хромосоме может быть сформулирована в виде функции F (х, у), где Fj является непрерывной функцией, описывающей поведение частоты аллеля в зависимости от географического положения
  • Затем на основании сказанного делается упрощающее предположение, что эта функция является экземпляром логистической функции

 

где х представляет собой вектор переменных, указывающих географическое местоположение и а и Ь коэффициенты функции. Авторы понимают каждую из этих функций, как функцию FJ функции наклона градиента частота в SNP J. Эта функция кодирует крутизну склона по норме а, при этом предпологается что смещение параметра b фиксировано. Кроме того, направленность наклона  кодируется в значении вектора а.  Более подробно, θj = арктангенс (aj(1) / aj(2)) могут быть приняты в знчения угла для SNP j, где aj(1)  и aj(2)  являются первым и вторым элементами вектора а.

Поскольку SPA имеет явные географические координаты, подход может быть расширен для систем за пределами обычной картезианской двумерной плоскости координат. В качестве демонстрации этого, авторы программы SPA использовали алгоритм для анализа пространственной структуры населения земного шара, в которой двухмерное отображение на двухмерной плоскости не может точно фиксировать структуру популяции. Таким образом, каждый индивид проецируется на точку земного шара в трехмерном пространстве. Соответственно, авторы использовали трехмерный вектор х (с ограничением || х || равным определенной константе), чтобы представить индивидуальную позицию.

Используя данные (генотипы индивидов из различных популяций из  HGDP), авторы обнаружили что пространственная топология расположения индивидов в пространстве SPA мы наблюдали, что сильно напоминала топологию географической карту мира. В частности, люди из того же континента были сгруппированы вместе, а континенты были разделены примерно так, как это следовало бы ожидать из пространственного расположения.

ng-2285-f3

 

Главная проблема метода состояла в другом. Несмотря на точность топологии взаимного расположения индивидов,  на карте SPA сильно искажены расстояния между континентами.

Например, продольный размер континента Евразии составил 92 градусов в  SPA-пространстве земного шара, в то время как в пространстве реального земного шара — 150 градусов. Продольное расстояние между Европой и Северной Америкой составило 167 градусов на SPA карте земного шара, в то время как на самом деле оно составляет 90 градусов.  Любопытно отметить, что мой опыт работы с этой программы показал, что наибольшую проблему составляют географические координаты долготы, в то время как широты предсказываются довольно точно. То есть по какой-то причине (несимметричность генетических градиентов в направлении север-юг и направлении восток-запад?) пространство SPA очень сильно искажается в продольном измерении (т.е в долготу).
По этой причине, вычисленные географические точки происхождения для европейцев часто оказываются в Атлантическом океана и так далее.

Я решил использовать данные импутированных генотипов для европейских популяций (я занимался их импутацией на протяжении последнего полгода). На этот раз я ограничился только европейскими популяциями. Я  сделал два разных набора с разным числом снипов — один с 1 062 376 снипами, которые содержатся в платформах генотиприрования клиентов 23andme и FTDNA, другой — примерно 590 395 снипов.  Обе модели можно скачать с Google Drive  (здесь и здесь).

Несмотря на тщательный подбор снипов, обе модели продолжают страдать характерным сдвигом географических долгот, а это означает, что данная проблема обусловлена не выборкой генотипов, а самим алгоритмом программы (т.е. улучшение качества выборки или увеличение количества снипов не приводит к повышению точности даже в том случае, если мы используем для тренировки программы на обучающей выборке  индивидов с известной географической локацией).

Это хорошо видно на полученных в ходе анализа моих собственных данных географических координатах 2 точек происхождения (одна из них в Гренландии,  другая в Средиземном море)

untitled

Разумеется, вряд ли можно говорить о точности подобных вычислений. В ходе размышлений над способом решения проблемы я вспомнил о существовании ортогонального прокрустового анализа.

Я взял две матрицы — одну с географическими координатами (фактически центроиды — географические центры стран) и  вторую с предсказанными  (в модели 1M cнипов) величинами географических координат тех же самых образцов (с усредненными значениями по этносам), а затем совершил прокрустово преобразование в программе R, получив новую матрицу с преобразованными значениями координат. Ниже виден результат операции (преобразованные усредненные координаты образцов спроецированы вместе с центроидами на карту Европы). И хотя координаты по-прежнему немного сдвинуты относительно истинных, в целом результат уже гораздо лучше (правдоподобнее).rplot14При проведении прокрустова анализа, кроме Xnew (трансформированной матрицы),  мы получили значения матрицы вращения R, s- коэффициент масштабирования и tt — вектор трансляции координат, минимизирующие дистанцию между матрицей предсказанных координат и матрицей географических координат.

Эти значения можно использовать для коррекции значений географических координат, рассчитанных в SPA. Я снова использую свои данные (2 предсказанные точки географического происхождения Xp):


Xt=sRXp + 1tt


При подстановке Xp получаем следующие значения

точка A:  60.245448+-11.059673 северной широты;  21.394898 +- -5.979712  восточной долготы (северо-западная Балтика и Скандинавия)

точка B: 43.000748+-8.801889 северной широты;  20.725216+-52.159598 восточной долготы (юго-восточная Европа, Балканы и Греция).

 

 

 

 

 

Анализ древней ДНК – проблемы, их преодоление и результаты

На портале Генофонд.ру размещен реферат важной статьи, подводящей промежуточные итоги изучения древней ДНК. Я позволю себе удовольствие процитировать себе некоторые места этого замечательного обзора, написанного ув. Надеждой Марковой

Термин «древняя ДНК» возник в научной литературе в 1980-х годах в связи с появлением новой области исследований, которая получила название «молекулярная палеонтология». С развитием сначала методов ДНК-амплификации (полимеразной цепной реакции), а потом методов секвенирования нового поколения эта область получила мощный толчок к развитию и сегодня стала основным средством реконструкции эволюции живых организмов, и в том числе реконструкции истории человека.

Революция в эволюционной генетике

Исследование древней ДНК совершило революцию в эволюционной генетике, так как появилась возможность напрямую исследовать прошлое, законсервированное в «капсуле времени» ДНК, пишут авторы статьи. Работы последних десятилетий показали, что древняя ДНК может сохраняться в костях, зубах, мумифицированных и замороженных тканях, и может быть извлечена из этих древних образцов. Впервые древняя ДНК была извлечена в 1984 г. (Higuchi et al.) из высохшей мышцы вымершего родственника зебры. Но ее анализ целиком зависел от развития технологий, поэтому стал возможен с появлением ДНК-амплификации (метод полимеразно-цепной реакции – ПЦР), и вышел на новый уровень с появлением методов секвенирования нового поколения. На рисунке авторы представили основные вехи в истории изучения древней ДНК.

О методологии исследования палео-ДНК

Методы палеогенетики оказались незаменимы, чтобы разобраться в  ключевых этапах человеческой цивилизации. Например, понять, как именно происходила смена обществ охотников-собирателей на первых земледельцев, как распространялось по Европе сельское хозяйство – имела ли место передача технологий от одних популяций другим или же происходила смена самих популяций («циркуляция идей или людей»). Анализ древней ДНК показал, что между периодами 8 и 5 тысяч лет назад Европа не была генетически однородной: первые земледельцы с Ближнего Востока мигрировали в Западную Европу и  смешивались там с местными охотниками-собирателями. В Восточную Европу около  6-5 тыс. лет назад туда пришли группы людей из Анатолии, которые смешавшись с охотниками-собирателями, дали начало популяциям скотоводов, наиболее успешная из которых известна по ямной культуре.  Полагают, что именно миграции ямников из понто-каспийских степей на запад и на восток около 4,5 тыс. лет назад можно связать с распространением технологий и, возможно, языков индоевропейской семьи.

Древняя ДНК может помочь и в изучении развития признаков, характерных только для Homosapiens, таких как речь, подчеркивают авторы статьи. Изучение генетических вариаций, связанных с языком, дает информацию о том, когда мог возникнуть сложный  язык, присущий человеку. Так, было показано, что определенный вариант гена FOXP2 (именно его в первую очередь связывают с развитием речи)  имелся уже у неандертальцев. Вероятно, считают специалисты, этот вариант возник у общих предков неандертальцев и современного человека.

Древняя ДНК помогает в изучении адаптации человека к разным условиям среды. При анализе древних геномов в них были выявлены сигналы отбора, связанных с изменением диеты, чувствительностью к ультрафиолету  и пр. Так, становится ясно, как распространялись по Европе такие черты, как светлая кожа и толерантность  к лактозе (способность переваривать молоко во взрослом возрасте).

Трудности в изучении палео-ДНК и их преодоление

Одна из основных проблем, с которыми сталкиваются исследователи древней ДНК, это ее деградация, которая неизбежно происходит со временем.  Обычно ДНК из древних образцов сильно фрагментирована, загрязнена микробной ДНК и химически модифицирована. Причем степень деградации  в больше степени зависит от условий, в которых находился древних образец (температура, влажность), чем от его возраста. Последние исследования показали, что теоретический предел возраста образца, из которого можно извлечь ДНК, составляет 1-1,5 млн лет. Авторы описывают методы, которыми можно преодолеть трудности, связанные с особенностями древней ДНК.

Фрагментация ДНК может быть частично преодолена с помощью современных протоколов, позволяющих извлекать и анализировать очень короткие фрагменты, длиной 50-70 нуклеотидов. К тому же, методы секвенирования нового поколения ориентированы на анализ коротких фрагментов, длина которых составляет 50-100 нуклеотидов.

Большую проблему составляет контаминация древней ДНК современной ДНК. Преодолеть ее нужно путем строгого соблюдения протоколов, учитывающих правила сбора образов, обработки рабочих помещений, применение методов ДНК-аутентификации, независимой перепроверки результатов и пр. Развиваются также методы механической и химической деконтаминации – авторы их описывают.

Еще одна важная проблема – посмертное изменение ДНК из-за гидролиза и окисления, вызывающее деаминацию нуклеотидов, которая ведет к ложным результатам ПЦР. Авторы описывают несколько молекулярно-генетических и биоинформатичесих подходов для преодоления этой проблемы, с ними можно ознакомиться в тексте статьи.

Инструменты анализа

С увеличением числа образцов древней ДНК ученые получают возможность исследовать древнюю генетическую изменчивость на популяционном уровне и сравнивать ее с современной. Различные методы (PCA, STRUCTURE, ADMIXTURE, SPAMIX, SPA, ADMIXTOOLS, GPS, LAMP, HAPMIX,  reAdmix, MUTLIMIX, mSpectrum, SABER и др.), которые были разработаны для анализа современных популяций, применяются и к древним популяциям. В комбинации с антропологическими данными и историческими  сведениями они позволяют реконструировать пути миграций, определять состав предков той или иной популяции, выяснять географическое  происхождение гаплотипов.

Эпигенетика и палео-ДНК

Фенотипическое проявление генотипической изменчивости зависит не только от изменчивости тех или иных аллелей в геноме, но и от степени экспрессии генов, а она во многом определяется химическими модификациями, не затрагивающими последовательность нуклеотидов в ДНК, то есть эпигенетическими. Это метилирование ДНК, модификация белков-гистонов, спектр некодирующей РНК. Последние исследования показали, что некоторые эпигенетические модификации сохраняются и postmortem. Так, удалось картировать метилирование генома неандертальцев и денисовцев. Выяснилось, что некоторые гены были более метилированы у древних людей, чем у современных. Анализ метилирования позволяет также определить возраст индивида (как современного – что важно для криминалистики, так и древнего).

Новая программа для анализа субструктуры популяции

На ресурсе Bioarxiv опубликован препринт статьи, описывающей новую программу для анализа предковых компонентов в изучаемых геномах.  Программа называется Ohana (Linuxовские исходники доступны на Github).

Программа представляет собой дальнейшее развитие парадигмы, использованной при создании программ подобного рода, в том числе и популярных Admixture/STRUCTURE.

Что же именно представляет собой программа Ohana:

Мотивация:  методы выявления генетической cтруктуры популяции часто используются в процентной классификации (доли различных компонентов происхождения) отдельных образцов (геномов) в выборке популяции.
Вклад: Мы вводим новый алгоритм оптимизации классической модели структуры в рамках максимального  правдоподобия. Используя анализ реальных данных, мы показываем, что новый алгоритм оптимизации находит более высокие значения оценки правдоподобия, в сравнении с стандартными методами,   за то же самое время вычислений. Мы также представляем новый метод оценки деревьев популяций предковых компонентов с использованием гауссовой аппроксимации. Используя модель коалесценции популяций,  мы моделируем  эволюцию популяций в виде дерева, а затем исследуем адекватность модели структуры и гауссовской аппроксимации в  правильной идентификации предковых  компонентов родословной и вывода правильной типологии дерева популяций. В большинстве случаев предковые компоненты выводятся правильно, хотя очевидно, что  размер выборки и количество времени, прошедшего с момента смешивания предковых компонентов могут влиять на статистическую достоверность выводов. Вместе с этим, популярная гауссовская аппроксимация  работает гораздо хуже в случае с длинными ветвями популяционного дерева, хотя сама топология дерева была определена правильно во всех рассматриваемых сценариях. Новые методы реализованы средствами языка C++  вместе с соответствующими средствами визуализации в программном пакете Ohana.

Судя по описанию, метод явно продвинут в сравнении с Admixture, и поэтому я решил протестировать программу на своих данных. Поскольку задачей опыта являлась только проверка быстродействия и эффективности программы, я ограничился лишь малым числом снипов (около 1000 снипов) и небольшим числом итерационных шагов. Ниже таблица значений параметра максимальной правдоподобности для разных шагов:

