Три предковые группы европейцев

Получивший широкой резонанс в среде профильных профессиональных популяционных генетиков и простых любителей препринт статьи Lazaridis et al. 2013 содержит огромное количество важных наблюдений и заключений насчет происхождения и эволюции структуры генофонда современных европейцев. Объективности ради стоит отметить, что наверное не менее половины выводов вышеупомянутой статьи были озвучены ранее персональными геномными блоггерами в ходе более ранних самостоятельных экспериментов и анализов древней ДНК.  Но важность статьи Lazaridis et al. 2013, конечно же, в другом. В ней приводятся новые данные ( результаты изучения древнего ДНК) ряда доисторических популяций групп людей Европы. В частности, были приведены результаты изучения древнего ДНК мезолитических европейских охотников-собирателей из Люксембурга, чьи мтДНК были опубликована несколько лет назад; результаты генотипирования неолитического образца ДНК неолитического земледельца из Германии: наконец, препринт статьи содержал данные сразу по  нескольким мезолитическим охотникам-собирателей из Швеции.

По раскладу своих предковых компонентов, люксембургский образец похож на образцы  La Brana (иберийский палеолит). В свою очередь,  ДНК шведов периода мезолита похожа на ДНК шведских неолитических охотников-собирателей. Аналогично, структура предковых компонентов у неолитического земледельца напоминает распределение компонентов у тирольского ледового человека Этци, шведского неолитического земледельца культуры воронковидных кубков и современного населения Сардинии. Недавно опубликованный  верхнепалеолитический образец жителя стоянки Мальта (Прибайкалья), авторы относят к  отдельному генетическому супер-компоненту, который  в статье именуется  «компонентом древнего северо-евразийского населения», Согласно наиболее вероятной из обсуждаемых в статье моделей, носители этого компонента смешались с западными евразийцами  еще до того, как носители мезолитического европейского компонента смешались с неолитическими земледельцами с ближнего Востока.

Как я отмечал ранее, очевидность результатов вряд ли нуждается в отдельных комментариях.  Положение индивидов по степени их сходства (выраженного посредством параметра z D-статистики)  относительно условной оси на одном конце которых находятся южные европейцы, на другом — северные европейцы. Шведские сэмплы древнего ДНК времен мезолита и пост-мезолитической (переходной к неолиту) культуры ямочной керамики Готланда сдвигаются в сторону северных европейцев (представлены референсной популяцией литовцев).  Примечательно, что в ту же стороны сдвигаются и представители иберийско-испанского мезолита (образцы La Brana 1 и La Brana 2).
Образцы древнего ДНК представителей культуры воронковидных кубков, Эци Тирольца закономерно смещаются к другому полюса спектра — южным европейцам (которые представлены сардинцами).

PCA график дает отличное представление о соотношении различных компонентов:

europe

 

 

 

model

Таким образом, костяк европейского генофонда образован за счет сочетания трех компонентов:

мезолитические охотники-собирателей Европы (WHG) + древние северо-евразийские популяции между Уралом, Центральной Азией и Сибирью (AHE) + неолитический компонент (генетически связанный с ближневосточными земледельцами EEF).

 

Поскольку в нашем случае мы имеем три исходных компонента, то любая европейская популяция может быть представлена в виде тримодального распределения этих компонентов. Визуализация этого распределения достигается путем отображения популяций внутри треугольника (каждый из углов которого представляет собой отдельный чистый предковый компонент). Таким образом мы можем отображать не только группы людей (т.е популяции), но и отдельных современных индивидов с генотипированными снипами. При визуальном изучении расположения популяций внутри треугольника, мы можем отметить cмещение спектра разнообразия в сторону предкового компонента неолитических земледельцев (EEF). Это наблюдение еще раз подтверждает насколько важным событием для эволюции и развития европейского генофонда являлась  неолитическая революция. Она принесла с собой не только технологические изменения, но и перемены в генофонде тогдашних европейцев. Однако если быть более точным, то нет никаких сомнений в том что компонент EEF аккумулирует в себя не только генофонд первых европейских земледельцев, но и остаточный момент от смешения этого компонента с представителями четвертого компонента («базальных евразийцев»).

admixture

Выявленные предковые компоненты отличаются значительной дискретностью, и в своем чистом виде практически не перекрываются. Именно по этой причине именно эти компоненты (а не общепринятые ныне в аутосомных исследованиях попгенетиков  этногеографические компоненты) могут использоваться в качестве неколлинеарных факторов в анализе эволюции генофонда отдельных народов.

  1. Компонент западноевропейских охотников-собирателей мезолита ( WHG ): метапопуляция этого компонента включает в себя образец Loschbour (мезолитический Люксембург, 8000 лет до настоящего времени) и два мезолитических образца древнего ДНК людей из пещеры La Brana в Испании. Тем не менее, в настоящий момент своего пика WHG (почти 50%) достигает среди эстонцев и литовцев , на востоке Балтийского региона. В этом смысле эти популяции являются наследниками древнейших жителей мезолита Европы. К этой группе примыкает группа шведских неолитических популяций  (скандинавские охотники-собиратели (SHG ) : эта мета- субпопуляция состоиь из шведских мезолитических и неолитических образцов ДНК из Моталы и Готланда , соответственно. Судя по всему, здесь мы имеем дело с  более восточным вариантом WHG , с небольшой примесью генов от древних северо-евразийских популяций.

Удельная доля компонента WHG в генофонде популяций по мере убывания  (градиент убывания в направлении с северо-запада на юго-восток Европы).

Эстонцы 0,495
Литовцы 0,464
Исландцы 0.456
Беларусы 0,431
Норвежцы 0,428
Испанцы 0,068
Греки 0,058

Мальтийцы 0
Ашкенази 0
Сицилийцы 0

  1. Компонент ранних европейских земледельцев (EEF) : по всей видимости, это гибридный компонент являющийся  результатом смешивания части загадочных «базальных евразийцев» и носителей компонента WHG где-то в Европе, возможно, на Балканах. Метапопуляция EEF в чистом виде представлена у представителя линейно-ленточной керамики  (Штутгарт, Германия), Этци Тирольского человека, и неолитического земледельца культуры воронковидных кубков. В наше время пик это компонента  приходится на Сардинию, Сицилийцев, ашкеназов и жителей Мальты (примерно 80-90%).

