Публикации и работа с палеогеномами

Как я уже отмечал в своих предыдущих записях, за последние годы был опубликован ряд работ, посвященных попыткам генотипирования останков древних людей — от живших несколько тысячелетий назад до «усть-ишимца» с предположительным возрастом около 45 тысяч лет, неандертальцев и «денисовки». Количество таких расшифровок растет все быстрее, что не может не вызывать оптимизма.  Вторая половина 2014 года особенно примечательна как количеством подобных публикаций, так и числом полных геномных NGS-сиквенсов древних людей, размещенных в публичных репозиториях (банках геномных данных). Так, в сентябре в Nature была опубликована окончательная версия работы Lazaridis et al. 2014  «Ancient human genomes suggest three ancestral populations for present-day Europeans». Работа получила широкое освещение в СМИ, поскольку аналитическая выборка сэмплов в этом исследовании включала значительное количествао заново генотипированных (на чипе Affymetrix HumanOrigin) образцов ДНК из древних палеолитических стоянок Сибири (Афонтова Гора, Малта), представителя древней индейской культуры Кловис и палеоэскимоса Cаккак. В работе был представлен  целый  ряд образцов древней ДНК представителей европейских мезолитических и неолитических культур, опубликованных в более ранних работах 2012-2014 годов: Skoglund et a. 2014 «Genomic Diversity and Admixture Differs for Stone-Age Scandinavian Foragers and Farmers»(шведские земледельцы и охотники собиратели эпохи неолита); Olalde et al. 2014 «Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European» (дДНК мезолитического населения Иберийского полуострова) и т.д.

В этой связи необходимо также отметить статью Carpenter et al. 2013 «Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries»в которой целый авторский коллектив представил результаты исследований древних образцов ДНК найденных в захоронениях бронзового века II тыс. д.н.э (Болгария и Дания).  В следующей работе опубликованной в конце октября, Gamba et al. 2014. «Genome flux and stasis in a five millennium transect of European prehistory»,  читателям была представлена хронологическая перспектива на процесс изменения генофонда населения популяций живших на территории  Паннонской равнины на протяжении 5000 лет (с эпохи неолита до конца железного века), проиллюстрированная на примере изучения 13 образцов древней ДНК. Параллельно вместе с этим Wellcome Trust Sanger Institute разместил геномные «риды» геномов древних англосаксов и бриттов (сама статья еще находится в процессе пре-публикации, презентация статьи была представлена на последней конференции AJHG).

Более важные публикации появилась совсем недавно. В частности, таковой публикацией является статья Fu et al. 2014 «Genome sequence of a 45,000-year-old modern human from western Siberia» о  геноме так называемого «усть-ишимца» (возраст останков которого датируются 45 000 д.н.э) и статья Seguin-Orlando et al. 2014 «Genomic structure in Europeans dating back at least 36,200 years», посвященная обсуждению результатов анализа ДНК знаменитого «папусоида»  с палеолитической стоянки Костенки-14.Тело мужчины, жившего 37 тыс. лет назад и найденное в 1954 г. на юго-западе России, оказалось источником старейшей европейской ДНК. Анализ его генома, опубликованный на прошлой неделе, показывает, что большинство разнообразных европейских генетических комбинаций существуют более 30 тыс.лет и пережили последний ледниковый период. Генетики обнаружили что ДНК Костенки-14 является близкородственным по отношению к раннеевропейским охотникам-собирателям, современным европейцам и жителям Сибири.
В то же время другой древний геном, данные о котором были опубликованы несколько недель назад, принадлежащий сорокапятитысячелетнему западному сибиряку, известному как Усть-Ишим, имел родство как с европейцами, так и с азиатами.  Любопытно, что в этой статье подтверждается то о чем я говорил гораздо раньше: процент неандертальских генов у древних евразийцев был выше чем у современных (о чем я упоминал в одной из своих заметок в этом блоге).

Трудами известного геномного блоггера Феликса Чандракумара большинство из них было переведено в простой и доступный формат, аналогичный файлам raw data от FTDNA и 23andMe. В GEDMatch можно поиграть с этнокалькуляторами и даже попытаться сравнить свой геном с геномами древних людей.Для этого следует взять из таблицы (кот. видна, если пройти по ссылке) номера, которыми обозначены древние геномы.