step global-lle local-lle lle-ratio
21 -2.6833044517734939e+00 +2.2770091451382113e-01 +5.8220107325746300e+00
1 +5.7815216343991231e+00 +5.8036336413385650e+00 +4.4224013878883639e-02
7 -3.2739383333912819e-01 +2.2497694453045547e-01 +1.1047415557391673e+00
11 +9.0926715174206318e-01 +2.0066743030967706e+00 +2.1948143027094149e+00
3 +2.8748265011322980e+00 +2.9590787934518543e+00 +1.6850458463911266e-01
7 +8.4540873293179075e-01 +1.3498715551047624e+00 +1.0089256443459433e+00
37 -9.0929035297321050e+00 -2.4194504122282945e+00 +1.3346906235007621e+01
23 -6.4421783036780722e+00 -2.9697235103566051e+00 +6.9449095866429342e+00
0 +9.1345873004805362e+00 +9.1345873004805362e+00 +0.0000000000000000e+00
0 +3.4695915386474794e+00 +3.4695915386474794e+00 +0.0000000000000000e+00
19 -4.3865281380151862e+00 -1.8991488640961749e+00 +4.9747585478380225e+00
4 +1.0433650310897962e+00 +1.2522823332105344e+00 +4.1783460424147645e-01
3 +3.8995915259094627e-01 +5.1634020990696783e-01 +2.5276211463204312e-01
15 -2.6434691070829723e+00 -9.1086633128607586e-01 +3.4652055515937930e+00
23 -6.2198104594655677e+00 -2.8358886349280032e+00 +6.7678436490751288e+00
38 -9.2321798956810461e+00 -2.4916759096277969e+00 +1.3481007972106498e+01
18 -3.0934554567431443e+00 -8.3611477310109894e-01 +4.5146813672840906e+00
8 -2.9282539314651679e-01 +3.5738671950948531e-01 +1.3004242253120042e+00
0 +1.2524391609263201e+00 +1.2524391609263201e+00 +0.0000000000000000e+00
23 -6.3837385390039652e+00 -2.9271554091217755e+00 +6.9131662597643793e+00
2 +4.7424981408020610e+00 +4.7836466971388827e+00 +8.2297112673643369e-02
38 -9.2130245369173807e+00 -2.3278870997257695e+00 +1.3770274874383222e+01
1 +2.1840574314321817e+00 +2.1865405531001443e+00 +4.9662433359252134e-03
41 -1.1365527747446823e+01 -3.8377028622021787e+00 +1.5055649770489289e+01
19 -4.6712611393212642e+00 -2.1928314855773308e+00 +4.9568593074878669e+00
6 +1.3815323261198040e+00 +1.8025611535312844e+00 +8.4205765482296080e-01
23 -4.9303692315665009e+00 -1.5318143061696987e+00 +6.7971098507936043e+00
0 +8.7328319984824621e+00 +8.7328319984824621e+00 +0.0000000000000000e+00
17 -3.6224582165934160e+00 -1.4932121483648810e+00 +4.2584921364570700e+00
3 +6.2377234983784291e-01 +7.6110530798112475e-01 +2.7466591628656367e-01
0 +2.8587282041554891e+00 +2.8587282041554891e+00 +0.0000000000000000e+00
17 -2.0021218825872920e+00 +1.4509671718689843e-01 +4.2944371995483808e+00
17 -7.4762584701409729e-01 +1.3932955886732108e+00 +4.2818428713746162e+00
23 -6.0653903327212779e+00 -2.6838881450153060e+00 +6.7630043754119438e+00
37 -1.0579776808339723e+01 -3.8892391993640034e+00 +1.3381075217951439e+01
26 -7.2335181019782047e+00 -3.1331829046686970e+00 +8.2006703946190154e+00
7 +1.6176269530996734e+00 +2.1323381483718942e+00 +1.0294223905444415e+00
33 -9.4030285154229958e+00 -3.6623273360729955e+00 +1.1481402358700000e+01
17 -2.6786343483216859e+00 -4.8812953327852648e-01 +4.3810096300863188e+00
23 -6.2058034431150313e+00 -2.8516189784547787e+00 +6.7083689293205051e+00
67 -1.6909072528028993e+01 -2.3911037254752712e+00 +2.9035937605107442e+01
23 -6.3833745927401013e+00 -2.9452455097675125e+00 +6.8762581659451776e+00
6 -6.8296012812943019e-01 -2.9942977621450506e-01 +7.6706070382985025e-01
10 -9.8126315419471322e-01 -2.3661063865609844e-02 +1.9152041806582067e+00
0 +5.7982106350815634e+00 +5.7982106350815634e+00 +0.0000000000000000e+00
11 -1.3501638874870379e+00 -3.2011308106384817e-01 +2.0601016128463794e+00
43 -1.2192493550573289e+01 -4.1196420795722730e+00 +1.6145702942002032e+01
9 -1.2593028903325809e+00 -4.3270295902646971e-01 +1.6531998626122224e+00
26 -6.2578642716373176e+00 -2.2062845684156107e+00 +8.1031594064434138e+00
18 -4.6071642202381673e+00 -2.2886078113529225e+00 +4.6371128177704897e+00
10 -1.6054495070597854e+00 -6.2383936794881567e-01 +1.9632202782219395e+00
0 +5.9054976846801948e+00 +5.9054976846801948e+00 +0.0000000000000000e+00
28 -7.9544016666424726e+00 -3.4037434923762198e+00 +9.1013163485325066e+00
13 -2.9739447952442584e+00 -1.6013630431924359e+00 +2.7451635041036448e+00
4 +1.9967631453426975e+00 +2.2200585780891835e+00 +4.4659086549297200e-01
39 -1.0623165622856330e+01 -3.6098560664792703e+00 +1.4026619112754119e+01
4 +1.3492145910943503e+00 +1.5207738925609045e+00 +3.4311860293310836e-01
4 -4.8375924280681382e-02 +1.4610896360477543e-01 +3.8896977577091363e-01
7 +8.1849987178406280e-01 +1.2983567287204032e+00 +9.5971371387268078e-01
5 +1.6411578376630134e+00 +1.8879445182589061e+00 +4.9357336119178541e-01
20 -5.3566590509046721e+00 -2.5267308158062618e+00 +5.6598564701968206e+00
20 -3.7357745162316442e+00 -9.4441504240310703e-01 +5.5827189476570744e+00
0 +6.9003012244484054e+00 +6.9003012244484054e+00 +0.0000000000000000e+00
14 +1.0212512913520566e-01 +1.6552863620284790e+00 +3.1063224657865467e+00
14 -3.4484977966479979e+00 -1.8336229600851968e+00 +3.2297496731256023e+00
33 -8.5640317341738701e+00 -2.9981723641670950e+00 +1.1131718740013550e+01
0 +7.6321228134304206e+00 +7.6321228134304206e+00 +0.0000000000000000e+00
0 +3.0411387531718366e+00 +3.0411387531718366e+00 +0.0000000000000000e+00
0 +3.8803472670016577e+00 +3.8803472670016577e+00 +0.0000000000000000e+00
12 +4.2070184059954663e-01 +1.6582565595913112e+00 +2.4751094379835292e+00
0 +9.4043783383643351e+00 +9.4043783383643351e+00 +0.0000000000000000e+00
3 +3.9493772701791690e+00 +4.0401282575008803e+00 +1.8150197464342277e-01
7 -8.2136167712014529e-01 -3.6756700619833005e-01 +9.0758934184363049e-01
3 +1.2561184081287848e+00 +1.3862458241709996e+00 +2.6025483208442957e-01
46 -1.3514965313978369e+01 -4.6676326406095789e+00 +1.7694665346737580e+01
4 +2.3316433138862669e+00 +2.4883134289675559e+00 +3.1334023016257806e-01
15 -3.1749597466612700e+00 -1.4486952266745639e+00 +3.4525290399734123e+00
0 +3.6076601056818594e+00 +3.6076601056818594e+00 +0.0000000000000000e+00
6 -1.3547629288250551e-01 +2.0571844793874394e-01 +6.8238948164249891e-01
0 +3.3538897545168909e+00 +3.3538897545168909e+00 +0.0000000000000000e+00
29 -6.6085068659091144e+00 -1.9851117443357860e+00 +9.2467902431466573e+00
6 -7.5147980093472455e-01 -3.9214478407419762e-01 +7.1867003372105387e-01
0 +3.9963783521703307e+00 +3.9963783521703307e+00 +0.0000000000000000e+00
0 +3.2911893761129702e+00 +3.2911893761129702e+00 +0.0000000000000000e+00
17 -3.2846786735668649e+00 -1.1408980141492142e+00 +4.2875613188353014e+00
14 -1.4178238173926916e+00 +1.2253279138372619e-01 +3.0807132175528356e+00
14 -3.3434887984775541e+00 -1.6779029394864886e+00 +3.3311717179821310e+00
0 +9.1572547755033096e+00 +9.1572547755033096e+00 +0.0000000000000000e+00
10 -1.2626932054166078e+00 -3.5141586686062176e-01 +1.8225546771119721e+00
19 -1.8461856116383517e+00 +6.1853369726772289e-01 +4.9294386178121492e+00
8 -1.0410086051735501e+00 -3.4965278679539402e-01 +1.3827116367563121e+00
31 -6.5429305189645044e+00 -1.4024683499866222e+00 +1.0280924337955764e+01
1 +1.2012483311196434e+00 +1.2246107704918217e+00 +4.6724878744356602e-02
27 -6.3263423782410699e+00 -2.0387502987785164e+00 +8.5751841589251079e+00
0 +3.4752054267394046e+00 +3.4752054267394046e+00 +0.0000000000000000e+00
14 -3.3260016674493693e+00 -1.6641525377097302e+00 +3.3236982594792783e+00
2 +4.6391346051693745e+00 +4.7074159854863442e+00 +1.3656276063393946e-01
18 -1.7655900381188054e+00 +5.6763635576112303e-01 +4.6664527877598569e+00
5 +2.6107959381474792e+00 +2.9007775105489291e+00 +5.7996314480289968e-01
5 +2.1843942491619988e+00 +2.4627753404760413e+00 +5.5676218262808508e-01
0 +3.6852550999196674e+00 +3.6852550999196674e+00 +0.0000000000000000e+00
9 +2.2205561518413388e+00 +3.0234170340292152e+00 +1.6057217643757529e+00
6 +1.3664382420077841e+00 +1.6966274552596250e+00 +6.6037842650368184e-01
19 -4.4023423595988431e+00 -1.8800350949122522e+00 +5.0446145293731819e+00
0 +3.8688677137151655e+00 +3.8688677137151655e+00 +0.0000000000000000e+00
73 -2.0949919293569959e+01 -4.7907197907594652e+00 +3.2318399005620989e+01
1 +3.5554293807950907e+00 +3.5653571640236477e+00 +1.9855566457113838e-02
61 -1.7504913653374910e+01 -4.7134638568973735e+00 +2.5582899592955073e+01
15 -2.3496916597601460e+00 -6.1989728884619355e-01 +3.4595887418279050e+00
9 -1.1124922469964771e+00 -3.9306629177513219e-01 +1.4388519104426898e+00
40 -1.0130420397429226e+01 -2.7600791428097899e+00 +1.4740682509238873e+01
28 -6.2646417800198462e+00 -1.8712309259120481e+00 +8.7868217082155962e+00
30 -8.2940098011971699e+00 -3.2575093442052663e+00 +1.0073000913983808e+01
16 -3.9789358263553369e+00 -2.0447399120105771e+00 +3.8683918286895196e+00
24 -4.7319936861905374e+00 -1.2309206168595050e+00 +7.0021461386620647e+00
50 -1.4771830397990250e+01 -4.7468160179959664e+00 +2.0050028759988567e+01
66 -1.9775329423936054e+01 -5.7044932592467479e+00 +2.8141672329378611e+01
27 -6.4821921796055166e+00 -2.3071428385722479e+00 +8.3500986820665375e+00
22 -6.0637478907011628e+00 -2.8387301708702379e+00 +6.4500354396618498e+00
19 -3.3145656028033086e+00 -8.2787439053755918e-01 +4.9733824245314988e+00
11 +1.8067628327733143e-01 +1.3070242269646046e+00 +2.2526958873745464e+00
0 +1.0664985244463050e+01 +1.0664985244463050e+01 +0.0000000000000000e+00
11 -7.5458750582718714e-01 +3.4696598960010006e-01 +2.2031069908545744e+00
0 +6.3845634692411757e+00 +6.3845634692411757e+00 +0.0000000000000000e+00
7 +1.2253166144940426e+00 +1.7013611250364296e+00 +9.5208902108477389e-01
0 +2.2332252301150746e+00 +2.2332252301150746e+00 +0.0000000000000000e+00
31 -8.0519218099965713e+00 -2.9846513008391273e+00 +1.0134541018314888e+01
4 +2.4692778009043783e+00 +2.6471239053685025e+00 +3.5569220892824838e-01
6 +3.5474308704061017e+00 +3.9320576649321666e+00 +7.6925358905212970e-01
1 +7.6321929467552163e-01 +7.7371899642427522e-01 +2.0999403497507174e-02
20 -4.6091354660655464e+00 -1.8831451771238030e+00 +5.4519805778834867e+00
37 -1.0129886889420138e+01 -3.5049438312000651e+00 +1.3249886116440146e+01
9 -1.3478953370113151e+00 -6.1126866473294861e-01 +1.4732533445567331e+00
15 -3.5603325674454434e+00 -1.8336902540647766e+00 +3.4532846267613335e+00
23 -5.8756875138002860e+00 -2.4885147744651173e+00 +6.7743454786703374e+00
25 -5.2630197987481564e+00 -1.4901283126568581e+00 +7.5457829721825966e+00
22 -4.6505867423895806e+00 -1.5418656747224535e+00 +6.2174421353342542e+00
7 -5.9552142856104151e-01 -8.8676524949510060e-02 +1.0136898072230629e+00
61 -1.8469603264559318e+01 -5.5085368441738511e+00 +2.5922132840770935e+01
0 +6.5611806224091760e+00 +6.5611806224091760e+00 +0.0000000000000000e+00
45 -1.2454424814746222e+01 -3.8756241090360741e+00 +1.7157601411420295e+01
2 +1.4936790971716833e+00 +1.5443157230138103e+00 +1.0127325168425383e-01
24 -4.9855905349318244e+00 -1.3691134474993452e+00 +7.2329541748649584e+00
0 +5.4059733116587152e+00 +5.4059733116587152e+00 +0.0000000000000000e+00
29 -8.3287727010210553e+00 -3.5109736380446810e+00 +9.6355981259527486e+00
6 -9.0525257564573103e-01 -4.9035877015595108e-01 +8.2978761097955989e-01
8 -6.4300983752890950e-02 +6.2949995221823674e-01 +1.3876018719422554e+00
18 -1.6807476972921531e+00 +5.8624083453305964e-01 +4.5339770636504255e+00
1 +3.5721205803909095e+00 +3.5818192117155454e+00 +1.9397262649271774e-02
24 -6.1577637742262690e+00 -2.4834183189506129e+00 +7.3486909105513121e+00
27 -7.1496869791234205e+00 -2.9244287522105861e+00 +8.4505164538256690e+00
8 -5.6130490268747746e-01 +5.9960502445047581e-02 +1.2425308102650501e+00
22 -4.7031168681283519e+00 -1.4866179789189591e+00 +6.4329977784187857e+00
63 -1.9081574348421938e+01 -5.6305584192753786e+00 +2.6902031858293121e+01
7 +5.8016086062937777e-01 +1.0896938249318202e+00 +1.0190659286048849e+00
0 +1.0253545438881417e+01 +1.0253545438881417e+01 +0.0000000000000000e+00
5 +1.0871323777377295e-01 +3.6012080718820982e-01 +5.0281513882887374e-01
7 +3.5619491977679107e-01 +9.1621270316993719e-01 +1.1200355667862922e+00
0 +4.1014200837547570e+00 +4.1014200837547570e+00 +0.0000000000000000e+00
35 -8.6873618265199930e+00 -2.6505171760394766e+00 +1.2073689300961032e+01
54 -1.6224994615039677e+01 -5.1746625676062212e+00 +2.2100664094866911e+01
18 -4.5215172544928395e+00 -2.2547668545408959e+00 +4.5335007999038872e+00
18 -3.0503700330491101e+00 -8.0720630674103289e-01 +4.4863274526161545e+00
5 +5.8582574879526561e-02 +3.6493540878393382e-01 +6.1270566780881452e-01
25 -6.9733140116971155e+00 -3.1034863034763469e+00 +7.7396554164415372e+00
15 -2.5025936523299910e+00 -6.9523024428651947e-01 +3.6147268160869430e+00
5 +8.0786088450220284e-01 +1.0851325629709074e+00 +5.5454335693740919e-01
0 +8.2691985451022951e+00 +8.2691985451022951e+00 +0.0000000000000000e+00
0 +8.9439917368190862e+00 +8.9439917368190862e+00 +0.0000000000000000e+00
11 -2.7701982669716685e-01 +8.3944868058894606e-01 +2.2329370145722258e+00
16 +1.6645420052293840e+00 +3.6132059006837456e+00 +3.8973277909087232e+00
17 -4.2279921819119410e+00 -2.1299991954245332e+00 +4.1959859729748157e+00
0 +5.4735579139588761e+00 +5.4735579139588761e+00 +0.0000000000000000e+00
0 +5.2417101444202379e+00 +5.2417101444202379e+00 +0.0000000000000000e+00
10 +8.0610931785766571e-01 +1.7383915439886359e+00 +1.8645644522619405e+00
0 +6.5317507188945925e+00 +6.5317507188945925e+00 +0.0000000000000000e+00
99 -3.3176634407111457e+01 -6.2048925977727594e+00 +5.3943483618677398e+01
0 +9.2241116373635972e+00 +9.2241116373635972e+00 +0.0000000000000000e+00
0 +7.0421664921981026e+00 +7.0421664921981026e+00 +0.0000000000000000e+00
10 -1.2322421609594594e+00 -3.0907776287764221e-01 +1.8463287961636343e+00
15 -5.3961510722184336e-01 +1.2975139327884508e+00 +3.6742580800205884e+00
14 -2.9072386225207927e+00 -1.2692769639613632e+00 +3.2759233171188589e+00
28 -7.8564889853050071e+00 -3.3865507006528772e+00 +8.9398765693042606e+00
18 -3.6485330378701759e+00 -1.2474399791371424e+00 +4.8021861174660669e+00
7 -5.4955663167988700e-01 -9.6477835555973002e-02 +9.0615759224782799e-01
12 -4.5392808921571692e-01 +7.6793711457424907e-01 +2.4437304075799320e+00
40 -1.1517800488775020e+01 -4.2167799725608379e+00 +1.4602041032428364e+01
16 -3.9601734181906272e+00 -2.0652037591278667e+00 +3.7899393181255210e+00
54 -1.5250320335764563e+01 -4.4008431550872675e+00 +2.1698954361354591e+01
36 -1.0365917811914290e+01 -3.9422396480742119e+00 +1.2847356327680156e+01
1 +3.0986003703654137e+00 +3.1070907156615215e+00 +1.6980690592215630e-02
13 -1.6112672380173452e+00 -1.9937299450922330e-01 +2.8237884870162437e+00
0 +5.9327072336683333e+00 +5.9327072336683333e+00 +0.0000000000000000e+00
5 -1.1536342275959832e-01 +1.4957033405504294e-01 +5.2986751362928253e-01
0 +9.4473533195992498e+00 +9.4473533195992498e+00 +0.0000000000000000e+00
7 +1.2298526077710132e+00 +1.7154178339471993e+00 +9.7113045235237205e-01
47 -1.2409792749027684e+01 -3.1737629860218575e+00 +1.8472059526011652e+01
29 -7.5360039561605019e+00 -2.8579502357819448e+00 +9.3561074407571141e+00
14 -6.9355418829951265e-01 +9.6648151950494299e-01 +3.3200714156089113e+00
16 -2.9490629426907615e+00 -1.0858325762519732e+00 +3.7264607328775767e+00
1 +1.4179200329325266e+00 +1.4221234178381739e+00 +8.4067698112946232e-03
37 -1.0702475234674058e+01 -3.9774630194365752e+00 +1.3450024430474965e+01
40 -1.1283161019960101e+01 -3.8012845123237775e+00 +1.4963753015272648e+01
0 +1.0122770861521364e+01 +1.0122770861521364e+01 +0.0000000000000000e+00
24 -1.9167801662675474e+00 +1.6864777352401115e+00 +7.2065158030153178e+00
0 +8.0608057827852768e+00 +8.0608057827852768e+00 +0.0000000000000000e+00
18 -4.2852995772786366e+00 -1.9018654301170086e+00 +4.7668682943232561e+00
21 -3.2833633722164537e+00 -2.7099992758961822e-01 +6.0247268892536709e+00
2 +1.5012352645685096e+00 +1.5575394813161045e+00 +1.1260843349518979e-01
8 -1.2488053817540647e+00 -6.4812432294124900e-01 +1.2013621176256315e+00
32 -8.9595087221905487e+00 -3.6519922646765650e+00 +1.0615032915027967e+01
11 +1.2020524818013989e-01 +1.1669169510732664e+00 +2.0934234057862531e+00
33 -9.5395053219915944e+00 -3.8349505662896721e+00 +1.1409109511403845e+01
62 -1.8217802794875535e+01 -5.1828564290961063e+00 +2.6069892731558859e+01
9 +2.8918665079433659e-01 +9.9344885398075267e-01 +1.4085244063728322e+00
18 -4.5447745895626683e+00 -2.2385335689272328e+00 +4.6124820412708711e+00
6 -2.2522060068723082e-01 +1.3069529955327219e-01 +7.1183180048100603e-01
0 +6.2922155637704273e+00 +6.2922155637704273e+00 +0.0000000000000000e+00
17 -3.0694598679607159e+00 -9.7517276423658839e-01 +4.1885742074482550e+00
40 -1.1630241794549921e+01 -4.2939068055100291e+00 +1.4672669978079783e+01
18 -4.1240492853488773e+00 -1.8385167691708197e+00 +4.5710650323561151e+00
16 -2.8989774748500574e+00 -8.9985404880907938e-01 +3.9982468520819561e+00
18 -4.6989974506312739e+00 -2.3570671893355630e+00 +4.6838605225914218e+00
0 +8.1543159398132392e+00 +8.1543159398132392e+00 +0.0000000000000000e+00