Удельная доля компонента EEF в генофонде популяций по мере убывания  (градиент убывания частоты направлен в сторону обратную WHG, т.е с юго-востока Европы на северо-запад, однако градиент выражен гораздо менее четко).

Мальтийцы 0,932
Ашкеназим 0,931
Сицилийцы 0,903
Сардинцы 0,817
Испанцы 0,809
Норвежцы 0,411
Исландцы 0,394
Шотландцы 0,39
Литовцы 0,364
Эстонцы 0,322
3. Компонент древних северо-евразийцев ( ANE ): метапопуляция компонента включает в себя   24000 летний верхне-палеолитический образец охотника-собирателя из южно-центральной Сибири, принадлежащий к Y- ДНК гаплогруппе R *, (MA -1), а также  верхнепалеолитический образец из центральной Сибири (Афонтова Гора -2) ( AG2 ). Этот компонент мог вероятно присутствовать в Южной Скандинавии по крайней мере со времен мезолита, но Западной Европы  достиг уже в конце эпохи неолита. В современной Европе самый высокий процент это компонента наблюдается у эстонцев (на уровне чуть более 18%), и  достигает такого же уровня среди шотландцев.

Эстонцы 0,183
Шотландцы 0,182
Венгры 0,179
Литовцы 0,172
Чехи 0,167
Итальянцы из Бергамо 0,108
Сицилийцы 0,097
Ашкеназим 0,069
Мальтийцы 0,068
Сардинцы 0,008

Сводная таблица по раскладу компонент у отдельных популяций  и их формальной статистической значимости (f3-статистика):

q1is

Эпилог

В апреле и мае 2012 года (задолго до появления статьи Lazaridis et al. 2013), в ходе изучения структуры кластеров компонентов в древних ДНК (чьи SNP-данные были тогда у меня в наличии). В ходе анализа Admixture  K=3 программа дала интересное распределение по современным популяциям и древним образцам. Как видно из географического распространения, кластер-метопапуляции готландских охотников-собирателей/ мезолита и современных саамов в значительной части перекрывается с ареалом современного пика компонентов мезолитических охотников-собирателей. Неолитический (средиземноморский) компонент совпадает с ареалом компонента EEF. Наконец, контуры ареал компонента который я ошибочно обозначил как Corded Ware Indo-European, практически перекрываются контурами ареала ANE (пик которого, как отмечалось выше, приходится на популяции шотландцев и эстонцев).

admixture-3

K3-Admixture

 

.

Митохондриальная ДНК древних жителей Европы.

Октябрь этого года был особо богат публикациями на тему древней ДНК. Самым важным представляется исследование Brandt et al. «Ancient DNA Reveals Key Stages in the Formation of Central European Mitochondrial Genetic Diversity». По своей сути, эта статья подводит итоги десятилетия исследования митохондриальной ДНК древних жителей Европы в период между мезолитом/ранним неолитом и бронзовым веком. Поскольку статья носит обзорный характер, то в ней больше обобщений накопленной информации, чем собственно новой информации.

Древняя митохондриальная ДНК, выделенная из древних скелетов, была использована для восстановления первой подробной генетической истории современных европейцев. Исследование продемонстрировало, как менялся состав населения, происходили волны доисторической миграции. Исследователи составили каталог 364 результатов мтДНК  доисторических жителей Центральной Европы в период начиная с раннего неолита до бронзового века (продолжительность периода составляет примерно четыре тысячи лет). Главным выводом работы представляется тезис авторов  о том, что смешение коренных охотников-собирателей и пришлых ближневосточных земледельцев не может объяснить современное генетическое разнообразие, гораздо более сложное, чем результат простого смешения. Вместе с тем, ученые обнаружили, что эти две культуры на грани бронзового века 4200 лет назад сыграли существенную роль в формирование генетического строения в Центральной Европе.

Исследователей заинтриговало то, что генетические связи можно напрямую сравнивать с изменениями в материальной культуре. Генетические изменения происходили в период, когда культура расширяла свое влияние, и это может служить доказательством взаимодействия древних людей на больших расстояниях. К таким взаимоотношениям относятся миграции из Западной и Восточной Европы в конце каменного века, за счет расширения таких культур, как культура колоколовидных кубков и культура шнуровой керамики (они получили название по форме изготавливаемой посуды).

Тем не менее, один предварительный вывод уже может быть сделан. Парадигма миграционизма жива и по-прежнему актуальна. Любому исследователю-приверженцу парадигмы «горшки -это не люди»  будет трудно объяснить дискретность/прерывание преемственности, обнаруженной при исследовании и сравнении образцов ДНК неолита и бронзового века. Наблюдается серия контрастов: контраст между мито-ДНК древнеевропейских охотников и собирателей (митогаплогруппы U, U4, U5, U8) и ДНК первых европейских земледельцев (митогаплогруппы N1a,T2,K,J,HV,V, W,X) которые, в свою очередь, отличаются от ДНК представителей  позднего европейского неолита (медного века, гаплогруппы I, U2, T1, R), которые вытеснили земледельцев спустя несколько тысяч лет и породили культуры бронзового века. Если парадигма «горшки — это не люди» верна,  то весьма странно, что контрасты между археологическими культурами,  в значительной степени маркируются типом горшков  также, совпадают с зоной генетических контрастов.

Кроме того, удалось проследить не только хорошо изученный миграционный путь через Ближний Восток во времена так называемой неолитической революции, но также путь из Западной и Восточной Европы.


Следующая статья Bollongino et al. 2013 «2000 Years of Parallel Societies in Stone Age Central Europe» рассматривает проблему генетической преемственности под несколько иным углом. В работе показывается,  что охотники-собиратели не исчезли в Центральной Европе после введения сельского хозяйства, но некоторые из их потомков сосуществовали вместе с земледельцами еще в течение двух тысяч лет.

 

О понятиях ДНК-генеалогии и популяционный генетики (продолжение)

Несколько месяцев тому назад я писал в этом блоге о некоторых основных понятий ДНК-генеалогии и популяционной генетике (нужно помнить о том, что хотя множество терминов ДНК-генеалогии и перекрывается в основной своей части множеством терминов ДНК-генеалогии, все же отношения между двумя типами терминов далеки от строгой семантической эквивалентности, или говоря языком математической логики, от конгруэнции).