Sample Name Sample Location GEDMatch Sex Y-DNA Mt-DNA Approx. Age by authors My Analysis or Comments
Altai Neanderthal Denisova Cave, Siberia F999902 Female 50,000 years
Denisova Denisova Cave, Siberia F999903 Female 30,000 years
Palaeo-Eskimo Qeqertarsuaq, Greenland F999906 Male Q1a D2a1 4,000 years Palaeo-Eskimo 2000 BC DNA
Clovis-Anzick-1 Montana, North America F999919 Male Q-Z780 D4h3a 12,500 years Matches Living people.
Mal’ta South-Central Siberia F999914 Male R U 24,000 years Matches Living people on X Chromosome.
La Braña-Arintero León, Spain F999915 Male C-V183 U5b2c1 7,000 years Analyzing La Braña-Arintero Ancient DNA
Motala-12 Östergötland, Sweden F999917 Male I-L460 U2e1 7,000 years My Analysis of Motala-12 ancient DNA
LBK Stuttgart, Germany F999916 Female T2c2 7,500 years Matches Living people
Loschbour  Loschbour, Luxembourg F999918 Male I-L460 U5b1a 8,000 years Matches Living people
Ajvide58 Sweden F999924 Male I-CTS772 U4d 5000 years Ajvide58 DNA Analysis
Gökhem2 Sweden F999934 Female H1c 5000 years Gökhem2 Ancient DNA Analysis
Hinxton-2 Cambridgshire, UK F999921 Female H2a2b1 1300 years Hinxton-2 Analysis
Hinxton-3 Cambridgshire, UK F999922 Female K1a4a1a2b 1300 years Hinxton-3 Analysis
Hinxton-4 Cambridgshire, UK F999925 Male R-DF25 H1ag1 2000 years Hinxton-4 has X-Matches with living people
Hinxton-5 Cambridgshire, UK F999926 Female H2a2a1 1300 years Hinxton5 Ancient DNA Analysis
KO1 Tiszaszőlős-Domaháza, Hungary F999931 Male I-L68 R3 5650-5780 cal BC Analysis of Neolithic KO1 genome
NE1 Polgár-Ferenci-hát, Hungary F999937 Female U5b2c 5070-5310 cal BC NE1 Ancient DNA Analysis
NE5 Kompolt-Kigyósér, Hungary F999927 Male C-F3393 J1c 4990-5210 cal BC Ancient Hungarian Genome NE5 Analysis
NE6 Apc-Berekalja I., Hungary F999932 Male C-P255 K1a3a3 4950-5300 cal BC Analysis of Hungarian genome-NE6
NE7 Apc-Berekalja I., Hungary F999928 Male I-L1228 N1a 4360-4490 cal BC Ancient Hungarian genome — NE7
CO1 Apc-Berekalja I., Hungary F999930 Female H 2700-2900 cal BC Analysis of Copper age genome CO1
BR2 Ludas-Varjú-dűlő, Hungary F999933 Male J-M67 K1a1a 1110-1270 cal  BC Ancient BR2 matches living people
IR1 Ludas-Varjú-dűlő, Hungary F999929 Male N-M231 G2a1 830-980 cal BC Ancient Hungarian genome — IR1
Tyrolean Iceman
(ERP001144)
Tisenjoch Pass, Oetztal Alps Male 5300 years Pending
Ust’-Ishim Ust’-Ishim, Siberia F999935 Male K-M526 R 45,000 years Ust’-Ishim matches with living people!
Kostenki14 European Russia F999936 Male C-V199 U2b 38,700-36,200 years Kostenki14 Ancient DNA Analysis
Sample Name Sample Location Sex Y-DNA Mt-DNA Approx. Age by authors
Mezmaiskaya Neanderthal Mezmaiskaya Cave Female 29,000 years
Tianyuan Tianyuan Cave, China R 40,000 years
Afontova Gora-2 South-Central Siberia Male R1? R 17,000 years
Motala-1 Östergötland, Sweden Female U5a1 7,000 years
Motala-9 Östergötland, Sweden Female U5a2 or U5a1f1a1 7,000 years
Motala-6 Östergötland, Sweden Male U5a2d 7,000 years
Motala-2 Östergötland, Sweden Male F-P139 U5e1 7,000 years
Motala-4 Östergötland, Sweden Female U5a2d 7,000 years
Motala-3 Östergötland, Sweden Male I-M258 U2e1 7,000 years
Hinxton-1 Cambridgshire, UK Male R-L151 K1a1b1b 2000 years
Ajvide53 Sweden Female U4d 5000 years
Ajvide59 Sweden Male I-PF3796 U5b2c1 5000 years
Gökhem7 Sweden Female H 5000 years
Ire8 Sweden Male I-CTS6343 U4d 5000 years
StoraFörvar11 Stora Karlsö, Sweden Male I-CTS4077 U5a1f1a 7500 years
Gökhem4 Sweden Male CF-M3690 H 5000 years
Gökhem5 Sweden Female K1e 5000 years
Ajvide52 Sweden Male HIJK-F929 HV0a 5000 years
Ajvide70 Sweden Female U4d 5000 years
NE4 Polgár-Ferenci-hát, Hungary Female J1c 5050-5290 cal BC
NE3 Garadna, Hungary Female X2b 5010-5210 cal BC
BR1 Kompolt-Kigyósér, Hungary Female K1c1 1980-2190 cal BC
KO2 Berettyóújfalu-Morotva-liget, Hungary Female K1 5570-5710 cal BC
NE2 Debrecen Tócópart Erdõalja, Hungary Female HV 5060-5290 cal BC
V2 Vratitsa, Bulgaria Male U2e1’2’3 1500-1100 BC
M4 Borum Eshøj, Denmark Male B2 1350 BC
K8 Krushare, Bulgaria Male R 450-400 BC
NA43 Laguna de los Condores, Peru Male B4b’d’e 1000-1500 AD
AusAboriginal Western Austalian Male F-M235 O1a 100 years
NA41 Laguna de los Condores, Peru Male L3 1000-1500 AD
P192-1 Svilengrad, Bulgaria Male U3b 800-500 BC
T2G2 Stambolovo, Bulgaria Male H1c9a 850-700 BC
NA42 Laguna de los Condores, Peru Male D1 1000-1500 AD
NA50 Laguna de los Condores, Peru B4b’d’e 1000-1500 AD
NA47 Laguna de los Condores, Peru L3 1000-1500 AD
NA40 Laguna de los Condores, Peru L3 1000-1500 AD
NA39 Laguna de los Condores, Peru Male B2 1000-1500 AD
Feld1 Neanderthal Neander Valley, Germany 42,000 years
Sid1253 Neanderthal El Sidron cave, Asturias, Spain 49,000 years
Vi33.16 Neanderthal Vindija cave, Croatia Female 38,310 years
Vi33.25 Neanderthal Vindija cave, Croatia Female
Vi33.26 Neanderthal Vindija cave, Croatia Female 44,450 years

В своем блоге Феликс размещает аналитические отчеты по каждому из проведенных анализов, отчеты включают графическое отображения «состава различных геномных компонентов происхождения» каждого из образцов в калькуляторах Gedmatch (включая мой последний калькулятор K23b), фенотипические признаки (предположительный цвет кожи и глаз), возраст на момент смерти и т.д.
Пытаясь ответить на вопрос,  насколько  правдоподобны (в смысле реального генеалогического родства) результаты совпадения сегментов древних и современных людей, Феликс приводит замечательные вычисления оценки правдоподобия совпадений в геномах современных людей и древних образцов. К сожалению, рассуждения замечательные, но вызывающие определенные вопросы, которые я озвучу в другой заметке.

Так или иначе, поставленная Феликсом на поток и практически полностью автоматизированная работа с древними геномами заслуживает безусловного признания, поскольку в силу разделения труда позволяет другими исследователям-любителям полностью сконцетрировать свое внимание на процессе непосредственного анализа полученных данных, вместо того чтобы тратить свои ресурсы на процесс извлечения снипов из «сырых» геномных данных. Благодаря этому разделению труда,  Давид Веселовский из проекта Eurogenes провел ряд замечательных экспериментов с этими данными (включая PCA, Treemix и вычисление генного дрейфа с помощью f3). В основном выводы этих экспериментов повторят то, что было написано в статьях профильных генетиков, за исключением одного интересного вывода на основании графа Treemix, в котором отображено направление процессов обмена генами между различными древними популяциями:

«В отношении Kostenki14, графики  Treemix  подтверждают один из основных выводов работы Seguin-Orlando et al. 2014, согласно которой  главны компонент образца  Kostenki-14  является базальным «предковым» компонентом более поздних европейцев (Basal_Eurasian). Тем не менее, два последних графика показывают, что этот базальный «компонент» не тот же самый «базальный» компонент в геноме неолитического образца из Штутгарта, связанного с базальным евразийским  компонентом, который был описан  в работе Lazaridis et al. 2013″.