18 -3.3574070342167124e+00 -9.9626228499164871e-01 +4.7222894984501274e+00
24 -5.1474780037766878e+00 -1.5349074255305504e+00 +7.2251411564922750e+00
12 -8.4223570570590578e-01 +3.2840701493665714e-01 +2.3412854412851258e+00
13 -2.3083667740166840e+00 -8.2479840457107700e-01 +2.9671367388912140e+00
18 -1.0630573703209274e+00 +1.3587895053515520e+00 +4.8436937513449587e+00
12 -5.7132264516139930e-01 +6.7596196199219527e-01 +2.4945692143071891e+00
0 +2.0596857067425747e+00 +2.0596857067425747e+00 +0.0000000000000000e+00
0 +1.7202082967627694e+00 +1.7202082967627694e+00 +0.0000000000000000e+00
10 -1.7829319802220942e+00 -9.1311642913039659e-01 +1.7396311021833952e+00
9 -8.8577809579452715e-01 -1.2894706640723275e-01 +1.5136620587745888e+00
4 +6.0238434104876415e+00 +6.1993353468217638e+00 +3.5098387266824460e-01
15 -2.5012557770550812e+00 -7.3037633430072058e-01 +3.5417588855087212e+00
17 -1.0227942471438283e+00 +1.0477948237330728e+00 +4.1411781417538016e+00
23 -6.0293452195778174e+00 -2.6625685218588808e+00 +6.7335533954378732e+00
5 +1.5412500175456483e+00 +1.8516506400496282e+00 +6.2080124500795986e-01
42 -1.1320367069757626e+01 -3.4911733138348922e+00 +1.5658387511845469e+01
19 -5.0652795239157209e+00 -2.4537601925133035e+00 +5.2230386628048349e+00
6 -3.5303378718842904e-01 +8.6044461619583679e-02 +8.7815649761602543e-01
9 -1.2312209924125739e+00 -4.2052733670385489e-01 +1.6213873114174380e+00
21 -4.0636039546567373e+00 -1.1346503138353001e+00 +5.8579072816428743e+00
52 -1.5392505117993675e+01 -5.0485889425913530e+00 +2.0687832350804644e+01
5 -2.1060203001871081e-01 +3.7226357195448756e-02 +4.9565677442831912e-01
0 +8.6644700709848443e+00 +8.6644700709848443e+00 +0.0000000000000000e+00
7 +2.3368488379117696e+00 +2.8857487075354378e+00 +1.0977997392473364e+00
34 -9.8733130924056027e+00 -3.9232280453038126e+00 +1.1900170094203581e+01
30 -7.2153771968977223e+00 -2.3272691425589378e+00 +9.7762161086775698e+00
14 -3.3033510562049804e+00 -1.7907536150906087e+00 +3.0251948822287433e+00
52 -1.3002533924904451e+01 -2.6108093935991472e+00 +2.0783449062610607e+01
10 -1.7525835058473431e+00 -8.0688740592429209e-01 +1.8913921998461021e+00
12 +2.6988293073752625e+00 +3.9589431233105787e+00 +2.5202276318706325e+00
10 -1.5545146734979927e+00 -6.1128057662873037e-01 +1.8864681937385246e+00
14 -9.5903384824803428e-01 +5.7242754516122840e-01 +3.0629227868185254e+00
29 -4.5966817911406528e+00 +4.8704044607052355e-02 +9.2907716714954098e+00
32 -6.6668047830006296e+00 -1.1749964537163644e+00 +1.0983616658568531e+01
16 -2.2498471151436314e+00 -3.7510508600573722e-01 +3.7494840582757885e+00
0 +5.1449560451804732e+00 +5.1449560451804732e+00 +0.0000000000000000e+00
0 +8.1905714225986124e+00 +8.1905714225986124e+00 +0.0000000000000000e+00
32 -8.9490319755544512e+00 -3.4908343082195818e+00 +1.0916395334669739e+01
10 +9.0537534917714257e-01 +1.8364119570036888e+00 +1.8620732156530924e+00
0 +3.8672183397598627e+00 +3.8672183397598627e+00 +0.0000000000000000e+00
0 +8.1504290614809580e+00 +8.1504290614809580e+00 +0.0000000000000000e+00
19 -3.1632283817132665e+00 -6.0546545637073423e-01 +5.1155258506850645e+00
11 -8.4371489377040643e-01 +1.6583489892788528e-01 +2.0190995853965834e+00
3 +1.2030961729450036e+00 +1.2789103959787567e+00 +1.5162844606750614e-01
35 -9.6351354209459075e+00 -3.5429135154783626e+00 +1.2184443810935090e+01
8 -8.5103381542825129e-01 -1.9024182139079926e-01 +1.3215839880749041e+00
8 +4.7815917905074450e+00 +5.3796652696748932e+00 +1.1961469583348965e+00
0 +4.2135628531977503e+00 +4.2135628531977503e+00 +0.0000000000000000e+00
20 -4.8807223386121068e+00 -2.0999889701467027e+00 +5.5614667369308082e+00
14 -2.8333720924381582e+00 -1.3206322073871735e+00 +3.0254797701019696e+00
18 -3.2352679896780225e+00 -9.9338292399791195e-01 +4.4837701313602212e+00
12 -1.9069114257710877e+00 -7.2239917008667653e-01 +2.3690245113688224e+00
0 +4.7708135185537435e+00 +4.7708135185537435e+00 +0.0000000000000000e+00
20 -3.6066712806414687e+00 -8.3744616900093583e-01 +5.5384502232810657e+00
2 +4.1777704642319229e+00 +4.2178696538431533e+00 +8.0198379222460758e-02
27 -4.2800295243973343e+00 -8.3666063203748919e-02 +8.3927269223871708e+00
18 -4.1029687951601987e+00 -1.8487928566159999e+00 +4.5083518770883977e+00
2 +1.8128194909174331e+00 +1.8718771999999091e+00 +1.1811541816495197e-01
22 -5.8836469759906320e+00 -2.6461260316235107e+00 +6.4750418887342427e+00
0 +8.5569475887310755e+00 +8.5569475887310755e+00 +0.0000000000000000e+00
18 -2.3892191029110412e+00 +3.4434092500705837e-02 +4.8473063908234941e+00
51 -1.2160406356735017e+01 -1.9853385045511929e+00 +2.0350135704367649e+01
2 +3.7683167128555493e+00 +3.7985557785543609e+00 +6.0478131397623258e-02
9 +7.0746419095720103e-01 +1.4549133939812990e+00 +1.4948984060481960e+00
34 -9.2439143241017945e+00 -3.3935456079103594e+00 +1.1700737432382869e+01
8 +1.5308488195066952e+00 +2.1866276414177683e+00 +1.3115576438221463e+00
7 +4.3651598810729464e+00 +4.9100981484445612e+00 +1.0898765347432295e+00
29 -8.2547914379505549e+00 -3.4987643218497562e+00 +9.5120542322015975e+00
0 +9.6953754170456126e+00 +9.6953754170456126e+00 +0.0000000000000000e+00
25 -3.1878782657624400e+00 +7.0280283117972919e-01 +7.7813621938843385e+00
24 -4.1504336306621274e+00 -6.6664389648016797e-01 +6.9675794683639189e+00
15 -3.2292739719895183e+00 -1.5061240794984161e+00 +3.4462997849822044e+00
21 -4.7314682197296500e+00 -1.7094542772780295e+00 +6.0440278849032412e+00
11 -2.5817172321322674e+00 -1.4516435900485867e+00 +2.2601472841673615e+00
0 +8.9715990333164974e+00 +8.9715990333164974e+00 +0.0000000000000000e+00
0 +8.9873194300120716e+00 +8.9873194300120716e+00 +0.0000000000000000e+00
19 -4.9071660766503795e+00 -2.4421881195841144e+00 +4.9299559141325302e+00
22 -5.7109852991148822e+00 -2.6220579521479683e+00 +6.1778546939338277e+00
21 -2.8944002432190148e+00 +1.3454036286320648e-01 +6.0578812121644425e+00
0 +8.1104586677297767e+00 +8.1104586677297767e+00 +0.0000000000000000e+00
3 +1.8710963963951706e+00 +1.9743158033789321e+00 +2.0643881396752306e-01
0 +6.4141654906544376e+00 +6.4141654906544376e+00 +0.0000000000000000e+00
13 -3.0348131924382100e+00 -1.5946492322804358e+00 +2.8803279203155485e+00
32 -6.0015623559071853e+00 -6.5270489976690182e-01 +1.0697714912280567e+01
12 -1.0851285393164778e+00 +1.4101209505869372e-01 +2.4522812687503430e+00
0 +7.7928466583211886e+00 +7.7928466583211886e+00 +0.0000000000000000e+00
3 +9.8999431037530528e-01 +1.0985239183946121e+00 +2.1705921603861356e-01
21 -1.6042192790806995e+00 +1.2608119955051769e+00 +5.7300625491717527e+00
12 -1.9330779708355257e+00 -7.4346198956071419e-01 +2.3792319625496230e+00
16 -3.7424231744001988e+00 -1.7140932573287424e+00 +4.0566598341429128e+00
33 -8.2455980509706102e+00 -2.6588135846420959e+00 +1.1173568932657028e+01
2 +4.6609235180931528e+00 +4.6971036409566427e+00 +7.2360245726979855e-02
19 -3.0233510695933665e+00 -5.5516219447013748e-01 +4.9363777502464581e+00
48 -1.3714929876421511e+01 -4.3417603694154119e+00 +1.8746339014012200e+01
30 -7.6200120657896742e+00 -2.5732340499008806e+00 +1.0093556031777588e+01
1 +2.2336771591989271e+00 +2.2430748498472313e+00 +1.8795381296608404e-02
6 +1.1386860735905753e+00 +1.4979481263286845e+00 +7.1852410547621837e-01
8 -9.4408218833100133e-01 -2.5102695287884202e-01 +1.3861104709043186e+00
29 -6.6713888199188043e+00 -1.9228922767277894e+00 +9.4969930863820302e+00
0 +7.8240238308512478e+00 +7.8240238308512478e+00 +0.0000000000000000e+00
10 -2.0208452283267926e+00 -1.1628141428826000e+00 +1.7160621708883852e+00
43 -1.2633180964809231e+01 -4.5361067258051504e+00 +1.6194148478008159e+01
21 -5.1985578797049277e+00 -2.1936924047249549e+00 +6.0097309499599456e+00
25 -6.5756363818770618e+00 -2.6704574230828890e+00 +7.8103579175883455e+00
0 +5.3448251851629909e+00 +5.3448251851629909e+00 +0.0000000000000000e+00
7 -9.0655989717993979e-01 -4.0771405439085662e-01 +9.9769168557816634e-01
35 -9.3826700294144807e+00 -3.2733467568489685e+00 +1.2218646545131024e+01
13 -2.6598096272238854e+00 -1.2038092765255395e+00 +2.9120007013966918e+00
28 -7.2715067306490164e+00 -2.7059840540944120e+00 +9.1310453531092080e+00
23 -2.2446775919119490e+00 +1.0908904568356861e+00 +6.6711360974952703e+00
10 +1.5616951897440678e-01 +1.0221813855839610e+00 +1.7320237332191084e+00
32 -7.5095568726792221e+00 -2.0319501978151644e+00 +1.0955213349728115e+01
3 +2.5395182668814744e+00 +2.6816365176954751e+00 +2.8423650162800129e-01
3 +2.9652558698771929e+00 +3.0739519186011730e+00 +2.1739209744796018e-01
11 -2.5639669312290545e+00 -1.4338137769515633e+00 +2.2603063085549824e+00
34 -8.1125799141186050e+00 -2.1265063831130351e+00 +1.1972147062011139e+01
15 -3.3710353914830558e+00 -1.5908668422684209e+00 +3.5603370984292697e+00
16 -3.1020304218230601e+00 -1.1339970102588337e+00 +3.9360668231284528e+00
7 -1.1766579359123597e+00 -6.7677044120798246e-01 +9.9977498940875442e-01
9 -1.7434073645182506e+00 -1.0137749208464006e+00 +1.4592648873437000e+00
3 +2.0520787578006647e+00 +2.1373566213771924e+00 +1.7055572715305534e-01
4 +7.4871450735972545e-01 +9.2259591045968481e-01 +3.4776280619991873e-01
18 -3.9290206381673523e+00 -1.6520460736688731e+00 +4.5539491289969583e+00
5 +1.5343049364737000e+00 +1.7980598248341719e+00 +5.2750977672094379e-01
18 -4.4911072080034868e+00 -2.2108913693958456e+00 +4.5604316772152824e+00
0 +4.6386533716621630e+00 +4.6386533716621630e+00 +0.0000000000000000e+00
1 +8.0874401526164696e-01 +8.1520138620904881e-01 +1.2914741894803683e-02
29 -4.9149606845369691e+00 -1.5880751061050935e-01 +9.5123063478529204e+00
37 -8.0357467759013481e+00 -1.5127717719992007e+00 +1.3045950007804295e+01
20 -4.3694976945211339e+00 -1.6060830818697718e+00 +5.5268292253027242e+00
6 -4.7231050362935179e-02 +3.0361968334640999e-01 +7.0170146741869033e-01
7 -1.3053247474675533e+00 -7.4963405957668883e-01 +1.1113813757817290e+00
16 -3.7231405987031083e+00 -1.8033375603361437e+00 +3.8396060767339293e+00
15 -1.4011042557305364e+00 +2.8088497751114794e-01 +3.3639784664833687e+00
18 -4.5740925742765297e+00 -2.3126167830384174e+00 +4.5229515824762245e+00
6 -6.6024000806399119e-01 -2.8593370052500955e-01 +7.4861261507796328e-01
7 -9.1194698145946340e-01 -4.0280092904326903e-01 +1.0182921048323887e+00
0 +9.7935879552521605e+00 +9.7935879552521605e+00 +0.0000000000000000e+00
1 +4.3960940655707041e+00 +4.4026953335298860e+00 +1.3202535918363623e-02
22 -3.1171909066944474e+00 +1.2668794243462678e-02 +6.2597194018758202e+00
20 -5.2133225800247702e+00 -2.5377387095224617e+00 +5.3511677410046170e+00
0 +4.5546209322296880e+00 +4.5546209322296880e+00 +0.0000000000000000e+00
8 -7.2384916701344881e-01 -1.5889922420520808e-01 +1.1298998856164815e+00
0 +4.4854036738848553e+00 +4.4854036738848553e+00 +0.0000000000000000e+00
0 +2.8655648588180695e+00 +2.8655648588180695e+00 +0.0000000000000000e+00
5 +7.6365671487041986e-02 +3.7647342302296050e-01 +6.0021550307183702e-01
62 -1.6700789505990535e+01 -3.5044440156181103e+00 +2.6392690980744849e+01
27 -7.3649275298169110e+00 -3.0191490669116350e+00 +8.6915569258105521e+00
36 -9.8751294357683825e+00 -3.4944596965189740e+00 +1.2761339478498817e+01
60 -1.7354480456466135e+01 -4.8412094388476765e+00 +2.5026542035236915e+01
27 -6.3290532368070069e+00 -2.1490483232046356e+00 +8.3600098272047418e+00
7 +3.3967345475436961e-01 +8.4036785490073296e-01 +1.0013888002927267e+00
8 +9.6228140650290506e-02 +7.6118876836179838e-01 +1.3299212554230158e+00
5 +3.8762235194521022e-01 +6.4985745465941491e-01 +5.2447020542840939e-01
28 -7.8389220280929850e+00 -3.3640950849162032e+00 +8.9496538863535626e+00
20 -4.8211999505984453e+00 -2.0286112570334622e+00 +5.5851773871299661e+00
31 -7.0008654050669294e+00 -1.7762054324633425e+00 +1.0449319945207174e+01
24 -6.4697387628344680e+00 -2.9274070753371007e+00 +7.0846633749947348e+00
9 +1.7682212776057060e-01 +9.4117309290576712e-01 +1.5287019302903930e+00
25 -6.8956286391727124e+00 -3.0922529582676206e+00 +7.6067513618101836e+00
11 -2.0983728791973997e+00 -1.0845009958977441e+00 +2.0277437665993112e+00
7 -1.0036778824299075e+00 -4.8971099973675081e-01 +1.0279337653863134e+00
0 +6.4999300361390171e+00 +6.4999300361390171e+00 +0.0000000000000000e+00
33 -5.7083667482437663e+00 +5.2807695877435501e-02 +1.1522348888242403e+01
19 -8.4894775705432757e-01 +1.6203243444966611e+00 +4.9385442031019773e+00
31 -8.0994904254779776e+00 -2.9686706173552384e+00 +1.0261639616245478e+01
0 +3.8551178977365002e+00 +3.8551178977365002e+00 +0.0000000000000000e+00
43 -1.1224254602563089e+01 -3.1786008029659607e+00 +1.6091307599194259e+01
17 -3.1015217685266707e+00 -1.0455709506748798e+00 +4.1119016357035818e+00
0 +4.8897250818951168e+00 +4.8897250818951168e+00 +0.0000000000000000e+00
42 -1.2019333651352603e+01 -4.2560137540129386e+00 +1.5526639794679330e+01
25 -4.7974046930482865e+00 -8.9168810664379050e-01 +7.8114331728089921e+00
40 -1.0016040135779072e+01 -2.5989345553053722e+00 +1.4834211160947399e+01
17 -4.0822007285760469e+00 -2.0106141995482627e+00 +4.1431730580555683e+00
2 +3.0105207311323658e+00 +3.0807138393118203e+00 +1.4038621635890891e-01
36 -9.8360815302400688e+00 -3.5675269255215438e+00 +1.2537109209437050e+01
15 -3.7526287413658528e+00 -1.9860934762773650e+00 +3.5330705301769756e+00
13 -2.3180393779007806e+00 -8.7601138478913443e-01 +2.8840559862232924e+00
8 -1.5786803594565875e+00 -9.2031928227924453e-01 +1.3167221543546859e+00
1 +4.0782599236807275e+00 +4.0856047531634854e+00 +1.4689658965515662e-02
8 +2.5931449776371007e-01 +9.3969112446958514e-01 +1.3607532534117501e+00
16 -3.5396067016703716e+00 -1.5678645425304607e+00 +3.9434843182798218e+00
36 -1.0541962655856231e+01 -4.0821050578208888e+00 +1.2919715196070685e+01
0 +3.0651105399469105e+00 +3.0651105399469105e+00 +0.0000000000000000e+00
5 +4.5110564798192954e-01 +7.5135175442362634e-01 +6.0049221288339361e-01
22 -5.8108514917032332e+00 -2.7274674767866465e+00 +6.1667680298331735e+00
12 -8.2060512981684752e-01 +4.4242177425771079e-01 +2.5260538081491166e+00
10 -9.6725646584689429e-01 -1.0009479912246633e-01 +1.7343233334488559e+00
21 -5.2543289596321410e+00 -2.3381918563619917e+00 +5.8322742065402986e+00
0 +7.0569372240268606e+00 +7.0569372240268606e+00 +0.0000000000000000e+00
10 -1.6446967668276793e+00 -7.9576282924854702e-01 +1.6978678751582645e+00
14 -2.8496925849330639e+00 -1.3406954998997365e+00 +3.0179941700666548e+00
0 +5.1068839972466513e+00 +5.1068839972466513e+00 +0.0000000000000000e+00
0 +4.7243500934456470e+00 +4.7243500934456470e+00 +0.0000000000000000e+00
21 -4.8873107654907146e+00 -1.9354084509460283e+00 +5.9038046290893726e+00
53 -1.3848563397722007e+01 -3.2438614560941037e+00 +2.1209403883255806e+01
5 +2.0573951779381376e+00 +2.3208624241320055e+00 +5.2693449238773571e-01
27 -5.2556383509204965e+00 -1.0661201056955969e+00 +8.3790364904497991e+00
1 +4.0685934828909174e+00 +4.0707474560851473e+00 +4.3079463884598823e-03
5 +1.0331723326728994e+00 +1.3022424279576645e+00 +5.3814019056953022e-01
16 -1.6866958597107748e+00 +2.5608577794074838e-01 +3.8855632753030465e+00
25 -6.4082259013685290e+00 -2.6345859241746656e+00 +7.5472799543877267e+00
0 +4.3558672542142762e+00 +4.3558672542142762e+00 +0.0000000000000000e+00
20 -4.8217189980479054e+00 -2.0595499132350041e+00 +5.5243381696258025e+00
0 +3.9794267011208966e+00 +3.9794267011208966e+00 +0.0000000000000000e+00
0 +9.1975691171511809e+00 +9.1975691171511809e+00 +0.0000000000000000e+00
24 -6.3747752863008982e+00 -2.7929213933379353e+00 +7.1637077859259257e+00
0 +3.8632937013674820e+00 +3.8632937013674820e+00 +0.0000000000000000e+00
12 -1.3127955727822780e+00 -1.9928199608721719e-02 +2.5857347463471125e+00
1 +4.6096239761848414e+00 +4.6215804995011469e+00 +2.3913046632610957e-02
18 -2.4699614548529381e+00 -2.0335702276942769e-01 +4.5332088641670207e+00
11 -7.8499314094969552e-01 +3.1503463865640535e-01 +2.2000555592122018e+00
0 +1.4729182963966094e+00 +1.4729182963966094e+00 +0.0000000000000000e+00
37 -1.0418414996909927e+01 -3.7058383489826268e+00 +1.3425153295854601e+01
7 +1.1722422050815320e+00 +1.7316056724697066e+00 +1.1187269347763493e+00
0 +3.3430221956800894e+00 +3.3430221956800894e+00 +0.0000000000000000e+00
43 -1.0743494779379727e+01 -2.7071468077797167e+00 +1.6072695943200021e+01
9 -1.2181982633285555e+00 -4.2748882999134086e-01 +1.5814188666744293e+00
9 -1.0896183975711162e+00 -3.7505376557068359e-01 +1.4291292640008653e+00
18 -4.5496787849762894e+00 -2.1636893291136960e+00 +4.7719789117251867e+00
11 +3.2426007011330986e+00 +4.3760817852989033e+00 +2.2669621683316095e+00
10 -2.1149601687458377e+00 -1.2047769776925152e+00 +1.8203663821066449e+00
2 +2.1555663217100332e+00 +2.2117428322907715e+00 +1.1235302116147672e-01
0 +1.2586076586817869e+00 +1.2586076586817869e+00 +0.0000000000000000e+00