К моему удивлению, несмотря на огромные объемы написанного на тему разъяснительного и пояснительного материала, споры и непонимание  продолжают сопровождать даже столь краеугольные понятия, как гаплотип.
Обиднее всего, что объеме или экстенсионале этого ключевого понятия,  продолжают путаться не только новички, но и маститые корифеи ДНК-генеалогии, многие из которых пришли в ДНК-генеалогию задолго до меня.
Например, один из уважаемых мною деятелей пишет:

Гаплотип все-таки характеризует гаплоидные наборы аллелей, т.е. только Y-хромосому, и мтДНК. Аутосомные наборы являются парными, т.е. диплоидными. Термин «диплотип» я не встречал. Скорее, для аутосом уместен термин «диплоидный набор аллелей». Здесь нет разницы, какие аллели рассматриваются: STR-повторы или однонуклеотидные аллели. В отношении гаплотипов я придерживаюсь мнения, что в широком смысле под гаплотипом надо понимать всю совокупность аллелей Y-хромосомы или мтДНК каждого отдельного лица. У каждого человека — свой гаплотип и свой диплоидный набор. Просто из-за сложностей и ограничений в определении всей цепочки, например, Y-хромосомы мы видим только очень маленькую часть всего гаплотипа.

Написанное выше не является точным определением понятия гаплотип.

Как известно из энциклопедии, гаплотип (сокр. от «гаплоидный генотип») совокупность аллелей на локусах одной хромосомы, обычно наследуемых вместе. Если же при кроссинговере комбинация аллелей меняется (что происходит очень редко), говорят о возникновении нового рекомбинантного гаплотипа.  Применение этого термина для описания совокупности аллелей на Y-хромосомы и совокупности аллелей в митохондриальном геноме совершено мотивированно хотя бы уже в силу того, что аллели на локусах нерекомбинантной части Y-хромосомы  и митохондриона наследуются в  гаплоидной форме, то есть только от одного родителя. В то время как генотип определенных (prima facie аутосомных генов) диплоидной особи состоит из двух гаплотипов, расположенных на двух хромосомах, полученных от матери и отца соответственно.

Полагаю, что вышеприведенная информация не нуждается в пояснении, хотя бы уже в силу своей интуитивной ясности и общеизвестности. Гораздо важнее то, что я напишу сейчас. На самом деле, приведенный выше термин «диплоидный набор аллелей» — не совсем удачен, так как вызывает у новичка ложные ассоциации.  С другой стороны, термин-сокращение диплотип ( сокр. от диплоидный генотип) практически не прижился  не только в русскоязычной, но и в англоязычной терминологии. Это подтверждает анализ литературы в Google Books Ngram Viewer.

Untitled 

Вместе с тем не стоит путать понятия «диплоидный генотип (набор аллелей)» с понятием  «генотипом» в собственном смысле этого слова. Ибо диплотип определяется как пара гаплотипов (разумеется, у диплоидного организма каковым и является человек) с известной фазой, в то время как в генотипе фаза неизвестна.


Здесь мы должны вспомнить о понятии фазы в генетике, и о процессе фазирования, о котором я уже неоднократно упоминал в своем блоге.
Вопреки распространенному ложному мнению, фазирование это отнюдь не абстрактно-отвлеченное, лишенное практического биологического смысла, упражнение в математической эквилибристике. Напротив, задача фазирования (или если хотите, установление фазы) генотипа крайне проста — определить какой гаплотип был унаследован от отца, а какой от матери, ибо и мужская гамета-сперматозоид, и женская гамета-яйцеклетка несут гаплоидный набор аллелей или гаплотип. И только при оплодотворении (образовании зиготы) слияние двух гаплотипов образует диплоидный генотип/диплотип (в случае с неполовыми хромосомами).

Разумеется, сразу же встает вопрос, а как практически использовать эти новые знание для определения своего диплотипа на примере данных 23andme, то есть как определить какая часть досталась в виде аутосомного гаплотипа от отца, а какая — от матери.

При ответе на ответ вопрос будет полезно рассмотреть следующие ложное суждение, принадлежащего на этот раз новичку.

«совокупность снипов с 23эндМи» является гаплотипом. Однако это SNP-гаплотип, а не STR-гаплотип. Ценность второго в том, что он имеет большую информационную насыщенность для анализа на более коротких генеалогических дистанциях.

 

Это абсолютно неверное предположение (если только автор не имеет ввиду исключительно Y хромосомные SNP-ы). Если речь идет о всех снипах 23andme, то с автором нельзя согласиться.  Дело в том, что процедура типирования снипов в чипсетах построена таким образом, что по получаемым в виде «совокупности снипов» данным невозможно сказать, какой именно из аллельных вариантов входит в состав материнского, а какой отцовского гаплотипа.  Об этом я уже писал несколько раз в блоге, поэтому не буду повторяться еще раз.  Именно по этой причине, без возможности определить фазу генотипа, нельзя утверждать о том, что данные «совокупности снипов» (выдаваемые клиенту в виде RawData, т.е перечня снипов с аллельными вариантами клиента) представляют собой диплотип. А поскольку диплотип есть пару гаплотипов с известной фазой, то тем паче «совокупность аллелей»от 23andme не может быть гаплотипом

Итак, из сказанного постулируется очевидный вывод о том, что приведенные выше цитаты с умозаключениями как чайника, так и корифея представляются неточными.

Хотя, конечно же, причина сей весьма досадной терминологическая оказии совершенно очевидна.
Терминология ДНК-генеалогия (по крайней мере в том виде, в котором она получила свое развитие в русскоязычных около-научных кругах) существенна упрощена в сравнении с генетикой, и самый термин гаплотип используется в ней только  in sensu strictissimo (в самом узком смысле), применительно только к так называемым Y (хромосомным )-STR гаплотипам. Именно этот тип гаплотип обычно и подразумевают ДНК-генеалоги, говоря о гаплотипе в своем узком кругу.  Но нужно помнить что семантическое поле понятия гораздо шире, и охватывает в себя различные классы референциального употребления. Так, в зависимости от контекста, это понятие  может обозначать не только Y-STR, но и многое другое — от аутосомных STR и митохондриального гаплотипа до целых хромосом и даже генома. Бывают и совсем уникальные варианты применения термина гаплотип, когда он описывают гетерогенную систему генетических маркеров, одна часть которых была определена классическим серологическим способом, а другая — новейшими методами ДНК-диагностирования (наилучший пример таких систем —  HLA гаплотип):

Гены HLA находятся на 6-й хромосоме . Совокупность генов HLA, лежащих на одной хромосоме, называют гаплотипом HLA а на обеих хромосомах — генотипом HLA .