Другой геномный блоггер, Сергей Козлов, использовал те же самые данные палеогеномов (взятые с сайта Ф. Чандракумара) для создания замечательных карт, иллюстрирующих количество и интенсивность общих IBD-сегментов палеогеномов и геномов современных популяций.

Я решил не оставаться в стороне и провел собственный анализ PCA и кластеризации популяций по значениям компонентов генетического разнообразия.

Ниже приведены иллюстрации к моему опыту кластеризации собственного генома с геномами древних жителей Евразии. В качестве входных данных алгоритма ward-кластеризации в программе R, я использовал собственные значения 4 векторов главных компонентов (PC) разнообразия. Эти векторы, в свою очередь, были получены путем вычислений в большом массиве (2024 образца) генетических данных (примерно 110 тысяч снип-полиморфизмов) представителей современных и древних популяций. Мой геном (обозначенный как Vadim) представляет собой набор, полученныq в ходе импутации по датасету Human Origin значения снипов информативных с точки зрения эволюционного происхождения, и используется в качестве контрольной группы.

Для начала график PCA, и положение палеогеномов на этом графике.

10805810_10205228379818844_2683994891484833194_n

В аналитической выборке я задействовал снипы геномов высших и низших приматов (дендрограмма выборка укоренена на геноме мармозетки), древних гоминидов (денисовского человека и неандертальцев). Остальное — как я и упоминал выше — представляет собой совокупность снипов современных и древних популяций.

Благодаря характеру выборки и характеру используемых снипов, я могу взглянуть на свое происхождение с наиболее широкой перспективы, позволяющей проследить индивидуальный эволюционный путь от древнейших людей до наших современников.
Можно сказать, что я проделал самое далекое (из всех предыдущих) генеалогическое путешествие в собственное прошлое. Разумеется, без предыдущего выделения обработки образцов древнего ДНК новейшими биохимическими методами, а также публикации данных — это путешствие длинной в сотни тысяч лет не могло бы просто состоятся. Так что огромное спасибо всем биохимикам, генетикам и биоинформатиков работавшим с образцами древней ДНК.

Полученные мной кластерные дендрограммы вышли очень большого разрешения. В силу этого, имеет смысл изучить топологию, структуры и расположение популяционных групп-кластеров в полномасштабном варианте, иначе могут возникнуть интересные вопросы.

1557253_10205127321932460_4975988878575720296_o 10801887_10205156832150197_5471832914364777784_n (1) 10801887_10205156832150197_5471832914364777784_n 247121_10205156832710211_7030394711716209950_n 1235004_10205156831950192_4536397005560655073_n 1379610_10205156832350202_753531489446222277_n 10411811_10205156831710186_6596784203743263163_n

Поэтому — я подготовил соответствующие файлы PDF и разместил ссылки на эти файлы для удобного просмотра.

tree1

tree2

tree3

tree4

tree5

tree6

tree7

tree8

tree9

tree10

tree11

tree12

tree13

tree14

tree15

tree16

Здесь их опубликовать не представляется возможным, и по этой причине я ограничу себя размещением тех фрагментов трех вариантов кластерных диаграмм, на которых присутствуют древние образцы.
Забегая вперед, можно заметить, что образцы ДНК древних людей (т.е людей современного анатомического типа — homo sapiens sapiens), строго говоря, разбиваются на три органические суперкластера — древних сибириков (или евразийцев), древних европейских охотников-собирателей, и ранних неолитических европейских земледельцев. В основной своей части состав и топология популяционных кластеров стабилен в разных вариантах, наибольшие видоизменения заметны у тех образцов, чье множество снипов имеет меньшее пересечение с общим набором снипов. Отсюда довольно таки тривиальный вывод: чем меньше общее число снипов — тем больше флуктуаций наблюдается в расположении древних образцов внутри ветвей кластерной дендрограммы.

Кластер древних евразийцев наиболее стабилен (т.к. там всего два древних генома Afontova Gora 2 (AG2) и знаменитый мальчик с сибирской стоянки Malta (MA1); причем оба образца взяты из одного источника данных). Из современных популяций к этому кластеру наиболее органично примыкают различные группы населения центральной Азии — от таджиков до гуджаратов, и от калашей до пуштунов.

Кластер древних охотников-собирателей Европы наиболее неустойчив, и это объясняется прежде всего разным числом снипов в образцах, а также тем что сами образцы взяты из разных исследований. Тем не менее тенденция наглядна — древнейшие европейцы (охотники-собиратели мезолита) наиболее близки по своим аутосомным снипам к жителям современной западной и северной Европы — особенно Британских островов, Скандинавии и Балтийского региона. Практически во всех вариантах прибалтийцы близки к древним жителям Швеции (Готланда), а также мезолитическим образцам La Brana, Motala и Loshbour. Последние также близки к финнам, эстонцам и северным русским. Из более поздних и географически удаленных образцов к ним близки древние образцы из Венгрии неолитического периода, бронозового и железного веков (BR1, NE2 и KO1).

Интересно, что в этот же кластер входят как современные популяции западной Европы (британцы, норвежцы, французы и др.), так и современные жители центральной Европы — чехи хорваты и венгры. Является ли это наследием древних времен (гальштатской общности связываемой с древними кельтами) — трудно сказать. Не этим ли объясняется тот факт, что образцы древних англо-саксов и бриттов (обозначенные здесь как Hixton) иногда кластеризируются с (современными!) венграми, хорватами, иногда с современными англичанами из Кента и корнуэлльцами. При этом некоторые из образцов Hixton остаются близки (в смысле схожести генома) к скандинавам, оркнейцам, шотландцам, и даже литовцам.