14 -2.5311630271085326e+00 -8.8724752176313837e-01 +3.2878310106907884e+00
2 +7.6347097419186216e-01 +8.1875867871428376e-01 +1.1057540904484320e-01
0 +4.9012028177244673e+00 +4.9012028177244673e+00 +0.0000000000000000e+00
12 -2.1314976835749322e+00 -9.6832312220529904e-01 +2.3263491227392663e+00
19 -3.1548820200601861e+00 -5.8354629670210523e-01 +5.1426714467161618e+00
18 -4.3035369978859075e+00 -1.9700600389502974e+00 +4.6669539178712203e+00
56 -1.4223083959890062e+01 -2.6498670214201141e+00 +2.3146433876939895e+01
0 +1.7037020782515135e+00 +1.7037020782515135e+00 +0.0000000000000000e+00
50 -1.4729465141135677e+01 -4.7317227463532241e+00 +1.9995484789564905e+01
2 +6.6734084974874275e-01 +7.2865487803833151e-01 +1.2262805657917752e-01
40 -1.1162822174860956e+01 -3.8406606189626680e+00 +1.4644323111796577e+01
14 -1.7163225705716361e+00 -1.9620336808107197e-01 +3.0402384049811282e+00
11 -2.2439948497260973e+00 -1.2396601825197351e+00 +2.0086693344127244e+00
11 -4.7783585864930611e-01 +6.6260329292882592e-01 +2.2808783031562641e+00
15 -3.0411815209082311e+00 -1.2330523941691767e+00 +3.6162582534781089e+00
16 -2.9738515691981080e+00 -9.5604720933753651e-01 +4.0356087197211430e+00
17 -2.9992930664102788e+00 -7.9962157377335386e-01 +4.3993429852738499e+00
20 -2.4362387468307043e+00 +3.0633282476568180e-01 +5.4851431431927722e+00
9 -1.4483151433452690e-01 +6.5855142085699958e-01 +1.6067658703830530e+00
1 +8.5687313971966805e-01 +8.6885708493782676e-01 +2.3967890436317418e-02
22 -6.0236562020511579e+00 -2.8315889104930179e+00 +6.3841345831162801e+00
4 -7.2095760164913258e-02 +1.4577357566653681e-01 +4.3573867166290015e-01
10 -2.8114812408808110e-01 +6.6609168228123306e-01 +1.8944796127386283e+00
0 +6.1696695157883621e+00 +6.1696695157883621e+00 +0.0000000000000000e+00
0 +1.6607967322930550e+00 +1.6607967322930550e+00 +0.0000000000000000e+00
0 +4.2066006691376678e+00 +4.2066006691376678e+00 +0.0000000000000000e+00
0 +7.0060441602186412e+00 +7.0060441602186412e+00 +0.0000000000000000e+00
45 -1.0254890803356719e+01 -1.6400074201010377e+00 +1.7229766766511364e+01
2 +4.7071571224020552e+00 +4.7656057784606736e+00 +1.1689731211723675e-01
5 -4.9702377128067976e-01 -1.8805298770715861e-01 +6.1794156714704229e-01
8 -1.4104304105045653e+00 -8.1450109852117336e-01 +1.1918586239667839e+00
23 -5.5393731015677554e+00 -2.0863351507444161e+00 +6.9060759016466786e+00
16 -3.5305103261269979e+00 -1.5727463657613416e+00 +3.9155279207313125e+00
0 +5.3386738421558464e+00 +5.3386738421558464e+00 +0.0000000000000000e+00
3 +1.4824446130924844e+00 +1.5994474798996055e+00 +2.3400573361424204e-01
45 -1.2694325468714663e+01 -4.0384972331913813e+00 +1.7311656471046561e+01
8 +2.7875947744836540e+00 +3.3773612425818649e+00 +1.1795329361964217e+00
9 -2.0468804083383940e-01 +6.0485890708047663e-01 +1.6190938958286321e+00
9 -1.5817905150728055e+00 -8.2630235789766182e-01 +1.5109763143502875e+00
0 +3.1307926311425929e+00 +3.1307926311425929e+00 +0.0000000000000000e+00
23 -6.0729227668342558e+00 -2.6318535962435590e+00 +6.8821383411813937e+00
25 -6.2550299294779395e+00 -2.5315484119326084e+00 +7.4469630350906622e+00
10 -1.0353240492794606e+00 -6.1362708336367255e-02 +1.9479226818861868e+00
16 -3.9586793521291606e+00 -1.9661674227737924e+00 +3.9850238587107363e+00
5 -5.5777899361549288e-01 -2.3727381855260088e-01 +6.4101035012578400e-01
8 +9.9314809682379934e-01 +1.6637079003694870e+00 +1.3411196070913753e+00
0 +3.7298719157210876e+00 +3.7298719157210876e+00 +0.0000000000000000e+00
0 +4.5225782453000054e+00 +4.5225782453000054e+00 +0.0000000000000000e+00
45 -1.0445764047008872e+01 -1.7748935565302140e+00 +1.7341740980957315e+01
27 -4.4122147635776114e+00 -2.5756522199358312e-01 +8.3092990831680567e+00
13 -3.1153443936819523e+00 -1.7052971612887649e+00 +2.8200944647863748e+00
22 -5.4384638355675063e+00 -2.2684872035060994e+00 +6.3399532641228138e+00
0 +4.1304561725669027e+00 +4.1304561725669027e+00 +0.0000000000000000e+00
4 +2.1814258687494439e+00 +2.4078433172578810e+00 +4.5283489701687429e-01
0 +9.2260494677632146e+00 +9.2260494677632146e+00 +0.0000000000000000e+00
18 -2.9716819660293483e+00 -6.1666856467019038e-01 +4.7100268027183159e+00
3 +3.2851525805564208e+00 +3.3724387031630974e+00 +1.7457224521335313e-01
15 -3.7922759133465176e+00 -1.9628911141822907e+00 +3.6587695983284538e+00
14 -3.2914257969220069e+00 -1.7846669156932928e+00 +3.0135177624574281e+00
0 +9.1162298198734444e+00 +9.1162298198734444e+00 +0.0000000000000000e+00
18 -4.7978275090756108e+00 -2.3893034958869643e+00 +4.8170480263772930e+00
23 -5.3003618410612185e+00 -1.8550612546335215e+00 +6.8906011728553942e+00
0 +6.7486288468239852e+00 +6.7486288468239852e+00 +0.0000000000000000e+00
16 -3.9535286299348451e+00 -1.9935704399613741e+00 +3.9199163799469421e+00
21 -4.8362770998768747e+00 -1.8576190938104937e+00 +5.9573160121327620e+00
14 +4.2829422241340875e-01 +2.0154918172388703e+00 +3.1743951896509230e+00
7 -1.0546399510511177e+00 -5.5847002664135914e-01 +9.9233984881951720e-01
13 -1.5474269934381342e+00 -1.2699994717769458e-01 +2.8408540925208792e+00
14 -2.5437557305870486e+00 -8.8700470045354463e-01 +3.3135020602670080e+00
43 -1.2277861001160144e+01 -4.2633955489132553e+00 +1.6028930904493777e+01
0 +2.4162536641532273e+00 +2.4162536641532273e+00 +0.0000000000000000e+00
0 +6.3185755803126948e+00 +6.3185755803126948e+00 +0.0000000000000000e+00
49 -1.2339409098923994e+01 -2.6953739946357329e+00 +1.9288070208576521e+01
4 +3.3648468608759083e+00 +3.5686497957832111e+00 +4.0760586981460545e-01
25 -7.0387930005229444e+00 -3.1362646230936000e+00 +7.8050567548586889e+00
0 +8.1620946674825756e+00 +8.1620946674825756e+00 +0.0000000000000000e+00
17 -2.3182191115572506e+00 -2.7162139755907067e-01 +4.0931954279963598e+00
1 +2.5264694774584115e+00 +2.5379098507467788e+00 +2.2880746576734445e-02
18 -2.2200434172774832e+00 +1.4158649037451054e-01 +4.7232598153039875e+00
3 +7.7804462256593698e-01 +8.8431378407022798e-01 +2.1253832300858200e-01
7 -1.9571301704600330e-01 +2.8803960201430012e-01 +9.6750523812060685e-01
7 +2.3879010112410004e-01 +7.0891639161583520e-01 +9.4025258098347031e-01
19 -4.5559099553123472e+00 -2.0823967890281527e+00 +4.9470263325683890e+00
2 +3.0916309726736007e+00 +3.1400729308077695e+00 +9.6883916268337700e-02
8 -1.0325867836155176e+00 -3.3562216970071557e-01 +1.3939292278296040e+00
12 -2.4770848184964818e+00 -1.3221799825106233e+00 +2.3098096719717169e+00
0 +4.3735865109596173e+00 +4.3735865109596173e+00 +0.0000000000000000e+00
1 +7.9914692980467716e-01 +8.0752308669687345e-01 +1.6752313784392570e-02
4 +1.5027018452786844e-01 +3.6421977791074678e-01 +4.2789918676575667e-01
0 +6.7869625789012487e+00 +6.7869625789012487e+00 +0.0000000000000000e+00
15 -3.2072193146354584e+00 -1.4347670884736474e+00 +3.5449044523236219e+00
0 +1.3716518184563210e+01 +1.3716518184563210e+01 +0.0000000000000000e+00
7 +9.8893605477497903e-01 +1.5362155315340402e+00 +1.0945589535181224e+00
11 -1.3045864785595525e+00 -2.7062559342166814e-01 +2.0679217702757686e+00
16 -7.0466762502762048e-01 +1.2130454776643136e+00 +3.8354262053838681e+00
13 -1.7575674451290819e+00 -3.2350400185046890e-01 +2.8681268865572260e+00
9 -9.5088597691316856e-01 -1.7491319847840625e-01 +1.5519455568695246e+00
23 -5.2088747586294408e+00 -1.9127396104201271e+00 +6.5922702964186275e+00
44 -1.3100568919385491e+01 -4.6269222225232820e+00 +1.6947293393724419e+01
4 +1.1060067166124989e+00 +1.2870276357325445e+00 +3.6204183824009117e-01
2 +9.2414047197593607e-01 +9.7592124800145275e-01 +1.0356155205103335e-01
2 +4.6600001635782258e+00 +4.7314347328682285e+00 +1.4286913858000538e-01
1 +5.4271795000974032e+00 +5.4373990532452137e+00 +2.0439106295620846e-02
5 +2.2315480643544419e+00 +2.4909600932252336e+00 +5.1882405774158347e-01
12 -1.4575939184016624e+00 -1.6909873115470742e-01 +2.5769903744939100e+00
15 -3.0354404477280186e+00 -1.3348761778711418e+00 +3.4011285397137536e+00
19 -4.8794447028265671e+00 -2.3919912674822439e+00 +4.9749068706886463e+00
16 -3.8976502622885834e+00 -1.8573618286164182e+00 +4.0805768673443303e+00
23 -5.1366622570254181e+00 -1.8215183515357043e+00 +6.6302878109794277e+00
3 -1.9254825518316032e-02 +1.1898932983619392e-01 +2.7648831070901991e-01
13 -3.0318362834040355e+00 -1.6432834971165557e+00 +2.7771055725749596e+00
22 -5.3628782416830569e+00 -2.1801113628150084e+00 +6.3655337577360971e+00
14 -3.1564352738581354e+00 -1.5433453794932119e+00 +3.2261797887298469e+00
34 -9.7435145491862123e+00 -3.8833446942106202e+00 +1.1720339709951183e+01
0 +4.1600984972534345e+00 +4.1600984972534345e+00 +0.0000000000000000e+00
37 -1.0568222208500515e+01 -4.0134521631875009e+00 +1.3109540090626028e+01
50 -1.4777683104073571e+01 -4.7750176375725495e+00 +2.0005330933002043e+01
20 -3.4718486994765163e+00 -7.2240090027320658e-01 +5.4988955984066195e+00
14 -2.2878115021119845e+00 -6.4315174338721448e-01 +3.2893195174495400e+00
9 +5.0934264924144657e-01 +1.2681756180195052e+00 +1.5176659375561172e+00
16 -4.1062922900082279e+00 -2.1286485835279345e+00 +3.9552874129605868e+00
22 -3.5769965347217552e+00 -4.2120545726068670e-01 +6.3115821549221369e+00
10 +5.8761596598834220e-01 +1.4546577402776224e+00 +1.7340835485785604e+00
27 -7.1634153710494912e+00 -3.0071987054814331e+00 +8.3124333311361163e+00
31 -8.2097265931392620e+00 -2.9469649423535511e+00 +1.0525523301571422e+01
10 -8.7048884801850157e-01 -2.3669177795400120e-02 +1.6936393404462029e+00
32 -8.5498947054146406e+00 -3.1770205851965905e+00 +1.0745748240436100e+01
0 +8.2050550311085715e+00 +8.2050550311085715e+00 +0.0000000000000000e+00
14 -2.0157955986719065e+00 -3.8858114644363972e-01 +3.2544289044565335e+00
0 +1.4722855456748235e+01 +1.4722855456748235e+01 +0.0000000000000000e+00
2 +3.1527948920864897e+00 +3.2262471822801615e+00 +1.4690458038734366e-01
11 -2.2140908824698498e+00 -1.0628240259018753e+00 +2.3025337131359489e+00
5 -1.8417938957727298e-01 +5.3178695747466698e-02 +4.7471617064947935e-01
0 +1.0068934534850692e+01 +1.0068934534850692e+01 +0.0000000000000000e+00
0 +1.9602781965137277e+00 +1.9602781965137277e+00 +0.0000000000000000e+00
0 +8.7747871607880708e+00 +8.7747871607880708e+00 +0.0000000000000000e+00
0 +1.8842645385229627e+01 +1.8842645385229627e+01 +0.0000000000000000e+00
15 -2.1294867500139700e+00 -2.8345940567526728e-01 +3.6920546886774055e+00
23 -5.6613704764009212e+00 -2.3410725515948867e+00 +6.6405958496120689e+00
0 +6.4360355124212818e+00 +6.4360355124212818e+00 +0.0000000000000000e+00
10 -3.6647733985369157e-01 +4.7773559613470296e-01 +1.6884258719767891e+00
7 -4.9008557252405005e-01 -2.7095388279004595e-02 +9.2598036849009091e-01
15 -2.5351375230961510e+00 -7.0435657231603654e-01 +3.6615619015602290e+00
0 +8.7857682776656194e+00 +8.7857682776656194e+00 +0.0000000000000000e+00
5 +3.3802426815063491e-01 +5.9531890851990887e-01 +5.1458928073854793e-01
27 -7.3226240365165092e+00 -3.1342377563623787e+00 +8.3767725603082610e+00
8 -8.4411242813162790e-01 -2.7773775623903241e-01 +1.1327493437851910e+00
29 -7.8355268390989581e+00 -3.2295595628530611e+00 +9.2119345524917939e+00
13 -1.1226222026988086e+00 +2.2229223747827742e-01 +2.6898288803541721e+00
3 +2.2541412014664086e-01 +3.0551310501801510e-01 +1.6019796974274847e-01
0 +2.0670880186367633e+00 +2.0670880186367633e+00 +0.0000000000000000e+00
9 +9.1962231402055838e-01 +1.7593584334116410e+00 +1.6794722387821652e+00
5 +3.7428262927258018e+00 +4.0013665458035614e+00 +5.1708050615551926e-01
18 -4.5540520402221807e+00 -2.2934417651760119e+00 +4.5212205500923375e+00
0 +6.1791640125929286e+00 +6.1791640125929286e+00 +0.0000000000000000e+00
14 -3.3925558261047870e+00 -1.7808018365110132e+00 +3.2235079791875476e+00
1 +1.1575695200733032e+00 +1.1689331733409718e+00 +2.2727306535337277e-02
21 -4.1142310474495440e+00 -1.2086602334855967e+00 +5.8111416279278947e+00
3 +2.6657390650749768e+00 +2.7658504054531603e+00 +2.0022268075636696e-01
17 -4.5366773030060736e+00 -2.3025137509437075e+00 +4.4683271041247323e+00
3 +4.0997011886608004e-01 +5.1875070923966948e-01 +2.1756118074717889e-01
2 +2.8702903367033508e+00 +2.9144694998940208e+00 +8.8358326381340113e-02
15 -2.5374171466355682e+00 -8.1322182150115419e-01 +3.4483906502688280e+00
20 -5.3015191778160071e+00 -2.5292804827440567e+00 +5.5444773901439008e+00
0 +4.5876557361430663e+00 +4.5876557361430663e+00 +0.0000000000000000e+00
15 -1.1150077732497010e+00 +5.9630471028270104e-01 +3.4226249670648041e+00
0 +4.3017555472426032e+00 +4.3017555472426032e+00 +0.0000000000000000e+00
12 -2.6683084600408149e+00 -1.4401853392231629e+00 +2.4562462416353039e+00
21 -1.5868160687529675e+00 +1.3523392760977098e+00 +5.8783106897013546e+00
10 -3.6195761947098859e-01 +5.2879448456946099e-01 +1.7815042080808992e+00
0 +4.1823142912031503e+00 +4.1823142912031503e+00 +0.0000000000000000e+00
0 +8.0838074826855539e+00 +8.0838074826855539e+00 +0.0000000000000000e+00
13 -2.6147589997248746e+00 -1.2734097580194459e+00 +2.6826984834108574e+00
14 +7.2704716164044392e-02 +1.5652002480163814e+00 +2.9849910637046739e+00
33 -9.5176165479967629e+00 -3.8044109243447171e+00 +1.1426411247304092e+01
4 +1.4835560995026036e+00 +1.6751644377313872e+00 +3.8321667645756730e-01
5 +1.4286124036996171e+00 +1.7526299908760152e+00 +6.4803517435279634e-01
24 -5.1630120795646564e+00 -1.6369468600227481e+00 +7.0521304390838164e+00
0 +1.4525893984320856e+01 +1.4525893984320856e+01 +0.0000000000000000e+00
0 +1.3149893287816276e+01 +1.3149893287816276e+01 +0.0000000000000000e+00
0 +6.4669533387510327e+00 +6.4669533387510327e+00 +0.0000000000000000e+00
0 +2.9703752327536370e+00 +2.9703752327536370e+00 +0.0000000000000000e+00
0 +1.4464735114349210e+01 +1.4464735114349210e+01 +0.0000000000000000e+00
36 -1.0138421161290768e+01 -3.8724289387959132e+00 +1.2531984444989710e+01
30 -8.2665803505427036e+00 -3.2247878400113570e+00 +1.0083585021062692e+01
5 -4.4257847053748023e-01 -1.9585479447538123e-01 +4.9344735212419799e-01
0 +2.4942536607255157e+00 +2.4942536607255157e+00 +0.0000000000000000e+00
0 +9.9265680289679104e+00 +9.9265680289679104e+00 +0.0000000000000000e+00
0 +3.5804680802410771e+00 +3.5804680802410771e+00 +0.0000000000000000e+00
43 -1.0916289734196958e+01 -2.9031783692302762e+00 +1.6026222729933366e+01
27 -6.4513948274166895e+00 -2.2766060108903536e+00 +8.3495776330526716e+00
5 -3.0225916485232940e-01 -9.7134960914599944e-03 +5.8509133752173881e-01
2 +6.1025205760690149e+00 +6.1402656304949836e+00 +7.5490108851937521e-02
16 -3.1892414835614877e+00 -1.2394218818103955e+00 +3.8996392035021845e+00
11 -1.6251997280545556e+00 -6.1161681849615768e-01 +2.0271658191167958e+00
2 +1.0581304295791911e+00 +1.1181564001214870e+00 +1.2005194108459172e-01
0 +3.3346921474698341e+00 +3.3346921474698341e+00 +0.0000000000000000e+00
6 +1.6783373192574587e+00 +2.0272775378252765e+00 +6.9788043713563574e-01
23 -5.9914493828586641e+00 -2.7289998387128804e+00 +6.5248990882915674e+00
0 +2.8540138337821066e+00 +2.8540138337821066e+00 +0.0000000000000000e+00
21 -5.1633650270024356e+00 -2.3132175959534913e+00 +5.7002948620978886e+00
21 -5.4226497623726866e+00 -2.3979508876518207e+00 +6.0493977494417317e+00
35 -9.7406199157597513e+00 -3.6642151703304364e+00 +1.2152809490858630e+01
9 -1.7833171240551771e+00 -1.0183359388973345e+00 +1.5299623703156850e+00
5 +2.2129485913800462e+00 +2.5075750145409721e+00 +5.8925284632185182e-01
4 +1.6680713840462387e+00 +1.8941482613507628e+00 +4.5215375460904816e-01
54 -1.6051282163548972e+01 -5.1466131476382184e+00 +2.1809338031821508e+01
67 -2.0114519879146055e+01 -5.6758845315065720e+00 +2.8877270695278966e+01
0 +5.7457599936138024e+00 +5.7457599936138024e+00 +0.0000000000000000e+00
10 -7.8295092576238812e-01 +1.6891033217593820e-01 +1.9037225158766526e+00
34 -8.2824221774225286e+00 -2.3343566993351077e+00 +1.1896130956174842e+01
16 -1.3496872861323137e+00 +5.2176243232652642e-01 +3.7428994369176802e+00
0 +4.8802680337795650e+00 +4.8802680337795650e+00 +0.0000000000000000e+00
24 -4.6697383337851557e+00 -1.0228017971587282e+00 +7.2938730732528549e+00
0 +2.7526671326832073e+00 +2.7526671326832073e+00 +0.0000000000000000e+00
18 -4.1223456075130125e+00 -1.8282938337194512e+00 +4.5881035475871226e+00
23 -3.2720676136587370e+00 +3.8123158160483506e-02 +6.6203815436384410e+00
4 +2.1699926264688938e+00 +2.3827931437299554e+00 +4.2560103452212328e-01
17 -4.5320245846680516e+00 -2.2987913101309196e+00 +4.4664665490742639e+00
23 -4.6222978052551094e+00 -1.2075238723916861e+00 +6.8295478657268465e+00
5 +3.4479800679986674e+00 +3.7095510226031103e+00 +5.2314190920888581e-01
4 -3.0886376092832357e-01 -1.0263590371306730e-01 +4.1245571443051254e-01
13 -2.3658398988990559e-01 +1.1511398846954184e+00 +2.7754477491706480e+00
0 +7.7041379267503043e+00 +7.7041379267503043e+00 +0.0000000000000000e+00