Поскольку наследование гаплотипов HLA подчиняется законам Менделя, вероятность совпадения генотипов HLA у братьев и сестер составляет 25%. Однако следует учитывать, чтокроссинговер (обмен гомологичных хромосом участками во время мейоза) с однопроцентной вероятностью приводит к образованию нового гаплотипа HLA.

Отдельный кластер генов MHC обозначается как «гаплотип» и обычно наследуется весь целиком как отдельный менделевский признак; гены, входящие в его состав, выявляются при кроссинговере. Гены HLA наследуются кодоминантно и передаются потомству двумя блоками — по одному от каждого родителя ( рис. 17.1 ). Такой блок носит название гаплотипа HLA. Частота рекомбинаций внутри гаплотипа HLA составляет около 1%, в материнской хромосоме она несколько выше. Ребенок наследует по два аллеля каждого гена HLA: один из материнского гаплотипа, другой — из отцовского. Если удается выявить лишь одну аллельную форму какого-нибудь антигена HLA, это означает, что носитель гомозиготен по данному аллелю или в типирующем наборе нет сыворотки для определения другой аллельной формы антигена. Гаплотип HLA можно установить лишь при анализе наследования генов HLA в семье.

Еще раз о важности митохондриальной ДНК

Пару дней тому назад в журнале Nature была опубликована весьма важная статья.

Постоянные читатели моего блога наверно помнят мои пространные сообщения насчет проявления в фенотипе мутаций митохондриального ДНК. В числе прочего — я указывал на том что наследуемая часть (heritability) интеллектуальных способностей очень тесно связано с мутациями в ДНК. А ведь эти же мутации определяют митохондриальную ‘женскую’ гаплогруппу.

Теперь наше предположение получило фактическое подтверждение в новой работе популяционных генетиков. Она важна для НМА не только в связи с объяснением генетических аспектов формирования интеллекта, но также из-за убедительной связи наследуемых мутаций и старения. По-моим многолетним наблюдениям, люди mito-JT стареют гораздо медленней людей HV.

Краткий реферат статьи c портала РИА новости.

«Ученые впервые показали, что процесс старения происходит не только в результате накопления мутаций в митохондриальной ДНК в течение жизни. Мутации, унаследованные от матери, могут ускорять процесс старения. МОСКВА, 21 авг — РИА Новости. Ученые впервые показали, что старение клеток организма определяется не только накоплением мутаций в ДНК в течение жизни, но и унаследованными от матери мутациями в митохондриальной ДНК, говорится в статье, опубликованной в журнале Nature. В процессе старения в клетках организма накапливаются мутации, нарушающие их работу. Наиболее важным элементом этого процесса ученые считают старение митохондрий. Митохондрии, присутствующие практически во всех клетках живых организмов, жизненно важны, поскольку преобразуют питательные вещества в АТФ — «топливо» для клеток. «У митохондрий есть своя собственная ДНК, которая меняется сильнее, чем ДНК ядра, и это существенно влияет на процесс старения. Накопление мутаций в митохондриях постепенно останавливает выработку энергии в клетках», — пояснил ведущий автор исследования Нильс-Горан Ларсон (Nils-Gоran Larsson) из Каролинского института в Стокгольме (Швеция). Ларсон и его коллеги провели эксперименты на мышах, специально выведенных с мутациями в митохондриальной ДНК. Ученые впервые показали, что процесс старения происходит не только в результате накопления мутаций в митохондриальной ДНК в течение жизни. Мутации, унаследованные от матери, могут ускорять процесс старения. Неожиданно для себя ученые также выявили, что унаследованные мутации в митохондриальной ДНК вместе с большим количеством мутаций, накопленных в течение жизни, могут приводить к деформации ткани мозга, особенно в гиппокампе, области, отвечающей за память и ориентацию в пространстве. Ученые полагают, что разработка терапии, замедляющей старение, возможна. В частности, изменение диеты и лекарственные препараты, например, антиоксиданты, могут восстановить работу митохондрий и уменьшить их гибель.

Ссылка на англоязычный вариант статьи.

О важности изучения митохондриальной ДНК

Значітельная часть читателей моих блогов, безусловно, в той или иной мере имеет представление о сущности и характере наследвания митохондриальной ДНК.  Благодаря доступности коммерческого тестрования, у многих из моих (по)читателей определены митохондриальные гаплотипы в отдельных регионах митохондриона (CR,HVS1, HVS2), а некоторые даже имеют полный митохондриальный сиквенс (все 16571 позиции). Таким образом, многим удалось пролить свет на свою «глубокую генеалогию», восходящую к общей точке коалисценции всех ныне существующих женских генетических линий. Романтические попгенетики нарекли эту точку «митохондриальной Евой», хотя эта точка все лишь является математической абстракцией и в силу этого любое именарекание носит сугубо конвенциональный характер.

***

I.

Небольшой экскурс для новичков.
Митохондриальное ДНК (далее мтДНК) передается от матери к ребенку. Поскольку только женщины могут передавать мтДНК своим потомкам, тестирование мтДНК дает информацию о матери, ее матери и так далее по прямой материнской линии. мтДНК от матери получают как мужчины, так и женщины, по этой причине в проведении тестирования мтДНК могут принимать участие и мужчины, и женщины. Хотя в мтДНК и происходят мутации, их частота относительно низка. В течении тысячелетий данные мутации накапливались, и по этой причине женская линия в одной семье генетически отличается от другой. После того, как человечество расселилось по планете, мутации продолжили случайное появление в разделенных растоянием популяциях некогда единого человеческого рода. По этой причине мтДНК можно использовать для определения географического происхождения данной семейной группы. Результаты тестирования мтДНК сравниваются с так называемой «Станадртной кембриджской последовательностью» (CRS) — первой установленной в 1981 году в Кембридже последовательностью мтДНК (* прим — сейчас идет пересмотр вопроса о использовании CRS в качестве референсного митосиквенса). В итоге ученые устанавливают гаплотип исследуемого человека. Гаплотип – это ваша индивидуальная генетическая характеристика. При рассмотрении мтДНК – это ваш набор отклонений от «кембриджской стандартной последовательности». После сравнения вашей последовательности с последовательностями из базы данных, устанавливается ваша гаплогруппа. Гаплогруппа — это генетическая характеристика определенной общности людей, которые имели одну общую «пра»бабушку, более недавнюю, чем «митохондриальная Ева». Их древние предки часто передвигались в одной группе в ходе миграций. Гаплогруппа показывает, к какой генеалогической ветви человечества вы относитесь. Их обозначают буквами алфавита, от А до Z, плюс многочисленные подгруппы. Например, европейские гаплогруппы – H, J, K, T, U, V, X. Ближневосточные – N и M. Азиатские – A, B, C, D, F, G, M, Y, Z. Африканские – L1, L2, L3 и M1. Полинезийская – B. Американские индейцы – А, B, C, D, и редко Х. В последнее время к европейским гаплогруппам добавили N1, U4, U5 и W.