Мой собственный «геном» (Vadim) также входит в эту группу, причем в разных вариантах он определенно близок одновременно и древним мезолитическим и эпинеолитическим шведам, а также более поздним образцам из Венгрии (киммерийского мальчика IR1, а также самый «балтийский» из всех древних венгерских обрацов — KO1). Интересно что IR1 («аутосомный геном» «киммерийского » мальчика Y-гаплогрупы N1a из захоронения паннонской культуры бронзового века Mezőcsát примерно 900 год до нашей эры) в первых четырех главных компонентах кластеризируется с моим собственным «аутосомным геномом»). Это наверное объясняет почему мой собственный геном дает хорошие комбинации (fit) к комбинации трапезундских турков и древних жителей Балтийского региона.

Как известно, попгенетики готовят к публикации большую статью, в которой подводятся итоги нескольких лет исследования генофонда представителей древних культуры шнуровой керамики* (известной также как культура боевых топоров) и ямной культуры** (другое название — древнеямная культурно-историческая общность). Безусловно, это исследование обещает пролить свет на некоторые темные места генетических связей жителей этих культур с современным населением Восточной Европы (особенно Польши, Украины, Беларуси и юго-западной части России).

Пока все детали исследования неизвестны, однако благодаря настойчивости некоторых энтузиастов генетической генеалогии (Веселовского и пр.) удалось выяснить, например, что генофонд древние образцы представителей Ямной культуры в рамках формальных тестов (f3 и D-статистик) наилучшим образом аппроксимируются как результат смешения древнего мезолитического населения севера Европы (в работе их представляют карельские образцы, очевидно из известных захоронений Палеострова) и населения, близкого к современным закавказским популяциям (лучший результат дали армяне из Еревана).

Признаюсь, эти сведения приободрили меня. Дело в том, что последние несколько недель я занимался изучением эволюции аутосомного генофонда беларусов (и своего тоже) из недавно опубликованного набора лаборатории Райха (это одна из усеченных версии их знаменитого кураторского набора Human Origin Dataset).
Как и раньше, для анализа я использовал инструменты разработанные программистами той же лаборатории (Admixtools), а также Alder — программу написанную на основе открытого кода Admixtools, и оптимизированную под более детальный анализ процесса смешивания различных предковых групп.

Так вот, до получения сведений о предварительных результатах попгенетиков, я был немного смущен полученной картиной. У меня получилось вот что. С точки зрения формальной оценки (f3-статистки, аналога более известной p-статистки) лучшие пары адмикса для беларусов (с отрицательным значением Z) представляли собой либо комбинацию мезолитического населения Европы (Loshbour) и современного населения современной Анатолии и ближнего Востока, либо комбинацию ‘генов’ неолитических жителей Европы (LBK380, а также современных сардинцев) и современных америндских популяций (происходящих, как нам известно, из восточной Сибири).
Вот начало списка значимых пар:

Mixe Sardinian Vadim -11.811
Sardinian Mixe Vadim -11.811
Karitiana Sardinian Vadim -11.757
Sardinian Karitiana Vadim -11.757
Zapotec Sardinian Vadim -11.638
Sardinian Zapotec Vadim -11.638
Loschbour Georgian_Megrels Vadim -11.599
Georgian_Megrels Loschbour Vadim -11.599
Piapoco Sardinian Vadim -11.482
Sardinian Piapoco Vadim -11.482
Loschbour Turkish_Trabzon  Vadim -11.434
Turkish_Trabzon Loschbour Vadim -11.434
Loschbour Assyrian_WGA Vadim -11.395
Assyrian_WGA Loschbour Vadim -11.395
LBK380 Piapoco Vadim -11.354
Piapoco LBK380 Vadim -11.354
Surui Sardinian Vadim -11.346
Sardinian Surui Vadim -11.346
Loschbour Abkhasian Vadim -11.293
Abkhasian Loschbour Vadim -11.293
Bolivian_LaPaz Sardinian Vadim -11.232
Sardinian Bolivian_LaPaz Vadim -11.232
Loschbour Iranian_Jew Vadim -11.231
Iranian_Jew Loschbour Vadim -11.231

Я выбрал около сотни значимых пар и проверил их достоверность «адмикса) с помощью инструментов D-статистки (qpDstat) в попарном сравнении каждой из значимых комбинаций (начало таблицы):

Vadim Italian_Tuscan : Loschbour Palestinian 0.0293 8.141 best
Vadim Iranian : LBK380 GujaratiC_GIH 0.0245 7.319 best
Vadim Motala12 : Druze Sardinian 0.0125 7.285 best
Vadim Loschbour : Palestinian Albanian 0.0146 7.17 best
Vadim Sardinian : GujaratiC_GIH Iranian 0.0121 7.151 best
Vadim Palestinian : Spanish_Pais_Vasco_IBS GujaratiC_GIH 0.0145 7.126 best
Vadim Egyptian_Comas : Basque_Spanish GujaratiC_GIH 0.0137 7.016 best
Vadim Sardinian : Loschbour Egyptian_Comas 0.0251 6.962 best
Vadim Sardinian : Loschbour Tunisian_Jew 0.0251 6.789 best
Vadim Palestinian : Basque_Spanish GujaratiC_GIH 0.013 6.758 best
Vadim Sardinian : Loschbour Palestinian 0.0237 6.69 best
Vadim Basque_Spanish : Balkar Palestinian 0.0076 6.601 best
Vadim GujaratiC_GIH : Tunisian_Jew Egyptian_Comas 0.0094 6.493 best
Vadim Spanish_Pais_Vasco_IBS : Balkar Palestinian 0.0079 6.458 best
Vadim Loschbour : Druze Italian_WestSicilian 0.0135 6.443 best
Vadim Loschbour : Iranian Albanian 0.0159 6.385 best
Vadim Palestinian : Sardinian Iranian 0.0083 6.344 best

Как видно, лучшая достоверность (обмена генами) у тех пар которые представляют собой комбинацию мезолитических популяций (Loshbour и Motala), популяций Кавказа, южной Европы и центральной Азии.