37 -9.8025726447463377e+00 -3.1658875434560274e+00 +1.3273370202580621e+01
35 -7.0761783949685197e+00 -8.7122254973692903e-01 +1.2409911690463181e+01
3 +1.4707509002585937e+00 +1.6102560854055143e+00 +2.7901037029384135e-01
22 -1.5779951776999779e+00 +1.6580785172024752e+00 +6.4721473898049062e+00
11 +2.3429160380460790e-01 +1.2302149964722715e+00 +1.9918467853353272e+00
13 -1.4152657475626338e+00 -8.3611076187914968e-02 +2.6633093427494376e+00
0 +9.7792271011333121e+00 +9.7792271011333121e+00 +0.0000000000000000e+00
8 -1.0944287513357676e-01 +5.3375870605526021e-01 +1.2864031623776739e+00
27 -5.5393184579528425e+00 -1.2261001085465661e+00 +8.6264366988125527e+00
9 +3.1579846250078454e+00 +3.9883597875050367e+00 +1.6607503249943827e+00
29 -8.1349469818559648e+00 -3.3769396973670496e+00 +9.5160145689778304e+00
6 +1.2035983978734874e+00 +1.5501637243293502e+00 +6.9313065291172560e-01
0 +4.0302058865692238e+00 +4.0302058865692238e+00 +0.0000000000000000e+00
33 -8.8355323823497791e+00 -3.2449093210399953e+00 +1.1181246122619568e+01
0 +2.9145941737887822e+00 +2.9145941737887822e+00 +0.0000000000000000e+00
38 -1.0766727018523202e+01 -3.9134513459675917e+00 +1.3706551345111221e+01
5 -4.7170319901700619e-01 -1.9749812840945768e-01 +5.4841014121509701e-01
16 -2.2834707057894326e+00 -2.4543695000594834e-01 +4.0760675115669684e+00
6 +4.6264355552866743e-01 +8.0734043282944334e-01 +6.8939375460155183e-01
16 -3.4690434282374225e+00 -1.5277051174034231e+00 +3.8826766216679989e+00
7 +5.2942895128096268e-01 +1.0581143538295925e+00 +1.0573708050972597e+00
0 +7.8334003005864936e+00 +7.8334003005864936e+00 +0.0000000000000000e+00
6 -8.2654088390678027e-01 -4.4426570361605933e-01 +7.6455036058144188e-01
1 +3.0340805806613078e+00 +3.0465277967505848e+00 +2.4894432178554027e-02
25 -5.9376688639666524e+00 -2.1735340308605315e+00 +7.5282696662122417e+00
20 -5.0316966399873992e+00 -2.2519900113088744e+00 +5.5594132573570496e+00
8 -5.6585266912727672e-01 +1.2511288696619527e-01 +1.3819311121869440e+00
7 -1.1422872551535583e+00 -6.1454650490654483e-01 +1.0554815004940270e+00
14 -8.1451171704838288e-04 +1.5750358995272573e+00 +3.1517008224886114e+00
0 +2.7468731284373296e+00 +2.7468731284373296e+00 +0.0000000000000000e+00
29 -6.9254518642869831e+00 -2.1625004913443071e+00 +9.5259027458853520e+00
8 +4.3353087044014655e+00 +4.9969108419421673e+00 +1.3232042750814035e+00
0 +1.8714639349169236e+01 +1.8714639349169236e+01 +0.0000000000000000e+00
15 -3.7393429473863753e+00 -1.9098924601174621e+00 +3.6589009745378265e+00
23 -5.4999116996675328e+00 -2.0306813659599952e+00 +6.9384606674150753e+00
24 -6.6316927093052280e+00 -3.0207976025502647e+00 +7.2217902135099266e+00
47 -1.2732911970616801e+01 -3.5754144892088440e+00 +1.8314994962815913e+01
38 -8.1789682031470292e+00 -1.3630334788692791e+00 +1.3631869448555500e+01
21 -4.7229256541844746e+00 -1.7257982588568246e+00 +5.9942547906553001e+00
0 +3.4167464952641353e+00 +3.4167464952641353e+00 +0.0000000000000000e+00
6 +4.9733622637827146e-01 +9.0348050902108135e-01 +8.1228856528561977e-01
1 +5.8801102087645685e+00 +5.8958136974506967e+00 +3.1406977372256506e-02
5 +2.2646689466437495e+00 +2.5534327373762902e+00 +5.7752758146508132e-01
22 -5.6830871567212613e+00 -2.5686939946946987e+00 +6.2287863240531252e+00
10 -1.4693651228220261e-01 +7.9073685107687997e-01 +1.8753467267181652e+00
47 -1.4044601225856105e+01 -4.7859733249834591e+00 +1.8517255801745293e+01
2 +2.1952502038541506e+00 +2.2222756824226906e+00 +5.4050957137079969e-02
27 -6.2876438002933677e+00 -2.0283460660154571e+00 +8.5185954685558212e+00
5 +4.1671354830319824e+00 +4.4128009398726720e+00 +4.9133091368137904e-01
2 +4.8313852800576420e+00 +4.8934314949756885e+00 +1.2409242983609303e-01
41 -1.1765561034946906e+01 -4.0616410837337451e+00 +1.5407839902426321e+01
4 +1.0778168035712854e+00 +1.2845243526786092e+00 +4.1341509821464761e-01
7 +6.2543248596720336e-01 +1.1260608586804461e+00 +1.0012567454264856e+00
3 +3.6081585749488170e+00 +3.6983308299956459e+00 +1.8034451009365782e-01
41 -1.1044991098672075e+01 -3.5524920357746557e+00 +1.4984998125794839e+01
17 -9.4016515964065395e-01 +1.1433883667167308e+00 +4.1671070527147691e+00
7 +1.6785107229975891e+00 +2.1732209031189766e+00 +9.8942036024277513e-01
0 +4.0769474455233992e+00 +4.0769474455233992e+00 +0.0000000000000000e+00
2 +1.3593422009623284e+00 +1.4068891197329583e+00 +9.5093837541259774e-02
14 -2.1959113524856546e+00 -6.0333147596205272e-01 +3.1851597530472038e+00
16 -4.1410588341346726e+00 -2.1020985307884548e+00 +4.0779206066924356e+00
0 +9.3455850912338114e+00 +9.3455850912338114e+00 +0.0000000000000000e+00
10 -6.8571799013038959e-01 +2.6925714210943363e-01 +1.9099502644796464e+00
0 +9.0186320671083067e+00 +9.0186320671083067e+00 +0.0000000000000000e+00
5 +7.7797098055758696e-01 +1.0638485952113159e+00 +5.7175522930745792e-01
74 -2.2248428921359739e+01 -5.8612469973752139e+00 +3.2774363847969049e+01
0 +1.3811663249049396e+01 +1.3811663249049396e+01 +0.0000000000000000e+00
36 -9.2086106740758495e+00 -2.9178638562511283e+00 +1.2581493635649442e+01
8 +9.4225476395823993e-01 +1.6006469860624208e+00 +1.3167844442083618e+00
37 -1.0654529415662051e+01 -4.0628477110719574e+00 +1.3183363409180187e+01
0 +7.9100478949339195e+00 +7.9100478949339195e+00 +0.0000000000000000e+00
42 -8.8395025945975902e+00 -9.9302570927150546e-01 +1.5692953770652169e+01
4 +1.2507423495264289e+00 +1.4485609154110968e+00 +3.9563713176933568e-01
1 +1.0839426346104251e+00 +1.1043951868900663e+00 +4.0905104559282535e-02
26 -5.9120092821317582e+00 -1.9037187608936528e+00 +8.0165810424762114e+00
24 -5.6690404727725889e+00 -1.9768077035877205e+00 +7.3844655383697368e+00
13 -3.0447409372884673e+00 -1.6615858441146014e+00 +2.7663101863477317e+00
0 +5.0714361072939962e+00 +5.0714361072939962e+00 +0.0000000000000000e+00
35 -9.9823501993719681e+00 -3.9496494303269687e+00 +1.2065401538089999e+01
22 -6.0318232421593345e+00 -2.8352556166294880e+00 +6.3931352510596930e+00
0 +6.7625125658191330e+00 +6.7625125658191330e+00 +0.0000000000000000e+00
80 -2.2191987361149096e+01 -3.9956921495618953e+00 +3.6392590423174397e+01
23 -6.2574290540540760e+00 -2.8675410837049053e+00 +6.7797759406983413e+00
4 +1.7464802102668209e-02 +1.7804745252707921e-01 +3.2116530084882200e-01
64 -1.5716699077542735e+01 -2.0755086827111691e+00 +2.7282380789663133e+01
6 +8.8211487269457933e-01 +1.2185567865469555e+00 +6.7288382770475241e-01
2 +3.5029063538311878e+00 +3.5553931974219957e+00 +1.0497368718161582e-01
7 -5.9630637077840998e-01 -8.7330050033417983e-02 +1.0179526414899840e+00
1 +7.4725932119582836e+00 +7.4989043235395503e+00 +5.2622223162533288e-02
0 +4.8205945191948754e+00 +4.8205945191948754e+00 +0.0000000000000000e+00
5 +3.3671569592336859e-01 +6.3781041561116059e-01 +6.0218943937558400e-01
11 +3.5781079459181875e-01 +1.3596943806099597e+00 +2.0037671720362820e+00
11 -1.7313821091096537e+00 -5.8389658697769597e-01 +2.2949710442639155e+00
30 -5.6514462404349883e+00 -7.8532380516951283e-01 +9.7322448705309519e+00
21 -5.7791955030386548e+00 -2.7526610517038219e+00 +6.0530689026696658e+00
25 -6.7830739940375109e+00 -2.9424114558153698e+00 +7.6813250764442822e+00
8 +1.4133122461575072e+00 +2.0946674085905954e+00 +1.3627103248661765e+00
16 -2.2890641103376916e+00 -4.2393448664685529e-01 +3.7302592473816727e+00
25 -6.7918458569753026e+00 -2.9491366079032759e+00 +7.6854184981440534e+00
14 -2.0201468699970144e+00 -4.5234864519248008e-01 +3.1355964496090687e+00
10 +2.9951932769556380e+00 +3.8948563230956155e+00 +1.7993260922799550e+00
0 +3.4814183142875836e+00 +3.4814183142875836e+00 +0.0000000000000000e+00
3 +1.5048366949714209e+00 +1.5879353465911006e+00 +1.6619730323935933e-01
24 -4.2802093807049291e+00 -7.4827427011177550e-01 +7.0638702211863071e+00
46 -1.3697496324389753e+01 -4.7199131064440945e+00 +1.7955166435891318e+01
11 -2.4757206940253562e+00 -1.3595275943310892e+00 +2.2323861993885341e+00
6 +2.4147242999567302e+00 +2.8375662788568254e+00 +8.4568395780019046e-01
18 -3.5679903710967080e+00 -1.2277633486121426e+00 +4.6804540449691308e+00
32 -8.6769304434137240e+00 -3.2343007817180540e+00 +1.0885259323391340e+01
42 -1.2375865047516189e+01 -4.4352089485138295e+00 +1.5881312198004720e+01
24 -6.4946155908039058e+00 -2.9829132035513348e+00 +7.0234047745051420e+00
0 +4.1469825719464302e+00 +4.1469825719464302e+00 +0.0000000000000000e+00
5 +6.0632120194017247e-01 +9.1242215881878819e-01 +6.1220191375723143e-01
0 +8.2591808581019990e+00 +8.2591808581019990e+00 +0.0000000000000000e+00
13 -2.8696368888656059e+00 -1.4377654511488243e+00 +2.8637428754335632e+00
7 -4.8300533165541726e-01 -1.5466369186780682e-02 +9.3507792493727315e-01
0 +8.4464242233881706e+00 +8.4464242233881706e+00 +0.0000000000000000e+00
8 -1.1944462228882022e+00 -5.3079790574397112e-01 +1.3272966342884622e+00
3 +3.1024058488532900e+00 +3.2344732628659774e+00 +2.6413482802537480e-01
12 -2.6536738180972934e+00 -1.3450382811181969e+00 +2.6172710739581930e+00
29 -7.6333024892156311e+00 -2.9769389882945099e+00 +9.3127270018422426e+00
48 -1.3896336080016713e+01 -4.6085891813301529e+00 +1.8575493797373120e+01
0 +9.1996956153213620e+00 +9.1996956153213620e+00 +0.0000000000000000e+00
15 -3.2916746174252163e+00 -1.4646513740810145e+00 +3.6540464866884035e+00
13 -9.0724772747343962e-01 +4.3977528592607662e-01 +2.6940460267990325e+00
0 +7.9275464521634946e+00 +7.9275464521634946e+00 +0.0000000000000000e+00
62 -1.8548596944797211e+01 -5.4790277060534924e+00 +2.6139138477487435e+01
6 +1.2924704321021094e+00 +1.6877384351121769e+00 +7.9053600602013496e-01
6 -3.3171488239787195e-01 +2.2533571426822441e-02 +7.0849690764938877e-01
42 -1.2244008274076272e+01 -4.3803622532274611e+00 +1.5727292041697622e+01
28 -6.4879408863560277e+00 -2.0449353257696048e+00 +8.8860111211728459e+00
15 -1.8286391324650033e+00 -1.5196311711353072e-01 +3.3533520307029452e+00
8 +2.1759449822523580e+00 +2.7580617137404237e+00 +1.1642334629761315e+00
22 -5.6711143175442951e+00 -2.5774433938755532e+00 +6.1873418473374837e+00
42 -1.2208204891217054e+01 -4.4330544820434756e+00 +1.5550300818347157e+01
13 -3.1256829511200452e+00 -1.6594343620519800e+00 +2.9324971781361304e+00
38 -1.0836746869828559e+01 -4.0353661266097092e+00 +1.3602761486437700e+01
0 +4.1157508691498172e+00 +4.1157508691498172e+00 +0.0000000000000000e+00
6 +1.7957613239309698e+00 +2.1439375857027034e+00 +6.9635252354346733e-01
0 +7.1278666291482331e+00 +7.1278666291482331e+00 +0.0000000000000000e+00
0 +6.7269098400438114e+00 +6.7269098400438114e+00 +0.0000000000000000e+00
21 -5.3121414006981960e+00 -2.2760746573539739e+00 +6.0721334866884442e+00
34 -9.7939420537699498e+00 -3.8355457359247027e+00 +1.1916792635690495e+01
16 -2.8146414707509892e+00 -9.4352169230500493e-01 +3.7422395568919686e+00
0 +5.3739985986073977e+00 +5.3739985986073977e+00 +0.0000000000000000e+00
12 +3.3151171036241323e-02 +1.3430092455333753e+00 +2.6197161489942680e+00
29 -6.1629253730403848e+00 -1.5689335704613956e+00 +9.1879836051579780e+00
0 +5.1808699462263368e+00 +5.1808699462263368e+00 +0.0000000000000000e+00
37 -7.9652070197993856e+00 -1.3678530683006456e+00 +1.3194707902997481e+01
0 +7.9894655263729337e+00 +7.9894655263729337e+00 +0.0000000000000000e+00
0 +4.3079192109021784e+00 +4.3079192109021784e+00 +0.0000000000000000e+00
4 +1.6994612424647855e+00 +1.8599910259954902e+00 +3.2105956706140937e-01
24 -2.6450207007250759e+00 +9.1649800665812986e-01 +7.1230374147664115e+00
0 +8.0672259476583825e+00 +8.0672259476583825e+00 +0.0000000000000000e+00
19 -4.8390417433521931e+00 -2.2646355300429302e+00 +5.1488124266185258e+00
27 -5.1478127821759161e+00 -9.3669756648219860e-01 +8.4222304313874350e+00
22 -5.3787640703873647e+00 -2.2452162421121695e+00 +6.2670956565503904e+00
19 -4.9270755163282365e+00 -2.4412468788978718e+00 +4.9716572748607293e+00
11 -7.5527317156551721e-01 +3.2127800481695656e-01 +2.1531023527649475e+00
34 -9.7326861951909294e+00 -3.8641865483402396e+00 +1.1736999293701381e+01
7 +3.4370573534335236e-01 +8.4636110915148688e-01 +1.0053107476162690e+00
0 +9.1579976867035899e+00 +9.1579976867035899e+00 +0.0000000000000000e+00
14 -3.0657548474270859e+00 -1.4366903896290659e+00 +3.2581289155960400e+00
6 +1.4905869393791882e+00 +1.8569364671224129e+00 +7.3269905548644942e-01
20 -4.7533691964022049e+00 -2.0036888796606687e+00 +5.4993606334830725e+00
0 +6.5689001060417009e+00 +6.5689001060417009e+00 +0.0000000000000000e+00
4 +1.2734369999567416e+00 +1.4669346328567707e+00 +3.8699526580005816e-01
18 -4.0665803987877025e+00 -1.8141574089470298e+00 +4.5048459796813454e+00
61 -1.8076896471452937e+01 -5.1584174413133841e+00 +2.5836958060279105e+01
34 -9.6680291278180128e+00 -3.8376039520678789e+00 +1.1660850351500269e+01
18 -4.5809910538677441e+00 -2.3142263856437451e+00 +4.5335293364479980e+00
27 -6.7832548405635267e+00 -2.5082145419282549e+00 +8.5500805972705436e+00
22 -5.0119420619250876e+00 -1.7943739736513118e+00 +6.4351361765475517e+00
22 -3.2503957148659017e+00 -1.2982166271303974e-01 +6.2411481043057240e+00
8 -1.1070152262223116e+00 -5.2758087763691019e-01 +1.1588686971708029e+00
19 -4.1556124181723293e+00 -1.6914792405456889e+00 +4.9282663552532808e+00
24 -3.2125967965563733e+00 +4.2958878203513473e-01 +7.2843711571830161e+00
12 +1.7479348257862339e+00 +3.0494592342751723e+00 +2.6030488169778767e+00
13 -1.7464695742935099e+00 -4.2532447970189047e-01 +2.6422901891832389e+00
7 +2.3582429646482161e+00 +2.8265516907486674e+00 +9.3661745220090253e-01
15 -2.0044696059294962e+00 -3.2647859457769624e-01 +3.3559820227035999e+00
7 +8.2574374593474431e-01 +1.3710672654391503e+00 +1.0906470390088119e+00
14 +1.0237012767835312e+00 +2.5175876783377173e+00 +2.9877728031083723e+00
17 -4.3156278747749353e+00 -2.2163625039747714e+00 +4.1985307416003277e+00
10 +7.2954086491251413e-01 +1.7126318556043429e+00 +1.9661819813836576e+00
3 +2.4794605190934327e-01 +3.5032392610235696e-01 +2.0475574838602739e-01
27 -5.8439244439448599e+00 -1.5663269898684513e+00 +8.5551949081528171e+00
40 -1.1137574562623151e+01 -3.7985169401689682e+00 +1.4678115244908366e+01
0 +1.6801496661963311e+00 +1.6801496661963311e+00 +0.0000000000000000e+00
29 -4.0764962776957061e+00 +6.5996062886860485e-01 +9.4729138131286224e+00
3 +2.9226104656020002e-01 +3.8939698643363485e-01 +1.9427187974686966e-01
26 -6.2277459864408309e+00 -2.2026280312445961e+00 +8.0502359103924697e+00
0 +1.1342939137802377e+00 +1.1342939137802377e+00 +0.0000000000000000e+00
30 -8.1993469822978753e+00 -3.3742672105811482e+00 +9.6501595434334533e+00
0 +9.0090584866165457e+00 +9.0090584866165457e+00 +0.0000000000000000e+00
15 -3.6562441384848610e+00 -1.8183343960361893e+00 +3.6758194848973433e+00
10 -1.2167250225388226e+00 -3.6750483443790927e-01 +1.6984403762018268e+00
15 -3.0373260153821251e+00 -1.2017779877030885e+00 +3.6710960553580732e+00
2 +1.9520515111644343e+00 +1.9879643434253693e+00 +7.1825664521870003e-02
31 -7.1493091456946916e+00 -2.0065701411713968e+00 +1.0285478009046589e+01
42 -9.2049064050707017e+00 -1.4293968878061625e+00 +1.5551019034529078e+01
12 +2.4414917210263187e-01 +1.4020320988817612e+00 +2.3157658535582586e+00
5 +6.1718466002105892e+00 +6.4018741186867789e+00 +4.6005503695237948e-01
8 -2.8612141808991876e-01 +3.5060421220967974e-01 +1.2734512605991970e+00
53 -1.5032064993529087e+01 -4.2749589087925584e+00 +2.1514212169473055e+01
24 -5.1380454661763215e+00 -1.6202186237961440e+00 +7.0356536847603550e+00
40 -1.0578205002273442e+01 -3.1864650212413466e+00 +1.4783479962064192e+01
31 -8.4348763406996348e+00 -3.2967025906724707e+00 +1.0276347500054328e+01
0 +9.2658454990768515e+00 +9.2658454990768515e+00 +0.0000000000000000e+00
16 -4.0591027470576941e+00 -2.0909653492809666e+00 +3.9362747955534552e+00
26 -7.1628247002456389e+00 -3.1145345928769013e+00 +8.0965802147374752e+00
30 -6.7649698959370435e+00 -1.7527964090463710e+00 +1.0024346973781345e+01
0 +6.9793356884842312e+00 +6.9793356884842312e+00 +0.0000000000000000e+00
4 +5.2590279943950158e-02 +2.0695440154537259e-01 +3.0872824320284487e-01
22 -5.6134096935082782e+00 -2.5620066965050325e+00 +6.1028059940064914e+00
18 -4.8436798128034768e+00 -2.4188041896939021e+00 +4.8497512462191494e+00
5 +3.6692259447302380e+00 +3.9898124612409527e+00 +6.4117303302142936e-01
14 -9.2775445294261250e-01 +7.2736839326578240e-01 +3.3102456924167898e+00
13 -2.3759622841755332e+00 -9.8643185945662593e-01 +2.7790608494378146e+00
0 +1.6241017795235603e+01 +1.6241017795235603e+01 +0.0000000000000000e+00
26 -5.9054016458285394e+00 -1.8224957472214405e+00 +8.1658117972141984e+00
23 -4.9984850461956443e+00 -1.6401497926451150e+00 +6.7166705071010586e+00
0 +7.5129226836896841e+00 +7.5129226836896841e+00 +0.0000000000000000e+00
22 -4.0102620370443836e+00 -8.5124871628832954e-01 +6.3180266415121080e+00