***

II

Остановимся на европейских митогаплогруппах – H, J, K, T, U, V, X, N1, U4, U5 и W. Большинство из них в свою учередь распадается на дочерние субклады (дочерние ветви , например дочерний субклад гаплогруппы U5 — субклад U5b1 («Урсула»), чей пик распространения приходится на Прибалтику и Финляндию. Стоит отметить, что  матриархи женских линий часто просто именуются женскими именами. Основу этой традиции заложил автор книги «Семь дочерей Евы» Брайан Сайкс, который придумал для предполагаемых прародительниц большей части населения Европы имена — Урсула (гаплогруппа U), Ксения (X), Елена (H), Велда (V), Тара (T), Катрин (K) и Жасмин (J). Можно проследить и нанести на карту магистральные дороги, по которым они и остальные наши прапрабабки кочевали во времени и пространстве, и рассчитать предполагаемое время для каждой развилки — появления новой мутации, от первых «дочерей Евы» до самых недавних — гаплогрупп I и V, которым «всего» около 15 000 лет.

***

III

Часто задаю вопрос, чем отличается ядерное ДНК от мтДНК? Согласно современным научным представлениям, миллиарды лет назад митохондрии были независимыми бактериями, которые поселились в клетках примитивных эукариотических (имеющих клеточное ядро с линейными хромосомами) организмов и «взяли на себя » функцию производства тепла и энергии в клетек хозяина. За время совместной жизни часть своих генов они растеряли за ненадобностью при жизни на всем готовом, часть — передали в ядерные хромосомы, и сейчас двойное кольцо мтДНК человека состоит всего из 16 569 пар нуклеотидных оснований. Большую часть митохондриального генома занимают 37 генов. Из-за высокой концентрации свободных радикалов кислорода (побочных продуктов окисления глюкозы) и слабости механизма восстановления ошибок при копировании ДНК мутации в мтДНК происходят на порядок чаще, чем в ядерных хромосомах. Замена, выпадение или добавка одного нуклеотида здесь происходят примерно один раз в 100 поколений — около 2500 лет. Мутации в митохондриальных генах — нарушения в работе клеточных энергостанций — очень часто бывают причиной наследственных болезней. Единственная функция митохондрий — окисление глюкозы до углекислого газа и воды и синтез за счет выделяющейся при этом энергии клеточного топлива — АТФ и универсального восстанавливающего агента (переносчика протонов) НАДН. (НАДН — это никотинамидадениндинуклеотид — попробуйте произнести без запинки.) Даже для этой простой задачи нужны десятки ферментов, но большинство генов белков, необходимых для работы и текущего ремонта митохондрий, давно перешли в хромосомы клеток «хозяев». В мтДНК остались только гены транспортных РНК, поставляющих аминокислоты к синтезирующим белки рибосомам (обозначены однобуквенными латинскими символами соответствующих аминокислот), два гена рибосомальных РНК — 12s RNA и 16s RNA (гены белков митохондриальных рибосом находятся в ядре клетки) и некоторые (не все) гены белков основных митохондриальных ферментов — НАДH-дегидрогеназного комплекса (ND1-ND6, ND4L), цитохром-c-оксидазы (COI-III), цитохрома b (CYTb) и двух белковых субъединиц фермента АТФ-синтетазы (ATPase8 и 6). Для нужд молекулярной или ДНК-генеалогии используется некодирующий участок — D-петля, состоящая из двух гипервариабельных регионов, низкого и высокого разрешения — HVR1 (ГВС1) и HVR2 (ГВС2).

****

IV

Cтоит сказать пару слов о важности изучения мтДНК с точки зрения медицинской генетики.
Разумеется, уже и раньше производились исследования на предмет ассоции определенных заболеваний с отдельными женскими генетичиескими линиями. Например, в одном из исследований было высказано предположение, что разложение оксидативной фосфорилации митохлорионов, связанное с SNP, определяющим гаплогруппу J(asmine) , становится причиной повышенной температуры тела в фенотипе носителей данной гаплогруппы. Это связывают с повышенным присутствием данной гаплогруппы на севере Европы, в частности, в Норвегии.[1] Кроме того, у лиц с митохондриальной гаплогруппой J, согласно другому исследованию, быстрее развивается СПИД и они быстрее умирают по сравнению с другими ВИЧ-инфицированными.[2] В ісследованіях указывалось, что филогенетически значимые мутации митохондриона влекли за собой характер экспресии генов в фенотипе.

Далее, сестринская по отношению к J митохондриальная гаплогруппа T связана со сниженной подвижностью сперматозоидов у мужчин.[3] Согласно публикации кафедры биохимии и молекулярно-клеточной биологии Университета Сарагосы, гаплогруппа T представляет собой слабую генетическую предрасположенность к астенозооспермии.[4] Согласно некоторым исследованиям, наличие гаплогруппы T связано с повышенным риском коронарно-артериального заболевания.[5] Согласно другому исследованию, носители T менее склонны к диабету.[6] Несколько пилотных медицинских исследований показали, что наличие гаплогруппы T связано с пониженным риском болезней паркинсона и Альцгеймера.[7]

Впрочем, уже следущий пример показывает, что результаты анализа связи женских генетических линий и заболеваний зачастую противоречат друг другу. Например , носители древнейшей европейской митогаплогруппы UK  мало восприимчивы к синдрому приобретённого иммунного дефицита[8]. И в тоже самое время одна подгруппа U5a считается особо восприимчивой к синдрому приобретённого иммунного дефицита[8].