Это особенно хорошо заметно в тесте f4ratio. Вот например сравнение 2 квадропул, три популяции в каждой из которых идентичны (беларусы, кумыки и Losbour), а четвертая популяция отличается (балкарцы vs. Motala). Результат означает что кроме мезолитического компонента Loshbour (из западной Европы), у беларусов наблюдается эксцесс (28+-0.1%) дополнительного источника мезолитических «генов» (типично для балтийских популяций мезолита вроде Motala)

Vadim Kumyk Loschbour Motala12 : Vadim Kumyk Loschbour Balkar 0.285678 0.096194 2.97

Крайне любопытны и результаты проведенного мной в Alder исследования источников «древного» адмикса у беларусов.
Я выбрал только те пары, в которых амплитуда угасания LD в двух гипотетических популяциях-донорах была сопоставима с амплитудой угасания LD в популяции-реципиенте (т.е у беларусов). Интересно, что только две пары (пенджабцы + Motala) и (иракские евреи + чукчи) дали консистентную попарную подгонку кривой угасания LD с незначительным разбросом амплитуды (15-25%). К слову, комбинация Armenian+Motala-merge (примерно идентичная наиболее устойчивой модели адмикса у жителей ямной культуры) тоже присутствует в списке «успешных» комбинаций, однако кривые угасания LD имеют разную скорость угасания (их амплитуда отличается уже на 55% и поэтому они не консистентны, т.е несовместимы) в попарном режиме сравнения

DATA: success_consistent 0.0042 Belarusian Punjabi_Lahore_PJL Motala_merge 4.49 2.76 2.78 15%
DATA: success_consistent 0.0098 Belarusian Iraqi_Jew Chukchi 4.31 2.2 3.01 25%
DATA: success 0.0065 Belarusian Mongola Motala_merge 4.4 2.64 2.78 28%
DATA: success 0.011 Belarusian Yi Papuan 4.29 2.26 4.66 28%
DATA: success 0.00037 Belarusian Lebanese Papuan 4.98 2.69 4.66 38%
DATA: success 0.041 Belarusian Kusunda Motala_merge 3.98 2.61 2.78 41%
DATA: success 0.013 Belarusian Hezhen Motala_merge 4.25 2.17 2.78 49%
DATA: success 0.037 Belarusian Motala_merge Tu 4.01 2.78 3.13 51%
DATA: success 4.20E-06 Belarusian Kalmyk Motala_merge 5.79 2.36 2.78 54%
DATA: success 0.0086 Belarusian She Motala_merge 4.34 2.58 2.78 54%
DATA: success 0.0019 Belarusian Armenian Motala_merge 4.66 2.14 2.78 55%
DATA: success 0.048 Belarusian Daur Motala_merge 3.94 2.11 2.78 56%
DATA: success 0.0042 Belarusian Motala_merge Miao 4.49 2.78 3.5 59%
DATA: success 0.041 Belarusian Oroqen Motala_merge 3.98 2.28 2.78 59%
DATA: success 0.013 Belarusian Thai Motala_merge 4.25 2.13 2.78 65%
DATA: success 0.043 Belarusian Motala_merge Lahu 3.97 2.78 3.56 71%
DATA: success 0.0049 Belarusian Motala_merge Japanese 4.46 2.78 3.53 72%

Примечательно что для пары Belarusian Armenian Motala_merge  Admixtools датирует смешение 114.67+/-20.5 поколений тому назад. А вот датировка адмикса для двух первых пар (последняя колонка это датировка адмикса
Belarusian Punjabi_Lahore_PJL Motala_merge 4.49 2.76 2.78 15% 142.4+/-27.54
Belarusian Iraqi_Jew Chukchi 4.31 2.2 3.01 25% 43.28+/-9.45 То есь самое позднее 3500 лет до нашего времени.Итак, выводы: в эволюционной перспективе, костяк аутосомного генофонда беларусов составляет субстрат мезолитического генетического компонента Европы, к которому примешиваются два потока — один с юга, с наиболее значимым вливанием во времена неолита (земледельцы из Анатолии и ближнего Востока), другой — видимо более поздний (т.к. он отсутствует у ямников) из Сибири.


*Культура боевых топоров, культура шнуровой керамики (нем. Schnurkeramik) — археологическая культура медного и бронзового веков, распространенная на обширных территориях Центральной и Восточной Европы и датированная 3200 г. до н. э./2300 до н. э. — 2300 г. до н. э./1800 г. до н. э. Племена культуры боевых топоров часто считают первыми индоевропейцами на территории Средней Европы
**Я́мная культу́ра (точнее — Древнея́мная культу́рно-истори́ческая о́бщность) — археологическая культура эпохи позднего медного века — раннего бронзового века (3600—2300 до н. э.). Занимала территорию от Южного Приуралья на востоке до Днестра на западе, от Предкавказья на юге до Среднего Поволжья на севере.В рамках ранней версии курганной гипотезы Марии Гимбутас ямная культура связывалась с поздними протоиндоевропейцами.

 

Кластер древних жителей по своей устойчивости занимает промежуточное место между кластерами древних северных евразийцев и западных европейских охотников-собирателей.
В этот кластер, иерархически близкий популяциям Кавказа и ближнего Востока, предсказуемо входят предстаители самых классических популяции южной Европы — от греков и болгар, до басков и сардинцев. Как уже стало обычным, сардинцы кластеризуются с образцом тирольского человека Этци и женщины из линейноленточной культуры («LBK380»). В большинстве вариантов (2 из трех опубликованных) к этой подгруппе примыкают представители древнейших неолитических культур на территории современной Венгрии — CO1, H4, H3, NE5, NE7). Жители бронзового века (на графике они ошибочно обозначены как Europe оказались посередине между раннеевропейскими охотникам-собирателями и земледельцами.

Добавление к выборке древних геномов «усть-ишимца» и «костенковца» позволило пролить свет на некоторые особенности эволюции популяций центральной и восточной части Евразии. В кластерном анализе (вардовская кластеризация) по 4 первым компонентам PCA усть-ишимец у меня получился в одном кластере с киргизами и кажется селькупами. По первым двум компонентам в том варианте рейховского набора популяций, где нет андаманцев Onge — он попадает в один кластер с австралийскими аборигенами.
Думаю, что onge все же ближе, да к тому же во всех калькуляторах у усть-ишимца максимум «генома» приходится на сочетание южно-индийских и юго-восточноазиатских компонентов.  А вот «костенковец» оказывается ближе всего к чувашам и саамам. Что характерно — в предыдущих вариантах, в которых я не использовал костенковца, место костенковца часто занимал AG-2 (Afontova Gora).  Также заметна разница между кластерными схемами PC1-2 и PC-1-2-3-4.В первом случае костенковец в одном кластере с индусами, а во-втором с с чувашами и саамами. Характерно, что восточноевразийские палеогеномы Тяньюань и Усть-Ишим входят в один кластер (их положение не сильно меняется), а MA1 нет.