29 -8.1556119471608284e+00 -3.4055896739873353e+00 +9.5000445463469863e+00
0 +7.4471384811749388e+00 +7.4471384811749388e+00 +0.0000000000000000e+00
1 +3.7761283620488113e+00 +3.7804031509156619e+00 +8.5495777337012413e-03
29 -5.7615216925516437e+00 -1.1357682726179801e+00 +9.2515068398673268e+00
45 -1.2061917076772463e+01 -3.4827073296334641e+00 +1.7158419494278000e+01
0 +5.3284238735247911e+00 +5.3284238735247911e+00 +0.0000000000000000e+00
10 +3.3192291931977902e-01 +1.2852145740725742e+00 +1.9065833095055904e+00
0 +2.4996874065825327e+00 +2.4996874065825327e+00 +0.0000000000000000e+00
20 -4.9450472928655840e+00 -2.1465351568519151e+00 +5.5970242720273378e+00
0 +2.7701219329900315e+00 +2.7701219329900315e+00 +0.0000000000000000e+00
12 -2.2341381742849604e+00 -1.0533077531759734e+00 +2.3616608422179741e+00
16 -3.9127706245585268e+00 -1.9813378714355832e+00 +3.8628655062458872e+00
69 -1.9652711829717820e+01 -4.6829290891921396e+00 +2.9939565481051361e+01
28 -7.0324577256860623e+00 -2.5805873988559989e+00 +8.9037406536601260e+00
7 -1.1158255412138685e+00 -6.3653884828805207e-01 +9.5857338585163276e-01
33 -8.2634626957095634e+00 -2.7085944458214541e+00 +1.1109736499776218e+01
41 -1.1721510833728555e+01 -4.1093745741633132e+00 +1.5224272519130484e+01
0 +1.0007869014722477e+01 +1.0007869014722477e+01 +0.0000000000000000e+00
4 +6.8136519632789572e-01 +8.3643803187000731e-01 +3.1014567108422320e-01
13 -3.0187469039146810e+00 -1.6153864694128557e+00 +2.8067208690036507e+00
17 -1.7198409931299148e+00 +4.1263233213331674e-01 +4.2649466505264630e+00
15 -2.8667337454370747e+00 -1.0310576470429731e+00 +3.6713521967882032e+00
1 +2.4793107538627832e+00 +2.4869702474642565e+00 +1.5318987202946666e-02
0 +4.9848524461151200e+00 +4.9848524461151200e+00 +0.0000000000000000e+00
3 +8.6340637859483405e-01 +9.4938918771875969e-01 +1.7196561824785128e-01
9 +1.0088086734285380e+00 +1.8105889189874613e+00 +1.6035604911178467e+00
27 -6.8253597983466650e+00 -2.6705523863977838e+00 +8.3096148238977623e+00
34 -9.7430834866278992e+00 -3.7863788613151006e+00 +1.1913409250625598e+01
22 -5.1280555966902570e+00 -1.9587816934709794e+00 +6.3385478064385552e+00
7 +1.7954159717864364e+00 +2.2745794362642568e+00 +9.5832692895564087e-01
10 -1.1682525912736983e+00 -2.5065266974520473e-01 +1.8351998430569871e+00
0 +1.1275821204011102e+01 +1.1275821204011102e+01 +0.0000000000000000e+00
1 +3.4162830850641424e+00 +3.4422955902299632e+00 +5.2025010331641752e-02
39 -1.1148521158324918e+01 -3.9515776977605293e+00 +1.4393886921128779e+01
17 -2.5497713556778097e+00 -4.3750478616843358e-01 +4.2245331390187522e+00
55 -1.3819578245377873e+01 -2.4803596210012921e+00 +2.2678437248753163e+01
7 +1.4870220503102693e-01 +6.6439471312166587e-01 +1.0313850161812779e+00
11 -2.3487552775200973e+00 -1.2626544851946759e+00 +2.1722015846508427e+00
33 -7.8986174668557281e+00 -2.3538676267178493e+00 +1.1089499680275757e+01
20 -3.2487275788509615e+00 -5.4585076501833285e-01 +5.4057536276652574e+00
4 +2.7882644524423990e+00 +2.9497785280189301e+00 +3.2302815115306238e-01
0 +8.4524569341844344e+00 +8.4524569341844344e+00 +0.0000000000000000e+00
55 -1.5677974319694485e+01 -4.4387599757307665e+00 +2.2478428687927437e+01
1 +1.2299587398011536e+00 +1.2448423653443985e+00 +2.9767251086489921e-02
6 +4.6252911738378177e-01 +8.7150350612650707e-01 +8.1794877748545058e-01
11 +1.5052578528775218e-01 +1.2030554034542584e+00 +2.1050592363330125e+00
0 +7.9055673277112364e+00 +7.9055673277112364e+00 +0.0000000000000000e+00
0 +4.4625969166988799e+00 +4.4625969166988799e+00 +0.0000000000000000e+00
9 -3.5628757725817106e-01 +3.7299913719868716e-01 +1.4585734289137164e+00
5 +7.0833941196300465e-01 +1.0014937665183670e+00 +5.8630870911072464e-01
32 -8.8125408113839896e+00 -3.3325978358297839e+00 +1.0959885951108411e+01
0 +8.1166284126396988e+00 +8.1166284126396988e+00 +0.0000000000000000e+00
15 -3.6651103224714943e+00 -1.9467911350686076e+00 +3.4366383748057734e+00
77 -2.0393514919465492e+01 -3.1058885728048145e+00 +3.4575252693321353e+01
48 -1.2975259606282595e+01 -3.6367187058702291e+00 +1.8677081800824730e+01
0 +4.5621895623296069e+00 +4.5621895623296069e+00 +0.0000000000000000e+00
18 -8.7337191344402409e-01 +1.3674112036559589e+00 +4.4815662341999660e+00
19 -1.2605111160444862e+00 +1.1731289295119289e+00 +4.8672800911128302e+00
4 +9.3230907582650957e-01 +1.0795675423468545e+00 +2.9451693304068982e-01
14 +4.7498685166481547e-01 +2.0186921699222160e+00 +3.0874106365148011e+00
1 +2.8670817192324880e+00 +2.8824565894504848e+00 +3.0749740435993544e-02
28 -6.4898561678369591e+00 -2.0718762408897864e+00 +8.8359598538943445e+00
9 -1.5320222006080035e+00 -7.3176600077733500e-01 +1.6005123996613371e+00
33 -8.9104446139074511e+00 -3.3147540915440823e+00 +1.1191381044726738e+01
11 -2.3775640650937069e+00 -1.3330856987146316e+00 +2.0889567327581506e+00
0 +3.9394490545475542e+00 +3.9394490545475542e+00 +0.0000000000000000e+00
0 +3.6931534148690481e+00 +3.6931534148690481e+00 +0.0000000000000000e+00
0 +4.5491982020235620e+00 +4.5491982020235620e+00 +0.0000000000000000e+00
11 +5.8277351207702299e-01 +1.6211837947625440e+00 +2.0768205653710421e+00
19 -5.1166680947638943e+00 -2.5067593009437448e+00 +5.2198175876402990e+00
13 -1.5936332973412881e+00 -1.9818304528242958e-01 +2.7909005041177171e+00
8 +2.0192657550744171e+00 +2.6952209503824927e+00 +1.3519103906161511e+00
9 -1.6333214106416500e+00 -9.1645142170341565e-01 +1.4337399778764688e+00
0 +7.1992414857340439e+00 +7.1992414857340439e+00 +0.0000000000000000e+00
42 -1.1930407577843162e+01 -4.0251564655581031e+00 +1.5810502224570119e+01
18 -1.6980743004296910e+00 +5.5729839541882553e-01 +4.5107453916970330e+00
9 -1.4153675369098666e+00 -7.0744727248410744e-01 +1.4158405288515183e+00
34 -5.8119153930634555e+00 -9.4659302805575329e-03 +1.1604898925565795e+01
12 -9.0976401549334973e-01 +2.5610132737942104e-01 +2.3317306857455415e+00
0 +5.0462662963898470e+00 +5.0462662963898470e+00 +0.0000000000000000e+00
3 +1.7692016395967274e+00 +1.8911374156083123e+00 +2.4387155202316979e-01
23 -4.8758885993192704e+00 -1.4702092341145985e+00 +6.8113587304093439e+00
49 -1.2756810811704316e+01 -3.0498342580905136e+00 +1.9413953107227606e+01
9 -1.5125087091571059e+00 -6.8656518118429410e-01 +1.6518870559456236e+00
0 +2.5028101683220534e+00 +2.5028101683220534e+00 +0.0000000000000000e+00
0 +3.9613318318116422e+00 +3.9613318318116422e+00 +0.0000000000000000e+00
6 +9.0626411865879053e-01 +1.2721672233011105e+00 +7.3180620928464002e-01
7 +4.5032793092458956e-01 +9.2994774373998546e-01 +9.5923962563079179e-01
13 -7.4274881867796072e-01 +7.0113257966750231e-01 +2.8877627966909261e+00
3 +1.9618010349570003e+00 +2.1044613307896056e+00 +2.8532059166521062e-01
20 -4.4984236817792231e+00 -1.8438603504415574e+00 +5.3091266626753315e+00
3 +2.8111152000224466e+00 +2.8954942809569681e+00 +1.6875816186904302e-01
48 -1.2875339594053603e+01 -3.5550369237153721e+00 +1.8640605340676462e+01
31 -7.4475551488201619e+00 -2.2297698528057626e+00 +1.0435570592028800e+01
0 +1.0708802339044675e+01 +1.0708802339044675e+01 +0.0000000000000000e+00
49 -1.4164639409523019e+01 -4.4742299910288761e+00 +1.9380818836988286e+01
13 -2.5531096090225978e+00 -1.1866818013306548e+00 +2.7328556153838859e+00
9 +1.5400485935467314e+00 +2.2917983987788180e+00 +1.5034996104641731e+00
4 +1.3038704485087891e+00 +1.5218566985537603e+00 +4.3597250008994237e-01
34 -8.9826033956487912e+00 -3.0569908395085039e+00 +1.1851225112280574e+01
12 -1.4555302171686941e+00 -2.1839859617160506e-01 +2.4742632419941781e+00
3 +5.3383730212605212e+00 +5.4188914827957753e+00 +1.6103692307050821e-01
10 +1.5668113713457634e+00 +2.5235708407496764e+00 +1.9135189388078260e+00
0 +5.2449981298897388e+00 +5.2449981298897388e+00 +0.0000000000000000e+00
19 -4.8951089505432597e+00 -2.4251723613561853e+00 +4.9398731783741487e+00
40 -1.1170095667779687e+01 -3.7859092424088021e+00 +1.4768372850741770e+01
10 -1.1818172368565500e+00 -3.1347516937784192e-01 +1.7366841349574162e+00
22 -5.9918726498352681e+00 -2.8144751612294137e+00 +6.3547949772117089e+00
8 +2.0629095399415140e+00 +2.6978767058635240e+00 +1.2699343318440199e+00
36 -6.9518706921337872e+00 -6.9350647247026376e-01 +1.2516728439327046e+01
14 -2.8497547800503940e+00 -1.2822766202913853e+00 +3.1349563195180172e+00
19 -4.1244700819884494e+00 -1.6564447189872120e+00 +4.9360507260024749e+00
55 -1.6463282118774575e+01 -5.1920760335504372e+00 +2.2542412170448276e+01
1 +1.2728307354678590e+00 +1.2789540196404552e+00 +1.2246568345192443e-02
20 -2.4725023009738516e+00 +2.5798031758286966e-01 +5.4609652371134425e+00
0 +4.2330275850623700e+00 +4.2330275850623700e+00 +0.0000000000000000e+00
15 -3.8825769469412181e+00 -2.0333929371194137e+00 +3.6983680196436088e+00
37 -9.0014580857139990e+00 -2.3399465560015891e+00 +1.3323023059424820e+01
13 -3.8667810212958020e-01 +1.0043879732262222e+00 +2.7821321507116048e+00
45 -1.2551055474937836e+01 -4.0438596623218919e+00 +1.7014391625231887e+01
10 +9.4798113162245823e-01 +1.8963204920505141e+00 +1.8966787208561118e+00
17 -2.9633092323309009e+00 -8.1487551247154233e-01 +4.2968674397187172e+00
0 +4.0533995745132003e+00 +4.0533995745132003e+00 +0.0000000000000000e+00
45 -1.3118072806006193e+01 -4.4089087019694277e+00 +1.7418328208073532e+01
5 +5.1732695557213670e-01 +7.8804542504946706e-01 +5.4143693895466072e-01
3 +2.4818583856696179e+00 +2.6129538994540908e+00 +2.6219102756894586e-01
23 -5.9984094318614423e+00 -2.5973860399836113e+00 +6.8020467837556620e+00
2 +4.3364707057325775e+00 +4.3680586328552291e+00 +6.3175854245303142e-02
12 -2.4576076429031319e+00 -1.1558287557772848e+00 +2.6035577742516942e+00
23 -5.8632830408067056e+00 -2.5549390285986595e+00 +6.6166880244160922e+00
30 -4.8716448832339365e+00 +1.4794362713594067e-01 +1.0039177020739753e+01
31 -8.4455896345651595e+00 -3.3178818893509838e+00 +1.0255415490428351e+01
18 -4.5795898366986076e-01 +1.8264906026284233e+00 +4.5688991725965682e+00
10 -4.1123087580960682e-01 +5.0366979062909634e-01 +1.8298013328774063e+00
0 +4.4769168636936856e+00 +4.4769168636936856e+00 +0.0000000000000000e+00
12 -2.2090521365110236e+00 -9.4928583424014512e-01 +2.5195326045417570e+00
4 +2.7316384922041603e-01 +4.6856027819493118e-01 +3.9079285794903029e-01
0 +2.8588048411063118e+00 +2.8588048411063118e+00 +0.0000000000000000e+00
30 -8.1081010337657915e+00 -3.2549629712393071e+00 +9.7062761250529697e+00
23 -5.8466112434689714e+00 -2.5444395796438597e+00 +6.6043433276502235e+00
11 -1.9074569553872296e+00 -8.4853114360419735e-01 +2.1178516235660645e+00
2 +2.5481638124093609e+00 +2.5921134424736243e+00 +8.7899260128526890e-02
0 +1.8347225884673710e+00 +1.8347225884673710e+00 +0.0000000000000000e+00
18 -4.6966773592481159e+00 -2.3218252004368392e+00 +4.7497043176225535e+00
20 -5.1716831697227859e+00 -2.4718199859407233e+00 +5.3997263675641252e+00
11 -4.5146263037694911e-01 +6.5683852072683990e-01 +2.2166023022075780e+00
5 +3.9738041182832440e-01 +6.7980175085384253e-01 +5.6484267805103627e-01
7 +2.3101843179278339e+00 +2.8314991904429139e+00 +1.0426297450301600e+00
37 -1.0470852889196660e+01 -3.8919139448468973e+00 +1.3157877888699526e+01
35 -9.8562008017843326e+00 -3.6451417813865437e+00 +1.2422118040795578e+01
11 -1.6959910497990114e+00 -6.4551644323921931e-01 +2.1009492131195842e+00
0 +3.9318670709712862e+00 +3.9318670709712862e+00 +0.0000000000000000e+00
7 -8.7930134648559388e-01 -4.2588998537352918e-01 +9.0682272222412941e-01
0 +2.7464274339743793e+00 +2.7464274339743793e+00 +0.0000000000000000e+00
10 -1.8682938863855449e+00 -9.6016972687289570e-01 +1.8162483190252985e+00
31 -8.2037010285415946e+00 -2.9209054499151055e+00 +1.0565591157252978e+01
7 +1.4794671117221814e-01 +6.7182568747255411e-01 +1.0477579526006719e+00
57 -1.5629087008565456e+01 -3.8191939191253814e+00 +2.3619786178880148e+01
15 -3.4611223885142950e+00 -1.7340742577665931e+00 +3.4540962614954038e+00
0 +3.3084809975672820e+00 +3.3084809975672820e+00 +0.0000000000000000e+00
8 +9.1956112559947023e-01 +1.4970139489699039e+00 +1.1549056467408674e+00
4 +5.1875822961447966e+00 +5.3395367519763965e+00 +3.0390891166319989e-01
0 +5.2765435967210026e+00 +5.2765435967210026e+00 +0.0000000000000000e+00
19 -3.2774349847268356e+00 -7.5684900695892843e-01 +5.0411719555358143e+00
14 +6.2770350795889751e-01 +2.1464524142509207e+00 +3.0374978125840464e+00
18 -4.0905794598725533e+00 -1.6764096042206686e+00 +4.8283397113037694e+00
4 +3.0452019387247526e+00 +3.2125296710162008e+00 +3.3465546458289630e-01
9 +1.6995950692755901e-01 +8.8303163846306809e-01 +1.4261442630710182e+00
9 -8.1948190423220790e-01 -6.0519699961781193e-02 +1.5179244085408534e+00
14 -1.7664465049220928e+00 -2.1373644873053577e-01 +3.1054201123831140e+00
14 -2.7922337397531907e+00 -1.1267147181393820e+00 +3.3310380432276174e+00
0 +5.8341128408280047e+00 +5.8341128408280047e+00 +0.0000000000000000e+00
4 +3.4051697528497287e+00 +3.6209439704249360e+00 +4.3154843515041463e-01
26 -6.3917171694064328e+00 -2.3972711206538868e+00 +7.9888920975050919e+00
14 -2.6940646696950212e+00 -1.0970375935167680e+00 +3.1940541523565065e+00
39 -9.0702587091452926e+00 -2.0766193862730531e+00 +1.3987278645744478e+01
26 -7.1398515612173670e+00 -3.0731359949407500e+00 +8.1334311325532340e+00
23 -2.1435919336171709e+00 +1.2139630014108649e+00 +6.7151098700560716e+00
14 +8.3152494872247207e-01 +2.4648694384051333e+00 +3.2666889793653224e+00
50 -1.4701505945631791e+01 -4.8796170984445908e+00 +1.9643777694374400e+01
41 -1.2102583645907476e+01 -4.4263361316449661e+00 +1.5352495028525020e+01
1 +4.4064367281955654e+00 +4.4265103979095866e+00 +4.0147339428042272e-02
0 +8.9867244062009135e+00 +8.9867244062009135e+00 +0.0000000000000000e+00
0 +8.1027765024735636e+00 +8.1027765024735636e+00 +0.0000000000000000e+00
0 +1.0334733575645906e+01 +1.0334733575645906e+01 +0.0000000000000000e+00
9 +1.5417461744618777e-02 +7.1634615143164826e-01 +1.4018573793740590e+00
15 -1.7377667294122556e-01 +1.5951831426700234e+00 +3.5379196312224979e+00
14 -3.4935448623071332e+00 -1.8572495066751711e+00 +3.2725907112639243e+00
16 -4.0721389381915367e+00 -2.1110238546278213e+00 +3.9222301671274309e+00
38 -8.1108211245507214e+00 -1.1752961673168221e+00 +1.3871049914467799e+01
0 +1.0145952104298148e+00 +1.0145952104298148e+00 +0.0000000000000000e+00
15 +3.7296058896302497e-02 +1.7191107454021650e+00 +3.3636293730117250e+00
16 +1.2587265561794858e-01 +2.0461160029146055e+00 +3.8404866945933138e+00
6 +1.4584232503986314e+00 +1.8772178008406639e+00 +8.3758910088406502e-01
16 -1.9724023820268881e+00 +1.5058630469395595e-03 +3.9478164901476553e+00
75 -2.1970948717560454e+01 -5.2235924879961635e+00 +3.3494712459128579e+01
4 +3.3528036279144358e+00 +3.5453306702156042e+00 +3.8505408460233692e-01
0 +4.1947518312403842e+00 +4.1947518312403842e+00 +0.0000000000000000e+00
4 +3.3274375054704439e+00 +3.4833265440782606e+00 +3.1177807721563333e-01
15 -3.3528302154803145e+00 -1.6370310106515595e+00 +3.4315984096575098e+00
20 -1.5350500309971089e+00 +1.2690019362884244e+00 +5.6081039345710666e+00
24 -5.3283640584812213e+00 -1.8428002128399261e+00 +6.9711276912825904e+00
1 +2.7776283050326236e+00 +2.7912094292476399e+00 +2.7162248430032676e-02
0 +5.9344313541188773e+00 +5.9344313541188773e+00 +0.0000000000000000e+00
2 +3.9631879574931430e+00 +4.0089978511033584e+00 +9.1619787220430737e-02
12 -2.5657256696112185e-02 +1.1720637785170673e+00 +2.3954420704263590e+00
0 +4.9903813675725637e+00 +4.9903813675725637e+00 +0.0000000000000000e+00
13 +5.9616777216159278e-01 +2.0340647429909700e+00 +2.8757939416587543e+00
36 -9.5587490489113129e+00 -3.0928777854114502e+00 +1.2931742526999725e+01
12 -1.7914604834601162e+00 -5.6620970928722603e-01 +2.4505015483457804e+00
0 +3.0418336721740031e+00 +3.0418336721740031e+00 +0.0000000000000000e+00
21 -4.2016862518572156e+00 -1.3435467746032597e+00 +5.7162789545079118e+00
37 -1.0631362920761756e+01 -4.0035099648952439e+00 +1.3255705911733024e+01
32 -7.4275908750221289e+00 -1.9586532657080042e+00 +1.0937875218628250e+01
17 -2.2121019431336508e+00 -1.7040655021206952e-01 +4.0833907858431626e+00
2 +4.6946832728637471e+00 +4.7672367142483036e+00 +1.4510688276911310e-01
6 +1.2708017153601325e-01 +5.4859815559424163e-01 +8.4303596811645676e-01
45 -1.3236581271723416e+01 -4.6444173734504135e+00 +1.7184327796546008e+01
26 -5.8537713333596679e+00 -1.7716585364848660e+00 +8.1642255937496042e+00
0 +8.2865561409936923e+00 +8.2865561409936923e+00 +0.0000000000000000e+00
9 +2.0152656389704049e-01 +1.0077336318612446e+00 +1.6124141359284083e+00
0 +9.1576384494036489e+00 +9.1576384494036489e+00 +0.0000000000000000e+00
0 +5.2778613879446734e+00 +5.2778613879446734e+00 +0.0000000000000000e+00
0 +8.3865080038918318e+00 +8.3865080038918318e+00 +0.0000000000000000e+00
35 -7.0672614869466939e+00 -1.0011053197755144e+00 +1.2132312334342359e+01