Более ранние исследования показали наличие положительной корреляции между принадлежностью к гаплогруппе U и риском развития рака простаты и рака прямой кишки. Происходящая от UK  через cубклад U8 гаплогруппа К (Катрин), также как и ее родительские линии характеризуется повышенным риском инсульта и хроніиеской прогрессирующей офтальмоплегией.

Мужчины, принадлежащие к доминрующей в Европе женской линии H(Helen — Хелена, ветвь сводной группы H характеризуются самым низким риском астенозооспермии (это заболевание, при котором уменьшается мотильность сперматозоидов). Также эта гаплогруппа характеризуется высокой сопротивляемостью организма и сопративляемостью прогрессии СПИДА. Вместе с тем, для H характерен высокий риск заболевания болезнью Альцгеймера.Для сравнения — риск развития болезни Паркинсона у носителей женской генетической линии H (Helen) намного выше аналогичного риска у представителей линии (JT). Кромэ того, представители линн H имеют самую высокую сопративляемость к сепсису.

Представители митохондриальных линий I, J1c, J2, K1a, U4, U5a1 and T имеют пониженный (в сравнении с среднестатистическим) риск развития болезни Паркинсона.Женщины генетических линий I (Ирен), J (Жасмін) і T (Тара) произвели на свет больше всего долгожителей, поэтому попгенетики в шутку называют эти митогаплогруппы гаплогруппами долгожителей. Но не все так хорошо. Некоторые представители субклад гаплогруппы J и T (особенно J2) страдают от редкого генетически обусловленного заболевания (Leber hereditary optic neuropathy), связанного с экспрессией гена, ответственного за наследуемую по материнской линии слепоту.

Принадлежность к митогаплогруппе N является факором развития рака груди. Впрочем, тоже самое касается и других европейских митогаплогрупп (H, T, U, V, W, X), за исключением K. Наконец, носители женской митохондриальной линии X («Ксения»), имеют в митохондрионе мутацию, повышающую риск развития диабета второго типа, кардиомиопатии и эндометриального рака. Представители сводной макромитогаплогруппы IWX  имеют самую высокую сопротивляемость развитию СПИДА.

*****

V

Важную роль играют митохондрии и в возникщей сравнительно недавно спортивной генетике.

Часто, читая описание спортивных препаратов и фуд-сапплементов, я наталкивался на упоминание о том, что тот или иной активный элемент препарата ускоряет метаболизм или транспортировку определенных соединений в митохондрию. В первую очередь это касается L-карнитина, креатина и BCAA. Поскольку митохондрия выполняет в клетке роль генератора энергии, то  поэтому эти наблюдения представляются мне логичными и правдоподобными.

Поэтому остановимся на рассмотрении этого вопроса несколько подробнее.

По мнению некоторых ученых, к раннему старению организма приводит дефицит энергии. Чем меньше в клетках энергии, тем меньше усилий будет направлено на восстановление и удаление токсинов. Как говорится, «не до жиру, быть бы живу». Но выход есть всегда: здоровое питание плюс маленькие биохимические тонкости смогут запустить вновь клеточные электростанции. И первое о чем советуют вспомнить – это карнитин.

Начиная со зрелого возраста митохондрии, клеточные электростанции, начинают замедлять свой пыл, что приводит к снижению энергопродукции. Клетка переходит к жесткой экономии, при которой о режиме «форсажа» не стоит и мечтать. Недостаток энергии приводит к дисфункции других клеточных органелл и вновь отражается на митохондриях. Порочный круг. Это и есть старение, точнее, его внутреннее проявление.

«Вы настолько молоды, насколько молоды ваши митохондрии», — любит заявлять диетолог Роберт Крайхон. Посвятив много лет изучению биохимии клеток, он нашел один из способов влиять на продукцию энергии митохондриями, то есть на старение. Этот способ — карнитин и его активная форма L-карнитин.

Карнитин — не аминокислота, так как он не содержит аминогруппу (NH2). Он больше напоминает кофермент или, если угодно, водорастворимое витаминоподобное соединение. Почему же карнитин привлекает внимание диетологов?

Как известно, жирные кислоты являются основным топливом для мышц, особенно миокарда. Около 70% энергии образуется в мышцах от сжигания жиров. Карнитин осуществляет транспорт длинноцепочечных жирных кислот через мембрану митохондрий. Небольшое количество карнитина (около 25%) синтезируется организмом из аминокислоты лизина. Остальные 75% мы должны получить с пищей.

Но сегодня мы получаем слишком мало карнитина. Говорят, что наши предки ежедневно потребляли минимум 500 мг карнитина. Среднестатистический человек в современном обществе получает с пищей только 30-50 мг в сутки…

Недостаток карнитина приводит к снижению производства энергии и к дегенерации. Меньше энергии — беднее физиологические резервы. Классическая картина — пожилые люди, организм которых испытывает «энергетический кризис». Если бы энергии было достаточно организму, он мог бы успешно осуществлять строительство и обновление клеточных мембран, поддерживать целостность клеточных структур, защиту генетической информации. Наша иммунная система также зависит от адекватного производства энергии.

Роберт Крайхон считает, что нам нужно больше карнитина по мере того, как организм начинает увядать. Это шаг в сторону омоложения и наполнения клеток энергией, чтобы они могли лучше функционировать, а также защитить себя от свободных радикалов и патогенных микроорганизмов. [
Кстати, полтора года тому назад я проводил пилотное обследование у физиолога на предмет определения биологического возраста. По таблице физиолога, результаты замеров наиболее точно соотвествовали биологическому возрасту 28 лет. Если г-н Роберт Крайхон прав, то мои митохондрии на 7 лет моложе моего паспортного возраста )). А вот многие мои сверстники уже живут в долг у природы (опять-таки, за счет своих митохондрий)].


Мясо, рыба, молоко, яйца, сыр и другие продукты животного происхождения в целом содержат достаточно карнитина. Баранина и ягнятина — особенно мощные источники. Из растительных источников наиболее предпочтительны авокадо и темпе.