Реклама

Методологические заметки к созданию неандертальского калькулятора

Данная заметка представляет собой критический анализ методологических предпосылок создания неандертальского калькулятора, имплементированного в cоответствующем сервисе 23andme (Neanderthal lab). В основу заметки положен перевод технического документа 23andme (white paper), описывающего процесс создания неандертальского калькулятора.

Существует несколько методологических подходов  к созданию неандертальского калькулятора (т.е инструмента для оценки того, сколько процентов ДНК  в геноме анализируемого индивида имеет  неандертальское происхождение).   Есть несколько способов прямой экспериментальной оценки величины процента «неандертальской » ДНК с помощью ресеквенирования ДНК клиента в тех регионах, в которых ученые обнаружили возможные варианты, имеющие предполагаемое неандертальское происхождение. Но в силу технической сложности реализации этих способов и необходимости каждый раз заново производить секвенирование в полном объеме  регионов неандертальского происхождения, нет особой нужды рассматривать их в этой записи. Вместо этого я предлагаю рассмотреть две оставшиеся методики определения вклада неандертальского ДНК.  Хотя оба метода не без своих изъянов, они позволяют существенно снизить влияние неопределенности (ascertainment bias) в оценке вклада неандертальского ДНК, и в принципе,  других приемлемых альтернатив этим методам не существует, так как в противном случае получаемый другими методами (например, Dstatisticsили ABBABABA) разброс оценки величины неандертальского вклада будет в несколько раз отличаться от тех величин, которые получаются на выходе соответствующих программ, используемых в  NationalGeographicGeno и 23andme (обе программы основаны на одном из двух нижеописанных методов).Именно по этой причине, каждая из нижеприведенных методик заслуживает отдельного рассмотрения. 

  1. Метод PCA

На мой личный взгляд, наилучшим  (как в плане аккуратности, так и в плане легкости реализации) методом оценки величины неандертальца в ДНК клиентов является метод главных компонент PCA, так как он представляет собой очень мощный инструмент для представления корреляции данных высокой размерности (порядка миллионов снипов и даже больше) в виде гораздо меньшего, некоррелирующего набора переменных, которые носят название «главные компоненты». Итак, метод главных компонент — это один из способов понижения размерности, состоящий в переходе к новому ортогональному базису, оси которого ориентированы по направлениям максимальной дисперсии набора входных данных (в нашем случае это набор генотипов снипов). Вдоль первой оси нового базиса дисперсия максимальна, вторая ось максимизирует дисперсию при условии ортогональности первой оси, и т.д., последняя ось имеет минимальную дисперсию из всех возможных. Такое преобразование позволяет понижать информацию путем отбрасывания координат, соответствующих направлениям с минимальной дисперсией. Можно отметить, что в основе метода главных компонент лежат следующие допущения: (a) допущение о том, что размерность данных может быть эффективно понижена путем линейного преобразования, и  (b)  допущение о том, что больше всего информации несут те направления, в которых дисперсия входных данных максимальна.

 

На первом этапе анализа необходимо вычислить главные компоненты отображающие дисперсию данных неандертальца по отношению данным современного человека. Для этого необходимо  провести PCA анализ, в который будут включен набор снипов неандертальцев, набор снипов денисовского человека, и набор снипов шимпанзе (Clint). 

Сначала скачиваем полные геномы неандертальца, денисовского человека, и шимпанзе Clint. Затем с помощью программы samtools генерируем для каждого из трех геномов файлы с геномными вариантами (vcf), отфильтровываем из полученных файлы инделы, таким образом чтобы на выходе остались только снипы и проводим аннотацию  снипов с использованием базы данных dbSNP; при аннотации находятся те варианты, которые присутствуют в базе данных и им назначается соответствующий индекс, например rs4213456 (это условный пример). Затем необходимо выбрать из это файла только те cнипы, которые присутствуют в контрольной выборке с референсными популяциями современного человека. Описание примерного порядока выполнения этой задачи можно найти в двух записях в моем блоге (здесь и здесь).

В конечном итоге, по окончанию первого этапа,  мы получаем три файла VCF c аннотированным снипами, которые необходимо соединить в один файл либо в vcftools, либо в Plink. Затем провести анализ PCA с двумя заданными главными компонентами (K2) в самом Plink, либо конвертировать данные в формат Eigenstrat и провести в программе Eigensoft анализ PCA (также с двумя заданными главными компонентами). Последний вариант предпочтителен, так алгоритм Eigensoftдает более точные данные за счет kernel-преобразований данных. В конечном результате проведенного анализа двух основных компонентов должны получится нормированный лист cобственных векторов — эйгенвекторов так называемый лист факторной загрузки –factor loading) для каждого из индивидуальных образцов, входящих в анализируемый набор. Первый главный компонент, PC1 , чьи значения отображаются вдоль первой оси ортогонального  базиса, характеризуется максимальной дисперсией набора снипов входящих данных, эта ось отображает общее генетическое сходство архаичных людей (неандертальца и денисовского человека). Ось второго компонента , PC2 , оптимизирует дисперсию при условии ортогональности первой оси (т.е, PC1), и  отображает генетическое расхождение между неандертальцами и денисовским человеком. 

pca

 

На следующем этапе генотипы клиентыпроецируются на плоскость, образованную двум яосями PC1 и PC2.  Я полагаю, что на этом этапе в самом PCA анализе нет необходимости, вместо этого можно имплементировать метод с использованием высчитанного в первом анализе PCA листа загрузки компонентов (loadings). Подобный подход реализован, например, в программе shellfish. 

В случае успешного выполнения промежуточной задачи на этом этапе, те клиенты, у которых нет неандертальского или денисовского вклада в геном,  должныр авномерно  распределиться в центре графика, то есть внутри условного треугольника, образованного референсными геномами неандертальца,  денисовского человека и шимпанзе.В то время, как клиенты с  неандертальской примесью должны  будут проецироваться ближе к неандертальца .