25 -6.9624862915677950e+00 -3.1296001040911823e+00 +7.6657723749532254e+00
5 +2.6147451142575404e+00 +2.9372776023019069e+00 +6.4506497608873303e-01
44 -1.2888558679393984e+01 -4.4481717246469454e+00 +1.6880773909494078e+01
1 +5.3557108601699746e+00 +5.3772882296900200e+00 +4.3154739040090817e-02
17 -3.6285463811251004e+00 -1.4178465905368522e+00 +4.4213995811764963e+00
7 -1.1883726335087914e+00 -6.4167067530370847e-01 +1.0934039164101659e+00
27 -7.4739725004672222e+00 -3.1870339232902163e+00 +8.5738771543540118e+00
6 +1.5713776267190322e+00 +2.0062241064083048e+00 +8.6969295937854518e-01
0 +8.6577822294156483e+00 +8.6577822294156483e+00 +0.0000000000000000e+00
0 +8.6725846685316412e+00 +8.6725846685316412e+00 +0.0000000000000000e+00
26 -5.9674837172270179e+00 -1.9368638978932713e+00 +8.0612396386674927e+00
25 -6.3627600182765081e+00 -2.5799923549040762e+00 +7.5655353267448637e+00
0 +7.2918495751543810e+00 +7.2918495751543810e+00 +0.0000000000000000e+00
32 -5.5082657596758429e+00 -1.1648727789715818e-01 +1.0783556963557370e+01
1 +1.7408939937605199e+00 +1.7549359661301880e+00 +2.8083944739336175e-02
8 -2.2446545676376051e-01 +3.7489598199102403e-01 +1.1987228775095691e+00
6 -1.3059013430527955e-01 +2.0438462535739443e-01 +6.6994951932534796e-01
23 -6.0563411619124254e+00 -2.7851944537816786e+00 +6.5422934162614936e+00
36 -8.9394781405974193e+00 -2.4854484687856662e+00 +1.2908059343623506e+01
14 -2.0532390012168067e+00 -4.3440336103975064e-01 +3.2376712803541121e+00
18 -9.7040125859675630e-01 +1.4318015596466713e+00 +4.8044056364868553e+00
0 +5.9348068771093008e+00 +5.9348068771093008e+00 +0.0000000000000000e+00
3 +2.4860399108909323e+00 +2.6251051837486195e+00 +2.7813054571537421e-01
10 -1.9425517685685874e+00 -1.0979129762713891e+00 +1.6892775845943966e+00
17 -3.1735710466741134e+00 -9.9668536490597504e-01 +4.3537713635362767e+00
0 +2.9729277372457172e+00 +2.9729277372457172e+00 +0.0000000000000000e+00
0 +2.1224137121932136e+00 +2.1224137121932136e+00 +0.0000000000000000e+00
8 -1.4432705103974959e+00 -7.5556252027973514e-01 +1.3754159802355215e+00
0 +2.8198225754205208e+00 +2.8198225754205208e+00 +0.0000000000000000e+00
2 +3.0766280495424301e+00 +3.1183290827821004e+00 +8.3402066479340675e-02
21 -2.2283188514561738e+00 +6.5873312358973912e-01 +5.7741039500918259e+00
32 -8.8805829705582653e+00 -3.3863055968243243e+00 +1.0988554747467882e+01
15 -3.7462416183166267e+00 -1.9087095261159548e+00 +3.6750641844013439e+00
4 -1.7853472506826851e-01 +3.1203571035507416e-02 +4.1947659220755185e-01
0 +6.9307126172558204e+00 +6.9307126172558204e+00 +0.0000000000000000e+00
28 -7.3114158111792440e+00 -2.8476763769064708e+00 +8.9274788685455455e+00
11 -8.6342060912508778e-01 +2.8160750764090769e-01 +2.2900562335319909e+00
46 -1.3384944791846340e+01 -4.4353212974066611e+00 +1.7899246988879359e+01
7 -1.2616484436311781e+00 -7.2423128779810408e-01 +1.0748343116661481e+00
61 -1.7493163904079847e+01 -4.6269234802714037e+00 +2.5732480847616884e+01
7 +1.1904908785758410e+00 +1.6608499663320977e+00 +9.4071817551251335e-01
7 -3.9049920888070755e-01 +9.0015236075583260e-02 +9.6102888991258162e-01
11 -1.9069179199785404e+00 -7.7011577082356375e-01 +2.2736042983099534e+00
6 -8.2338871425090865e-01 -4.3712582532323374e-01 +7.7252577785534982e-01
0 +7.8192280646783905e+00 +7.8192280646783905e+00 +0.0000000000000000e+00
17 -2.4166833887066907e-01 +1.9696455478420720e+00 +4.4226277734254822e+00
32 -8.2080590633586148e+00 -2.7580862527835661e+00 +1.0899945621150097e+01
11 -2.4366851116728760e-02 +1.0935916080582508e+00 +2.2359169183499592e+00
66 -1.8010334599378030e+01 -3.7565661757878255e+00 +2.8507536847180411e+01
6 -6.6511707301931899e-01 -2.6258595298839094e-01 +8.0506224006185612e-01
6 +1.9981054245794079e+00 +2.4319433865067794e+00 +8.6767592385474313e-01
1 +2.0177973655086952e+00 +2.0181000133975653e+00 +6.0529577774026677e-04
0 +3.8125352574492908e+00 +3.8125352574492908e+00 +0.0000000000000000e+00
19 -2.7420984139514735e+00 -2.1820206047519530e-01 +5.0477927069525563e+00
6 +1.6302054158183008e+00 +2.0140500296027621e+00 +7.6768922756892266e-01
16 -3.0086630429773580e+00 -1.0105208340296499e+00 +3.9962844178954162e+00
11 -8.3861797313990571e-01 +2.0335173413878582e-01 +2.0839394145573831e+00
0 +8.0197274799324862e+00 +8.0197274799324862e+00 +0.0000000000000000e+00
0 +3.1520147818649904e+00 +3.1520147818649904e+00 +0.0000000000000000e+00
32 -8.0414325899149333e+00 -2.5705320464494061e+00 +1.0941801086931054e+01
9 +8.0099200560498218e-01 +1.6002258558789277e+00 +1.5984677005478911e+00
9 -3.9606562041174342e-01 +3.1651741928229482e-01 +1.4251660793880765e+00
10 -6.7692521114504522e-01 +1.7556501308430139e-01 +1.7049804484586932e+00
22 -5.5139782619688686e+00 -2.2674717766008623e+00 +6.4930129707360127e+00
14 -2.7293657983873212e+00 -1.1787781960535493e+00 +3.1011752046675438e+00
0 +8.5265069572592136e+00 +8.5265069572592136e+00 +0.0000000000000000e+00
29 -8.0081462664197538e+00 -3.2721545100397957e+00 +9.4719835127599161e+00
48 -1.4094738123217585e+01 -4.6440837967052300e+00 +1.8901308653024710e+01
18 -4.1846417793538437e+00 -1.8571022664693730e+00 +4.6550790257689414e+00
1 +3.1495071189803574e+00 +3.1633321859537635e+00 +2.7650133946812261e-02
2 +2.0947911550302099e+00 +2.1462791899287694e+00 +1.0297606979711915e-01
23 -5.2744851089004774e+00 -1.8031782185381178e+00 +6.9426137807247192e+00
37 -9.0198324808299155e+00 -2.3187018023130550e+00 +1.3402261357033721e+01
8 -9.1421064334631108e-01 -2.2300249667163996e-01 +1.3824162933493422e+00
0 +9.0032587352088651e+00 +9.0032587352088651e+00 +0.0000000000000000e+00
15 -3.8729372725225817e+00 -2.0300046009165462e+00 +3.6858653432120709e+00
17 -1.4379735105542659e+00 +7.1057672731649113e-01 +4.2971004757415141e+00
13 +2.4689600782300136e-01 +1.6068071460405191e+00 +2.7198222764350355e+00
9 +7.4490871018882387e-01 +1.4627431437022280e+00 +1.4356688670268083e+00
0 +4.0530693702658365e+00 +4.0530693702658365e+00 +0.0000000000000000e+00
2 +4.5037872921976803e+00 +4.5478622009225571e+00 +8.8149817449753698e-02
1 +4.7273723360456783e+00 +4.7350883615608428e+00 +1.5432051030328964e-02
0 +7.9625994227257877e+00 +7.9625994227257877e+00 +0.0000000000000000e+00
11 -1.7313232734467148e+00 -5.9405060743906368e-01 +2.2745453320153022e+00
43 -1.0299574469612846e+01 -2.2203553868333179e+00 +1.6158438165559055e+01
0 +9.6571174727155196e+00 +9.6571174727155196e+00 +0.0000000000000000e+00
4 +1.7728727415970971e+00 +1.9714518344807979e+00 +3.9715818576740158e-01
4 +1.1842111073876183e+00 +1.3644682488910296e+00 +3.6051428300682264e-01
22 -5.0307987589875180e+00 -1.8599746590858324e+00 +6.3416481998033714e+00
20 -5.3686776668076037e+00 -2.5455333979853401e+00 +5.6462885376445273e+00
2 +1.5502702192664524e+00 +1.6202637532078579e+00 +1.3998706788281101e-01
0 +1.0642236980111829e+01 +1.0642236980111829e+01 +0.0000000000000000e+00
0 +3.4635440552935268e+00 +3.4635440552935268e+00 +0.0000000000000000e+00
4 +4.1600976272565049e-01 +6.1782161027743232e-01 +4.0362369510356366e-01
5 +1.4947756755453714e+00 +1.7239131382137045e+00 +4.5827492533666625e-01
20 -5.2531426979210680e+00 -2.4843281450440426e+00 +5.5376291057540508e+00
1 +2.7272397826980281e+00 +2.7382466272906059e+00 +2.2013689185155449e-02
0 +6.0557890720014882e+00 +6.0557890720014882e+00 +0.0000000000000000e+00
19 -4.6014922425727969e+00 -2.0384262959278696e+00 +5.1261318932898545e+00
20 -3.8057172786430309e+00 -1.1456446067909378e+00 +5.3201453437041861e+00
0 +1.8098891381812493e+01 +1.8098891381812493e+01 +0.0000000000000000e+00
10 -1.5625678895796176e+00 -6.0035333191620222e-01 +1.9244291153268307e+00
0 +9.0527305385293513e+00 +9.0527305385293513e+00 +0.0000000000000000e+00
0 +6.6194567168035965e+00 +6.6194567168035965e+00 +0.0000000000000000e+00
14 -3.2749736255292339e+00 -1.7482370469981441e+00 +3.0534731570621796e+00
0 +1.4240145332426010e+01 +1.4240145332426010e+01 +0.0000000000000000e+00
9 +4.4836560403905068e-01 +1.2085759993904110e+00 +1.5204207907027207e+00
10 +1.8490224308647703e+00 +2.7390945659647916e+00 +1.7801442702000427e+00
14 -2.5636633572948488e+00 -8.9892401962482049e-01 +3.3294786753400567e+00
3 +6.0329605355001448e-01 +6.8873674221134440e-01 +1.7088137732265984e-01
0 +7.2851955742482133e+00 +7.2851955742482133e+00 +0.0000000000000000e+00
27 -7.5073630636063440e+00 -3.2878159709477179e+00 +8.4390941853172521e+00
53 -1.5228802612857443e+01 -4.4989474502093705e+00 +2.1459710325296143e+01
60 -1.3857935431845679e+01 -1.2518816701888840e+00 +2.5212107523313591e+01
18 -2.4630868344486840e+00 -4.3782017887909142e-02 +4.8386096331215498e+00
16 -3.9533522246097368e+00 -2.0531090803237086e+00 +3.8004862885720563e+00
12 -1.6854276380018298e+00 -5.2967883625208056e-01 +2.3114976034994985e+00
1 +2.0542830848622540e+00 +2.0545836394336447e+00 +6.0110914278155292e-04
16 -3.7661841155831182e+00 -1.8710531079649426e+00 +3.7902620152363511e+00
7 -1.2117863548624426e+00 -6.9271643073303046e-01 +1.0381398482588242e+00
0 +5.5388459225445761e+00 +5.5388459225445761e+00 +0.0000000000000000e+00
12 +2.2917700406133790e-01 +1.4614931198962697e+00 +2.4646322316698637e+00
9 -1.0420815290240784e+00 -2.3695263919708243e-01 +1.6102577796539919e+00
5 +2.4926751645930256e-01 +5.4622385712212385e-01 +5.9391268132564257e-01
7 +1.2642714155331563e+00 +1.7934697269694531e+00 +1.0583966228725936e+00
8 +1.8162962309760804e+00 +2.4094157896311215e+00 +1.1862391173100821e+00
2 +3.3935128712235656e+00 +3.4244026819989255e+00 +6.1779621550719810e-02
6 +2.6356776187010320e+00 +3.0401209464692878e+00 +8.0888665553651151e-01
42 -9.6635419467510566e+00 -1.8899486407670096e+00 +1.5547186611968094e+01
0 +1.7169166488344834e+00 +1.7169166488344834e+00 +0.0000000000000000e+00
40 -1.1503426074624933e+01 -4.2648499345908579e+00 +1.4477152280068150e+01
15 -2.7783214809643697e+00 -9.2806121524981267e-01 +3.7005205314291141e+00
32 -8.4119278030289450e+00 -3.0801246735572709e+00 +1.0663606258943348e+01
14 -2.6741886531523500e+00 -1.1419938846427171e+00 +3.0643895370192658e+00
0 +3.0493441760089071e+00 +3.0493441760089071e+00 +0.0000000000000000e+00
16 -3.4109693312401914e+00 -1.5577239598797785e+00 +3.7064907427208258e+00
23 -4.4102829262998133e+00 -1.0134617131576955e+00 +6.7936424262842356e+00
1 +3.6587034597741037e+00 +3.6602182485300427e+00 +3.0295775118780455e-03
53 -1.5795554820464250e+01 -5.1276481062857195e+00 +2.1335813428357064e+01
13 -2.8229514139038878e+00 -1.3707123122499030e+00 +2.9044782033079697e+00
6 +2.7320017725957011e+00 +3.1359563115599740e+00 +8.0790907792854583e-01
9 -5.9055297976596410e-01 +1.3092817989433625e-01 +1.4429623193206007e+00
64 -1.9272420747142046e+01 -5.6495962809714886e+00 +2.7245648932341116e+01
30 -8.3841162255011454e+00 -3.5115020957055525e+00 +9.7452282595911868e+00
0 +4.9303205511662309e+00 +4.9303205511662309e+00 +0.0000000000000000e+00
3 +5.9126050576346678e-02 +1.9441512634600233e-01 +2.7057815153931131e-01
18 -4.5149886900451941e+00 -2.2431469725630535e+00 +4.5436834349642812e+00
13 -2.4245235653475161e+00 -1.0802754983647929e+00 +2.6884961339654465e+00
24 -5.0494570189109007e+00 -1.3910919097306973e+00 +7.3167302183604068e+00
33 -9.6262202004049975e+00 -3.8607104539457202e+00 +1.1531019492918555e+01
21 -3.4677272160704726e+00 -4.3960773606530834e-01 +6.0562389600103286e+00
16 -3.8515849453957189e+00 -1.8119831116421308e+00 +4.0792036675071763e+00
0 +1.0252618758200164e+01 +1.0252618758200164e+01 +0.0000000000000000e+00
12 +1.4804407258743879e-03 +1.2551046642096759e+00 +2.5072484469676031e+00
24 -5.6715151516408211e+00 -2.1391391038283860e+00 +7.0647520956248702e+00
3 +3.8670364180708550e-01 +5.2690401573018075e-01 +2.8040074784619051e-01
20 -2.2200711233512207e+00 +4.8436950249809474e-01 +5.4088812516986309e+00
8 +2.8659974302632536e+00 +3.5041714515695435e+00 +1.2763480426125797e+00
0 +7.5067424980768891e+00 +7.5067424980768891e+00 +0.0000000000000000e+00
24 -4.4935825394848292e+00 -9.4564308501180117e-01 +7.0958789089460561e+00
0 +1.1852268060489816e+01 +1.1852268060489816e+01 +0.0000000000000000e+00
19 -4.2596617933111736e+00 -1.7929675919393584e+00 +4.9333884027436303e+00
24 -5.8103001097385638e+00 -2.2279979431750929e+00 +7.1646043331269418e+00
0 +3.7730692567231015e+00 +3.7730692567231015e+00 +0.0000000000000000e+00
34 -9.1660679809248045e+00 -3.1936543440271739e+00 +1.1944827273795262e+01
0 +7.6156312451773633e+00 +7.6156312451773633e+00 +0.0000000000000000e+00
7 +7.7476584194816311e-01 +1.2804168532511366e+00 +1.0113020226059470e+00
66 -1.9193914029840947e+01 -5.0180103907784215e+00 +2.8351807278125051e+01
35 -9.1184981344779921e+00 -2.9995376309686153e+00 +1.2237921007018754e+01
10 -3.2543046460966707e-01 +5.4929847158594880e-01 +1.7494578723912317e+00
11 -1.4883095690307950e+00 -4.0240550361000782e-01 +2.1718081308415744e+00
4 +3.3838059368968976e+00 +3.6079446997598983e+00 +4.4827752572600144e-01
2 +2.4166737792546176e+00 +2.4478668159908925e+00 +6.2386073472549874e-02
21 -4.5505383385876561e+00 -1.6890358644772241e+00 +5.7230049482208640e+00
4 +1.3219407407318320e+00 +1.5388226830810616e+00 +4.3376388469845928e-01
23 -6.1861280216256960e+00 -2.8871738216192373e+00 +6.5979084000129173e+00
16 -4.0919813324748526e+00 -2.0576574102701040e+00 +4.0686478444094973e+00
6 +2.1510897595973923e+00 +2.5256057859288292e+00 +7.4903205266287376e-01
57 -1.5785255071167224e+01 -3.9331900434010856e+00 +2.3704130055532278e+01
2 +5.9283661405512635e+00 +5.9622026717169057e+00 +6.7673062331284228e-02
12 -2.4556951400947202e-01 +1.0680445495211344e+00 +2.6272281270612128e+00
22 -5.6593660030440249e+00 -2.5101203540106987e+00 +6.2984912980666525e+00
25 -4.3050937447952853e+00 -5.3954016904012647e-01 +7.5311071515103176e+00
4 -2.4796385431868639e-01 -2.7671503265270125e-02 +4.4058470210683254e-01
36 -9.7914435537315327e+00 -3.4038736578864572e+00 +1.2775139791690151e+01
0 +4.1573956029153445e+00 +4.1573956029153445e+00 +0.0000000000000000e+00
33 -9.0866362094901802e+00 -3.5528358593916689e+00 +1.1067600700197023e+01
12 -2.9247460876881624e+00 -1.6069265891571369e+00 +2.6356389970620508e+00
2 +2.4743389042754433e+00 +2.5409570503769761e+00 +1.3323629220306543e-01
0 +4.4165068661571478e+00 +4.4165068661571478e+00 +0.0000000000000000e+00
33 -7.1926097785476601e+00 -1.4773200650468590e+00 +1.1430579427001602e+01
0 +8.5830464146819896e+00 +8.5830464146819896e+00 +0.0000000000000000e+00
7 -6.7897005907472963e-01 -1.3863047059986489e-01 +1.0806791769497295e+00
18 -3.1527383894544796e+00 -8.1724021464175767e-01 +4.6709963496254439e+00
9 -1.2632044086920375e+00 -5.3811920339399322e-01 +1.4501704105960886e+00
7 -1.2920813296765070e+00 -7.4364282468401122e-01 +1.0968770099849916e+00
5 +1.7784632561064146e+00 +2.0943649018171886e+00 +6.3180329142154790e-01
34 -6.9825634408405017e+00 -1.1295644165890883e+00 +1.1705998048502828e+01
4 +2.7962281252140104e+00 +2.9401449110695155e+00 +2.8783357171101009e-01
13 -2.1350311339610046e+00 -7.5639032005264673e-01 +2.7572816278167158e+00
12 -2.8017280866488230e+00 -1.5582336142532869e+00 +2.4869889447910722e+00
29 -8.1029720743991405e+00 -3.3701699009386372e+00 +9.4656043469210065e+00
53 -1.2639692634556390e+01 -1.9278558330662245e+00 +2.1423673602980330e+01
13 -2.9519274153309043e+00 -1.6248246204261281e+00 +2.6542055898095525e+00
30 -5.4759760062346823e+00 -5.8318312048765142e-01 +9.7855857714940626e+00
27 -7.5659395749576310e+00 -3.3046098888655884e+00 +8.5226593721840853e+00
3 +1.0607688560987381e+00 +1.1632120042586500e+00 +2.0488629631982391e-01
35 -8.3255160437259228e+00 -2.2669109939663485e+00 +1.2117210099519149e+01
1 +1.0698250538038332e+00 +1.0740553956518770e+00 +8.4606836960876564e-03
12 -1.2903083462656237e+00 -2.7067517216144754e-02 +2.5264816580989580e+00
11 -1.9505350581411216e+00 -8.3689645621326569e-01 +2.2272772038557118e+00
5 +4.1152785929389157e+00 +4.4291705578995000e+00 +6.2778392992116849e-01
3 +1.8983482746089138e+00 +2.0261979849422005e+00 +2.5569942066657347e-01
32 -6.2153585498593289e+00 -7.3216012276457954e-01 +1.0966396854189499e+01
12 -1.5728538161995251e+00 -3.8209802044332042e-01 +2.3815115915124094e+00
56 -1.6895587981619226e+01 -5.3133396955300451e+00 +2.3164496572178361e+01
34 -9.6178072631869220e+00 -3.8482569331397216e+00 +1.1539100660094402e+01
24 -6.4587897582665983e+00 -2.9755974867823936e+00 +6.9663845429684095e+00
39 -1.0452278969794598e+01 -3.3283478061374123e+00 +1.4247862327314373e+01
32 -6.5337094352887961e+00 -1.1598815022864788e+00 +1.0747655866004635e+01
23 -4.5547492019749596e+00 -1.1561160795702836e+00 +6.7972662448093519e+00
49 -1.3067942742966004e+01 -3.4109731354977577e+00 +1.9313939214936493e+01
5 +2.1628880855462365e+00 +2.4208812668830455e+00 +5.1598636267361808e-01
15 -3.8263977977819925e+00 -1.9774429250217591e+00 +3.6979097455204668e+00