Конечно, раньше животные паслись на пастбищах и употребляли траву. Это было здорово, так как в таком случае животные продукты содержали большое количество карнитина и полезные омега-3 жирные кислоты, которые взаимодополняли действие друг друга. Это позволяло организму наших предков эффективно сжигать жир и иметь сильное тело. Теперь же скот кормят зерном, и в нем преобладают омега-6 жирные кислоты, обладающие провоспалительным действием, а уровень карнитина снизился. Вот почему теперь, ежедневное употребление красного мяса больше не является здоровой альтернативой. Но на этом остановимся.

Есть еще один момент, о котором стоит оговориться. Было бы наивно утверждать, что карнитин может раз и навсегда избавить человека от старения. Нет, это было бы слишком легко для человечества, хотя многие, возможно, хотели бы в это поверить.

Карнитин, как и другие полезные вещества, активирующие обмен веществ, является лишь одним из многочисленных помощников. Однако он не в состоянии коренным образом остановить ход клеточных часов, хотя, вероятно, в силах замедлить его.

Было обнаружено, что работа ишемизированного миокарда останавливается при исчерпании клеточных ресурсов креатинфосфорной кислоты, хотя в клетках остается неиспользованным ок. 90% аденозинтрифосфата. Это продемонстрировало, что аденозинтрифосфат неравномерно располагается в клетке. Используемым является не весь аденозинтрифосфат, находящийся в клетке мышцы, а только его определенная часть, сосредоточенная в миофибриллах. Результаты дальнейших опытов продемонстрировали, что связь между клеточными хранилищами аденозинтрифосфата осуществляется креатинфосфорной кислотой и изоэнзимами креатинкиназы. В обычных условиях молекула аденозинтрифосфата, синтезированная в митохондрии, передает энергию креатину, который под влиянием изоэнзима креатинкиназы превращается в креатинфосфорную кислоту. Креатинфосфорная кислота перемещается к локализациям креатинкиназных реакций, где другие изоэнзимы креатинкиназы обеспечивают регенерацию аденозинтрифосфата из креатинфосфорной кислоты и аденозиндифосфата. Высвобождающийся при этом креатин перемещается в митохондрию, а аденозинтрифосфат используется для получения энергии, в т.ч. для напряжения мышц. Интенсивность циркуляции энергии в клетке по креатинфосфорному пути намного больше скорости проникновения аденозинтрифосфата в цитоплазме. Это и является причиной падения концентрации креатинфосфорной кислоты в клетке, и обуславливает депрессию мышечного напряжения даже при незатронутости основного клеточного запаса аденозинтрифосфата.
К сожалению, люди, занимающиеся спортивной генетикой, очень мало внимания уделяют митохондриям. Мне еще не встречались исследования результатов бодибилдеров, разбитых на контрольные группы по признаку принадлежности к митохондриальным группам (при условии, что остальные «показатели» у них одинаковы). Например, дизайн эксперимента мог бы выглядеть следущим образом — выбираем культуристов одинакового возраста, веса, роста, мышечной комплекции и стажа. Предлагаем им выполнить сет одинаковых силовых упражнений (например, максимальное количество подходов жима лежа с весом 95-100 кг.) Сравниваем результаты и анализируем их исходя из априорных сведений о митогруппах спортсменов. После чего даем спортсменам комбо-питание из креатина, левокарнитина, глютомина и аминокислот. По прошествию некоторого времени,  повторяем испытание и сравниваем результаты и делаем выводы о наличии/отсутствии корреляции с типом мтДНК.

****

VI

Думаю, что и мои любительские исследования митохондрий могут в конечном итоге могут просветить человечество. Правда, меня в митохондриях интересуют не только и не столько генеалогия и медицинские вопросы, сколько вопросы психогенетики, в частности аспекты взаимодействия между людьми разных митогаплогруп.  Я взял на себя смелость назвать эту область исследований психосоционикой. Пользуясь редкой возможностью наблюдать (в течении 4 лет) взаимодействие людей разных митогаплогрупп как минимум на 5 англоязычных формумах и 2 русскоязычных форумах, я заметил интересную тенденцию. К сожалению, у меня не было времени на то, чтобы четко артикулировать эту закономерность в дискурсивных терминах научного языка попгенетики, все пока на уровне предварительных замечаний. Но возможно, если удастся сформулировать мое наблюдение, то оно войдет в историю популяционной генетки как закон Веренича-Запорожченко.

Мои наблюдения основаны на изучении интеракции между тремя основными европейскими сводными митогаплогруппами (JT, HV, UK). К сожалению европейские митогаплогруппы I,W,X (а также экзотические и минорные митогруппы) в силу нерепрезентативности выборки не попали в поле моего исследования. Если вкратце, то эти наблюдения сводятся к следущим пунктам:

1) наиболее плотное и продуктивное взаимодействие наблюдается между представителями одной сводной гаплогруппы (например, между представителями разных субклад J и T). Возможно этот факт можно объяснить эволюционным механизмом, определающий на генетическом уровне (напомню, митоДНК наследуется строго по материнской линии) привязанность ребенка к матери в раннем возрасте.Кларк-Стюарт к своем исследовании трехсторонних отношений во многих семьях обнаружила, что влияние матери на ребенка носит непосредственный характер, тогда как отец влияет на малыша часто опосредованно – через мать (Clarke-Stewart К.А., 1978). Это влияние впоследстие интерполируется на взаимодействие с представителями близких митогаплогрупп (психогенетические основания этого влияния пока еще научно не выявлены).Поэтому и не удивительно, что в среде своих одногаплогруппников люди находят наиболее надежных единомышленников

2) представители JT и HV являются антиподами по отношению друг к другу — именно между ними наблюдается наиболее антагоничное взаимодействие, часто ведущие к конфликтам. Причины антагонизма предстоит изучить

3) представители митогруппы UK, как правило, характеризуются нейтральным отношением как к JT, так и к HV. Отношения с обоими группами носят сугубо деловой, нейтрально-дружественный характер

Поскольку меня интересовали причины столь явного разделения, то я обратился за консультацией к Валерию Запорожченко, крупнейшему специалисту мирового уровня по мтДНК (он является автором одной из наиболее эфективных филогенетических программ MURKA, имеет самую большую в мире частную коллекцию митогаплотипов и полных геномных сиквенсов, и является соавтором нескольких крупных публикаций по митоДНК).  Валерий дал несколько необычный, но если вдуматься, логичный ответ.Суть его ответа состояла в том, что антагонизм между JT и HV можно объяснить «генетической памятью». Дело в том, что гаплогруппа HV проникла в Европу где-то на рубеже мезолита и неолита северным путем.Параллельно с этой гаплогруппой в Европу проник женский род JT, однак маршрут миграции пролегал несколько южнее. Скорее  всего, между обеими группами (JT и HV) существовала определенная конкуренция, поскольку и JT, и HV занимали одну нишу (неолитические земледельцы). Кстати, этой же исторической интроспекцией объясняется и нейтральность митогруппы UK по отношению к HV и JT. Как общепринято сейчас считать, UK (будучи древнейшей митогруппой Европы) на заре неолитической революции и появления вышеупомянутых неолитических групп, была представлена главным образом среди европейских мезолитических охотников-собирателей. Поскольку они занимали совсем другую нишу, то представителям UK просто нечего было делить с HV и JT.