Как видно из иллюстрации к работе (Reich et al.2011), европейцы и жители Восточной Азии существенно сдвинуты в сторону неандертальцев по сравнению с афро-американцами (как видно из приведенного ниже графика,  расстояние между неандертальским «углом» и положением афроамериканцеввесьма значительно, это следствие неопределенности определения предковых аллелей неандертальца по африканским популяциям, поэтому для коррекции этой дистанции в 23andme высчитали центроид генетического положения африканцев с использование данных проекта 1000G, и расчет дистанции вели от него).

reich

 

На третьем этапе необходимо преобразовать PCAоординаты популяций современных людей в процент неандертальского ДНК,  т.е привести к тому виду, который выдается клиенту на выходе.  Для этих целей каждый клиент проецируется на расчетную «неандертальскую» ось, представляющую собой линию, соединяющий центроид предковой популяции клиента с точкой, координаты которой соответствует положению неандертальца на графике.

  1. Методтеговых (маркерных) снипов— NAIM (Neanderthal Ancestry Informative Markers)

Существует более прямой и простой способ  вычисления неандертальского вклада в геном клиентов. Простота метода обусловлена отсутствием надобности в сравнительно сложных алгоритмах вычисления главных компонентов. Согласно известной публикации драфтовой версии генома неандертальца (Green et al., 2010), в геномах современных людей были обнаружены 13 геномных регионов, которые, как предполагают авторы, имели неандертальское происхождение.  Эти регионы генома  современных людей  были маркированы с помощью маркерных (теговых) снипов – то есть таких снипов, в которых неандертальский вариант часто встречается в современных неафриканских популяциях людей, но отсутствует в коренных африканских популяциях.

В процитированной выше работе был предложен набор  из 180 подобных снипов, которые маркируют эти 13 регионов, предположительного неандертальского происхождения.  Таким образом, простым арифметическим подсчетом у современных людей количества известных неандертальских вариантов этих 180 снипов,  можно было бы определить процент неандертальского вклада в геном современных людей.  Ниже приведена таблица, в которых показаны физические координаты регионов-сегментов (хромосома, начало и конец сегмента – приведены в физических положениях сегмента  в билде 36).
ытзы

Тем не менее, несмотря на простоту метода, он характеризуется целым рядом недостатков, о которых следует упоминуть подробнее:

  1. Во-первых, не существует никаких формальных гарантий того, что эти варианты действительно  имеют неандертальское происхождение.
  2. Во-вторых, даже в том идеальном случае, когда все эти 180 вариантов действительно имеют неандертальское происхождение, они охватывают только 13 геномных регионов, самый длинный из которых представляет собой сегмент длиной всего лишь в 160 000 базовых пар. Эта длина на два порядка величин ниже, чем среднестатистические 2,5% неандертальского вклада в среднестатистическом геноме современного человека неафриканского происхождения . Поэтому простой подсчет числа неандертальских вариантов в маркерных снипах, где встречается будет в 2-3  раза занижать реальный процент неандертальского вклада в клиентском геноме.
  3. В-третьих, существует еще несколько трудных моментов, связанных с практической реализацией этого метода.

3.1.     Списка вышеупомянутых 180 снипов нет в открытом доступе, и так как в оригинальной статье было упомянуто другое количество снипов (166), похоже на то, что это число снипов варьируется в зависимости от использованного чипсета (поэтому и число снипов разное).

3.2.     Технически  эту проблему можно решить следующим образом. Самый простой способ состоит в определении того, какие снипы из используемого компанией чипсета попадают в эти сегменты. Например, берется первый сегмент на хромосоме 1 (начало 168 110 000 – конец 168 220 000, длина в базовых парах – 110 000) и выбираются снипы попадающие в этот регион, и так далее по всем регионам. При этом сначала надо узнать какой билд используется в контрольной выборке популяций современных людей. Если используется build 37, тогда необходимо конвертировать координаты сегментов в более ранний build 36. После того, как будут определены все снипы попадающие в эти 13 сегментов, нужно найти неандертальские варианты этих файлов (это можно сделать в базе данных неандертальских снипов) и составить список, который затем использовать в качестве затравки при сравнении с значениями снипов у современных людей.

3.3.     Другой вариант более сложный, но очевидно более точный. Список снипов найденных в ходе сравнения геномов шимпанзе, 5 референсных популяций современных людей и неандертальца  выгружен на сайте геномного браузера UCSC. Это большой файл (в распакованном виде 363 Mb), общее количество снипов 5 615 438. Формат файла следующий:

971    chr1       50600811             50600812             AA_AAD:0D,1A  0             +             50600811             50600812             0

971    chr1       50603655             50603656             AAD_AA:0D,2A    0             +             50603655             50603656             0

971    chr1       50604033             50604034             AADAA_:0D,1A    0             +             50604033             50604034             0

971    chr1       50605949             50605950             AAA_DA:0D,1A    0             +             50605949             50605950             0
Первая колонка представляет собой номер сегмента чтения, вторая – название хромосомы, вторая и третья – физическое положение снипа, далее идет длинная колонка с указанием характера варианта в  шимпанзе, 4 популяций людей и неандертальца. «A» обозначает предковое значение аллеля, «D» — derived, т.е мутировавшее значение. После двоеточия идет специфическая неандертальская колонка (например, :0D,1A)с указанием того сколько предковых и сколько мутировавших значений снипа обнаружено в исследованных геномах неандертальцев. В данном случае, в первом снипе обнаружено 0D (0 мутировавших) и 1A (1 предковое значение). Трудность задачи состоит в определении только тех снипов, в которых  у неандертальцев нет предковых значений, а встречаются только мутировавшие значения. Эти снипы — кандидаты на неандертальский вклад в человеческий геном. Затем сравнить отфильтрованный список со списком снипов в  контрольной выборке (опять-таки, надо знать какой билд используется, координаты этого списока  приведен по билду 36) и выбрать только те, что имеются в чипсете компании. Далее алгоритм тот же, что и выше – определяется значение снипа у неандертальца и  сравнивается с соответствующим значением у современных людей. Совпадающие у неандертальца и современных людей варианты подсчитываются и определяется конечный процент неандертальского вклада.

 

Эксперимент.