Читать далее Новая программа для анализа субструктуры популяции

SNPweights: использование модели калькулятора K16 для анализа главных компонентов происхождения

Ранее я уже отрапортовал о создании двух новых моделей для стандартного этно-популяционного калькулятора, в разработке которых использовались геномы людей, cамостоятельно указавшими свое происхождение (self-reported ancestry).
К сожалению, очень часто субъективная оценка собственного происхождения (указываемого респондентами в опросниках) недостаточно надежна для статистических методов анализа происхождения, поскольку некоторые люди либо сообщают ложные сведения о своей родословной или же просто не знают о своем истинном происхождении. Что еще хуже, — во многих публичных популяционных выборках мы не находим никаких  сведений о точном этническом составе людей в выборке . Как многие из вас знают,  существует множество способов достаточно точной оценки происхождения индивида на основе данных SNP генотипирования.

Самый простой способ сводится к следующему: сначала исследователь объединяет генотипы из своего исследования с генотипами образцов в референсной панели (например: HapMap или 1000 геномов),  затем находит пересечение SNP-ов в каждом наборе данных, а затем запускает программу кластеризации, чтобы увидеть, каким образом образцы исследования группируются с популяциями референсных панелей.  В принципе,  сам процесс несложный, но требует немало времени

К счастью, в 2014 году лабораторией Alkes была предложена программа которая, по сути, значительно облегчает процесс, выполняя большую часть работу за вас. Программа называется SNPWEIGHTS и можно скачать здесь.  Говоря простым языком, программа принимает  в качестве входных данных генотипы SNP-ов, самостоятельно находит пересечение генотипов SNP с генотипами в эталонной выборке , рассчитывает веса SNP-ов на основе предварительно настроенных параметров, чтобы построить первую пару главных компонентов (иначе говоря,  cобственных векторов), а затем вычисляет процентное значение происхождения индивидуума из каждой предковой популяции (кластера).

Для того, чтобы запустить программу, необходимо убедится в том, что в вашей системе установлен Python, и что ваши данные генотипирования приведены в формате EIGENSTRAT. Краткую инструкции по преобразованию в формат EIGENSTRAT с помощью инструмента convertf можно почитать здесь.  Данные аутосомного генотипирования FTDNA или 23andme можно напрямую преобразовать в формат EIGENSTRAT с помощью утилиты aconv от Феликса Чандракумара (либо любого самописного софта).

Затем необходимо загрузить сам пакет SNPWEIGHTS и референтную панель с весами снипов.

  • Панель весов SNP для популяций Европы и Западной Африки можно скачать здесь.
  • SNP веса для населения Европы, Западной Африки и  Восточной Азии можно скачать здесь.
  • SNP веса для населения Европы, Западной Африки, Восточной Азии и популяций американских индейцев можно скачать здесь.
  • SNP веса для популяций северо-западной, юго-восточной части Европы, ашкеназских евреев и можно скачать здесь.

Затем необходимо создать файл параметров par.SNPWEIGHTS с названиями входных файлов EIGENSTRAT, референтной панели, и файл c результатами. Например:

input_geno: data.geno
input_snp: data.snp
input_ind: data.ind
input_pop: CO
output: ancestry.txt

И, наконец, нужно запустиь программу с помощью команды inferancestry.py —par par.SNPWEIGHTS. Для того чтобы программа работала, убедитесь, что inferancestry.info и  файл референтной панели  находятся в том же каталоге, что и файл inferancestry.py.

Полученные результаты можно использовать для разных целей. Например,  можно сгенерировать два информативные графика.

Первый график — обычный график PCA c двумя первыми компонентами (собственными векторами) и наложенный на график процентный расклад компонентов происхождения:

Второй треугольный график, на каждом отрезке которого , представлен процентный вклад одной из трех исконных групп популяции (например: Европы, Африки и Азии, в случае с нашими данными этот пример можно заменить на европейских охотников-собирателей, земледельцев неолита и степных скотоводов эпохи бронзы).

Вот простой код генерирования этих графиков в R. В программе R нет базовых пакетов для построения триангулярных графиков, поэтому  нужно будет сначала установить пакет plotrix. Ancestry.txt  — это файл полученный на выходе из SNPWEIGHTS:

# EV Plot with Percent Ancestry Overlay
data=read.table("ancestry.txt", as.is=T, header=F)
names(data)
plot(data$EV1, data$EV2, pch=20, col="gray", xlab="EV1", ylab="EV2")
text(data$EV1, data$EV2,labels=round(data$EUR,2)100, cex=0.4, offset=0.1, pos=3)
text(data$EV1, data$EV2,labels=round(data$AFR,2)
100, cex=0.4, offset=0.1, pos=2)
text(data$EV1, data$EV2,labels=round(data$ASN,2)*100, cex=0.4, offset=0.1, pos=1)
#Triangle Plot
data$total=data$EUR+data$AFR+data$ASN # Need to account
data$European=data$EUR/data$total # for slight rounding
data$African=data$AFR/data$total # in the ancestry
data$Asian=data$ASN/data$total # estimation file for
data_p=data[c("European","Asian","African")] # triax.plot to work
library(plotrix)
triax.plot(data_p, pch=20, cc.axes=T, show.grid=T)

 

Разумеется, размещенные на сайте разработчика референтные панели носят ограниченный характер. Поэтому я решил заполнить пробелы, преобразовав аллельные частоты SNP-ов в 16 предковых компонентах в 16 синтетических «чистых» предковых популяций, каждая из которых состояла из 200 синтетических индивидов («симулянтов») состоящих на 100 процентов из одного компонента происхождения в модели K16). Файл с генотипами 3200 «симулянтов» я использовал для вычисления весов снипов в каждом компоненте. Продвинутые пользователи, желающие протестировать модель K16 до ее публичного релизма, могут скачать полученный файл с весами снипов  здесь, а затем, cледуя приведенным выше инструкциям, использовать его в качестве референтной панели (а затем сравнить свои результаты с усредненными результатами разных этнических популяций).

Я протестировал веса снипов в модели K16 (выражаю признательность автору программу Чену за помощь), и обнаружил, что между данными калькулятора и данными SNPWEIGHTS расхождения носят незначительный характер, хотя похоже, что SNPWEIGHTS не так сглаживает минорные компоненты происхождения (что позволяет легче выделить в пространстве главных компонент кластеры):

test (1)

Окончание процесса фазирования и импутирования геномов

К середине мая этого года я закончил трудоемкий процесс импутации сборной солянки из 9000 публично доступных образцовых представителей  700 различных человеческих популяций, генотипированных в разное время на разных снип-платформах (главным образом — Illumina и Affymetrix)
Строго говоря, я планировал завершить этот этап работы намного раньше, но в ходе выполнения работ возник ряд обстоятельств, помешавших завершить этот этап в срок. Главным из них является смена сервера где я выполнял импутирование геномов. Я начал работать на сервере Мичиганского университета, однако в ходе процесса перешел на аналогичный сервис Института Сэнгера (имени того самого нобелевского лауреата, предложившего первый метод полного сиквенирования генома).
Это решение было продиктовано необходимостью использовать новейшую референсную панель аутосомных гаплотипов — Haplotype Reference Consortium (в нее входит примерно 30 тысяч, а после предстоящего этим летом обновления — свыше 50 тысяч — аутосомных геномов, т.е свыше 60 тыс. гаплотипов). Надо сказать, этнический состав выборки референсных геномов впечатляет, хотя и там по-прежнему наблюдается перекос в сторону европейских популяций. К сожалению, и эта новейшая выборка представлена преимущественно европейцами (поэтому вероятность  импутированных генотипов для европейских популяций оказались лучше аналогичных результатов в африканской и азиатской когортах), однако даже с учетом этого обстоятельства ее надежность в определении негенотипированных аллелей снипов выше 1000 Genomes (не говоря уже о HapMap):

1 UK10K 3715 3781 6.5x
2 Sardinia 3445 3514 4x
3 IBD 4478 4478 4x + 2x
4 GoT2D 2710 2974 4x/Exome
5 BRIDGES 2487 4000 6-8x (12x)
6 1000 Genomes 2495 2535 4x/Exome
7 GoNL 748 748 12x
8 AMD 3305 3305 4x
9 HUNT 1023 1254 4x
10 SiSu + Kuusamo 1918 1918 4x
11 INGI-FVG 250 250 4-10x
12 INGI-Val Borbera 225 225 6x
13 MCTFR 1325 1339 10x
14 HELIC 247 2000 4x (1x)
15 ORCADES 398 399 4x
16 inCHIANTI 676 680 7x
17 GECCO 1131 3000 4-6x
18 GPC 697 768 30x
19 Project MinE — NL 935 1250 45x
20 NEPTUNE 403 403 4x
Totals 32611 38821
22 French-Canadian 2000 5-6X End 2014
23 Converge 12000 1x Now
24 UG2G Uganda 2000 4x 2015
25 Arab Genomes 100 30x
26 Ashkenazi 128 CG Now
27 INGI-Carlantino 94 4x Now
28 CPROBE 80 80 4x

 

Cледуя рекомендациям, я получил набор из 9000 образцов, каждый из которых включает в себя набор из 20-30 миллионов снипов. К сожалению, из-за субоптимальности результатов в некоторых выборках (Xing et al, Henn et al. и ряде других), их придется исключить из тех видов анализа, которые требует максимальной точности исходных данных. Импутированные генотипы (выраженные через оцененные вероятности) были трансформированы с помощью программы Plink 1.9 в генотипы, причем выбирались варианты полиморфизмов с вероятностью 0.8 (—hardcallthreshold 0.8)

Для оценки полезности импутированных генотипов для популяционного анализа я использовал метрику nearest в программе Plink (матрица с дистанцией между ближайшими геномами) и кластерограммы IBS (идентичности по генотипам).

Таблица метрики nearest (Z-статистика)

А это кластерограмма с хорошо видно географической локализацией кластеров. Я использовал для кластеризации матрицы IBS несколько разных алгоритмов — наиболее убедительный вариант был получен с помощью алгоритма Ward

Другие варианты топологии кластерограмм в формате NEWICK и TRE можно посмотреть здесь (их можно открыть в любой программе для визуализации филогенетических деревьев).

Таким образом, для некоторых типов анализа в популяционной генетике использование импутированных снипов может сослужить хорошую службу, смягчая (или, наоборот, увеличивая) градиент частот аллелей).

Дополнительные анализы — fastIBD, IBS, анализ главных компонентов — образцов в выборке, только подтверждает это наблюдение:


Но самое лучшее подтверждение надежности импутированных снипов для анализа компонентов происхождения  было получено с помощью p-теста Z-статистики во время оценки правильности определенной топологии дерева компонентов (с допущением фактора смешивания предковых компонентов). Для этой цели я использовал стандартный инструмент — программу TreeMix. Я использовал только те снипы, которые встречаются в моей контрольной выборке (референсов каждого из компонента) с частотой выше 99 процентов. Как видно из нижеприведенного графика, компоненты выбраны правильно, а топология определяется практически безошибочно, несмотря даже на малое количество снипов (6 тысяч). Правильно определились и направления потоков генов, дрейфов генов (указаны стрелками). Тут в принципе мало нового — большинство этих эпизодов уже были описаны в отдельных работах генетиков. Так, виден поток генов от «денисовского» человека к усть-ишимцу, от которого в свою очередь идет поток генов к австралоидным популяциями. То есть денисовская примесь у папуасов могла достаться от сибирских популяциях близких к «усть-ишимцу». Виден также вклад ANE/EHG в геном североамериканцев -в интервале 10-15 процентов.

Принципально новым является лишь определенный программой дрейф генов в направлении от африканцев Khoisan к североафриканцами (в качестве референса которых взяты египтяне, бедуины и алжирцы). Скорее всего, это и есть тот самый пресловутый сигнал «египтского выхода» человечества из Африки, о котором недавно писалось в новейшей статье, а сам компонент -идентичен пресловутому Basal-Eurasian component


В начале июля  в связи с публикацией препринта о генофонде древних ближневосточных земледельцев решился все таки подписать заявление на имя Давида Рейха и Иосифа Лазаридис с ходатайством о доступе к полной версии их выборки (она включает много новых интересных для меня популяций — например, около сотни новых образцов шотландцев, шетландцев, ирландцев из разных областей Ирландии, немцев, сорбов и поляков из восточной и западной Польши).

Г-н Лазаридис был весьма любезен и буквально на следующий день после получения подписанного заявления предоставил мне доступ к этим данным. Я займусь их плотным изучением чуть позже. А пока любопытно посмотреть результаты пилотного Admixture анализа 5900 публичных доступных образцов. В качестве проверки надежности своего нового метода изучения древних и современных популяций людей, я провел 4 параллельных анализа Admixture c разным дефолтным значением предковых популяций (K).

Разумеется, в нашем случае число компонентов K заведомо больше 3, авторы статьи эмпирически показали что меньший разброс значений был получен при K=11. Поэтому я исходил из этой цифры, назначив три разных значения K — 10,11,13.
В первом варианте я использовал т.н unsupervised режим Admixture, т.е. программа должна была сама угадать и реконструировать частоты аллелей снипов в 10 реконструируемых предковых «компонентах» популяций.

Как и ожидалась, таковыми оказались африканский (пик у пигмеев и бушменов), америндский (пик у эксимосов и американских индейцев), сибирский (пиковые значение у нганасанов), южно-индийский компонент (пик в народностях Paniya и Mala), австрало-меланизийский, южно-восточноазиатский, три западно-евразийских компонента — 2 компонента западноевроп ейских и кавказских охотников-собирателей и неолитический; и наконец ближневосточный.

Разумеется, за исключением трех компонентов с пиками в древних геномах, данное распределение отражает cовременное распределение предковых компонентов.

Пришлось вручную выделять из ближневосточного компонента популяцию базальных европейцев (в качестве основы я взял геномы натуфийцев, т.е ближневосточный компонент — Levant_N — может быть разложен на два отдельных предковых компонента — неолитический и мезолитический «натуфийский»), а затем сгенерировать гипотетическую популяцию из 20 образцов состоящих на 100 процентов из натуфийского компонента. Именно этот компонент был включен в модель K11 под названием Levant_Mesolithic ( или Natufian). Этот компонент не стоит путать с компонентом Basal-Eurasian в калькуляторе Eurogenes K7 Basal-rich, так в в моей модели K11 основная часть базального компонента ушла в неолитические компоненты (т.е Natufian=Basal-Rich — Neolithic)

Гораздо сложнее ситуация обстояла с разделением компонента кавказских охотников-собирателей, которые наряду с американскими аборигенами несут в своем геноме значительные доли компонента древних северо-евразийцев. По этому причине очень сложно, например, разделить восточных охотников-собирателей (из мезолитических культур Карелии и Самары) и синхронным им кавказских охотников-собирателей.
Из-за присутствия компонента древних северо-евразийцев в их геноме, в Admixture компонент древних кавказцев увеличивается только за счет компонент восточных охотников-собирателей — и наоборот. Правда, можно попытаться выделить отдельный мезолитический компонент населения горного Загроса (Иран).

В случае успеха древние геномы жителей мезолитической Грузии можно будет представить как 20% компонента степных охотников-собирателей + 80% местного мезолитического субстрата.