Самым хорошим примером митоконфликта является длящийся уже 5 лет конфликт между двумя блестящими умами любительской генетики и антропологии — Диенеком Понтикосом (чьей митогруппой является T2) и Давидом «Полако» Веселовским (чья митогруппа определена как H7). Чем не подтверждение конфликтного потенциала взаимодействия митогрупп JT и HV. Это как известный эксперимент с 1 г железного порошка или пудры и 2 г сухого нитрата калия, предварительно растертого в ступке. Стоит их поместить рядом, как начинается бурная реакция с выделением искр, буроватым дымом и сильным разогревом. При этом внешний вид смеси напоминает раскаленную лаву. При взаимодействии нитрата калия с железом образуется феррат калия и газообразный монооксид азота, который, окисляясь на воздухе, дает бурый газ — диоксид азота. Если твердый остаток после окончания реакции поместить в стакан с холодной кипяченой водой, получится красно-фиолетовый раствор феррата калия, который разлагается за несколько минут. ))

Каковы практические следствия сих наблюдений? В настоящее время бурно развивается одна из отраслей так называемой конфликтологии, связанной с оценкой совместимости отдельных индивидов в группе. Естественно, наиболее практическое выражение эта отрасль получает в решении практических задач (например, кастинг или отбор персонала). Разумеется, набираемый персонал оценивается главным образом по своим профессиональным знаниям, навыкам,умениям и опыту работу. Но немаловажным фактором является оценка совместимости рекрутов с уже сложившимся коллективом и руководством. Априорная оценка этого фактора затруднительна, и сейчас эта оценка производится главным образом с помощью психологических тестов, на разработку и тестирование которых крупные корпорации и учереждения (например, NASA при отборе команды астронавтов) тратят большие средства. Однако сейчас, на пороге развития психогенетики, эти тесты можно заменить анализом генетически детерминированной совместимости.

 

Например, предположим, что у нас имеется некая группа рекрутированных специалистов, которые отвечают формальным требованиям приема на работу и имеют соответсвующую компетенцию. Имеется коллектив, в котором скажем присутствуют все три макрогруппы JT, HV и UK. Если бы я был руководителем, то принятые на работу новички направлялись бы к тем или иным группам лиц, исходя из поставленных задач:

1) Если выполнение некоей задачи требует наличие тесной группы единомышленников — то наилучшим вариантом является создание группы лиц, принадлежащих к одной макрогаплогруппе
2) Если группа работает в направлении поиска новых решений и использует в работе методы типа «мозговой штурм» — необходимо поместить оных новобранцев в среду антагонистов (JT к HV,  и наоборот)

3) Если принципы работы группы зиждятся сугубо на деловых/формальных отношениях — то руководству следует озаботится тем, чтобы в группе наличиствовало достаточное количество представителей UK, которые будут выступать в качестве буфера между конфликтными JT и HV.

При желании те же самые принципы можно положить в основу «научно-мотивированного» подбора партнера в браке. По-крайней мере, оценка совместимости партнера (вернее, оценка характера совместимости) будет намного более правдоподобней, чем оценка совместимости в современных dating-service, которая основана на примитивных психологических тестах и астрологии.Кстати, единственный коммерческий DNA dating service жестко эксплатирует гаплотипы комплекса гистосовместимоcти. Логика состоит в том, что как было показано в работах ученных, люди обычно выбирают партнеров с максимально противоположенным HLA-гаплотипом.

 

[1]Different genetic components in the Norwegian population revealed by the analysis of mtDNA & Y chromosome polymorphisms [2]Mitochondrial DNA haplogroups influence AIDS progression.

[3]Natural selection shaped regional mtDNA variation in humans [4]Ruiz-Pesini E, Lapeña AC, Díez-Sánchez C, et al. (September 2000). «Human mtDNA haplogroups associated with high or reduced spermatozoa motility». Am. J. Hum. Genet. 67 (3): 682–96. DOI:10.1086/303040. PMID 10936107.

[5]Mitochondrion : 30 Mitochondrial haplogroup T is associated with coronary artery disease [6]Mitochondrial DNA haplotype ‘T’ carriers are less prone to diabetes « Mathilda’s Anthropology Blog

[7]«Elsewhere it has been reported that membership in haplogroup T may offer some protection against Alexander Belovzheimer Disease (Chagnon et al. 1999; Herrnstadt et al. 2002) and also Parkinson’s Disease (Pyle et al. 2005), but the cautionary words of Pereira et al. suggest that further studies may be necessary before reaching firm conclusions.»

[8] Mitochondrial DNA haplogroups influence AIDS progression.

[9]Natural selection shaped regional mtDNA variation in humans
[4]Ruiz-Pesini E, Lapeña AC, Díez-Sánchez C, et al. (September 2000). «Human mtDNA haplogroups associated with high or reduced spermatozoa motility». Am. J. Hum. Genet. 67 (3): 682–96. DOI:10.1086/303040. PMID 10936107.
[10]Mitochondrion : 30 Mitochondrial haplogroup T is associated with coronary artery disease
[11]Mitochondrial DNA haplotype ‘T’ carriers are less prone to diabetes « Mathilda’s Anthropology Blog
[12]«Elsewhere it has been reported that membership in haplogroup T may offer some protection against Alexander Belovzheimer Disease (Chagnon et al. 1999; Herrnstadt et al. 2002) and also Parkinson’s Disease (Pyle et al. 2005), but the cautionary words of Pereira et al. suggest that further studies may be necessary before reaching firm conclusions.»