 

Я решил проверить эфективность первого метода (метода PCA) на своей контрольной выборке (2778 образцов современных людей, шимпанзе, денисовского человека и неандертальского человека и 142429 снипа). В качестве рабочей программы я использовал новую версию Plink, которая позволяет использовать в анализе PCA заданные контрольные кластеры, в которые проецируются исследуемые индивиды. В качестве трех контрольных групп я выбрал, следуя рекомендациям авторов обсуждаемого исследования,  геномы шимпанзе, неандертальца из Vindja и денисовского человека. Однако число априорных главных компонентов я намерено изменил,  с 2 на 3 (K3), таким образом на выходе я получил эйгенвекторы трех главных компонентов.  По этой причине, полученный мной график PCA несколько отличается от вышеприведенного графика 23andme (вместо PC1 и PC2 я использовал PC2 и PC3, то есть второй и третьи главные компоненты, более точно описывающие в данном случае сходство/различие геномов архаичных и современных людей).

R Graphics Output
Как видно из наших результатов, все популяции современных людей разместились внутри условного треугольника образованного дисперсией геномов денисовского человека, неандертальца и шимпанзе.
Впрочем, на графике нельзя разглядеть, какие именно популяции сдвигаются в сторону неандертальца, а какие — в сторону денисовского человека (такой сдвиг свидетельствовал бы о наличии адмикса).  Чтобы устранить этот досадный артефакт графика, придется убрать с графика геномы денисовца, неандертальца и шимпанзе (из-за значительной генетической дистанции популяции современных людей сдвигаются в одну кучу).

 

R Graphics Output
R Graphics Output

 

Положение удаленных денисовца, неандертальца и шимпанзе размечено на новом графике буквенными обозначениями — D, N, Chimp. Из человеческих популяций я разметил группы африканских популяций (Africans), и коренных американцев (Native Americans). Европейские и азиатские популяций смещены в одну общую группу, с сильным креном в сторону неандертальца. Судя по всему, мои результаты, в общих чертах, практически не отличаются от результатов исследований Грина и Райха. Как отмечает  Дробышевский: » «денисовские гены», несмотря на свою экзотичность, обнаружились у современных людей. Первоначально они были найдены у папуасов Новой Гвинеи и меланезийцев острова Бугенвиль (Reich et al., 2010), затем – у австралийских аборигенов (Gibbons, 2011), а полнейшее исследование вопроса констатировало наличие их у огромного числа популяций (Reich et al., 2011). Они были выявлены в тридцати трёх популяциях Океании и Юго-Восточной Азии, в том числе у папуасов Новой Гвинеи, австралийских аборигенов (даже больше, чем у папуасов), полинезицев, фиджийцев, восточных индонезийцев с разных островов, филиппинцев и у филиппинских аэта-маманва.»

Что касается неандертальца, то уже с 2010 года известно, что в целом неандертальская ДНК составляет 1-4% генома нынешних людей, живущих за пределами Африки. Авторы двух исследований, опубликованных в среду журналах Science и Nature, выяснили, что чаще всего неандертальская наследственность присутствует в нескольких генах, связанных с выработкой кератина, присутствующего в коже, волосах и ногтях. В этой части генома неандертальские аллели обнаружены у 70% европейцев и 66% азиатов.

Гораздо интереснее те мои результаты, которые отличаются от общепринятых. Так например, довольно неожиданным результатом является наблюдаемое на графике значительное смещение южноамериканских индейцев в сторону денисовского человека, причем это смещение гораздо значительнее смещения папуасов и меланезийцев, у которых были найдены «денисовские гены» в наибольшем количестве. Что это означает, трудно сказать — наличие реального сигнала смешивания в данном случае равновероятен обнаружению статистического артефакта.  Впрочем, если верить работам Скоглунда этот результат может быть правдоподобным — моделирование миграций генов показало, что «денисовские» гены должны встречаться не только в Юго-Восточной Азии, но даже в некоторых группах Южной Америки (Skoglund et Jakobsson, 2011)

Оставим в стороне этот вопрос, который нуждается в более детальном изучении, и передем к расчетам процентной величины вклада неандертальских генов в популяции современных людей. Очевидно, что средняя величина этого вклада по каждой из популяций может дать только приблизительное представление о характере архаичной интрогресси неандертальских генов. Индивидуальный уровень вклада в каждой популяции может иметь большую частотную амплитуду в интервале между 1 и 6% процентами. Тем не менее, представляется возможным апроксимировать эти значения путем умножения собственного вектора (eigenvector) главных компонентов каждого индивида каждой популяции на собственное число линейного преобразования (eigenvalue), и последующим усреднением по популяции.

Ниже приведены эти усредненные значения в процентах (неандертальских генов), в порядке уменьшения. Вызывают сомнения ультра-высокие значения в первых десяти популяциях — скорее всего это результат комплексного воздействия статистических эфектов недостаточной представленности выборки, а также высокой степени гомозиготности, характерной для изолированных популяций (исландцев, албанцев и басков). Довольно высок уровень неандертальского вклада в образцах древних европейцев, хотя это и логично с точки зрения исторической модели адмикса. С другой стороны, средние значения (2-2.7%) неандертальского адмикса в популяциях Восточной Европы выглядят реалистичными. Так, например, по расчетам 23andme у меня уровень «неандертальских генов» составляет 2.67% :

Icelandic 10.50%
Norwegian 9.00%
1_Motala12 8.00%
Spain_BASC 8.00%
Albanian 7.00%
Korean 7.00%
Tiwari 5.11%
1_LBK380 5.00%
1_Loschbour 5.00%
French_South 4.00%
Kashmiri 4.00%
Tubalar 4.00%
Atayal_Coriell 3.60%
Ami_Coriell 3.10%
1_Motala_merge 3.00%
Bolivian 3.00%
Croatian 3.00%
Totonac 2.80%
Qatari 2.71%
Mixed_East_Slav 2.57%
Gujarati 2.43%
Ulchi 2.39%
North-Russian 2.36%
Center-Russian 2.36%
Aonaga 2.33%
British 2.33%
Chenchu 2.33%
East-Belarusian 2.33%
Ukrainian 2.33%
Finn 2.29%
Latvian 2.29%
Mixed_European 2.28%
South-Russian 2.27%
Pole 2.26%
Lithuanian 2.25%
West-Belarusian 2.25%
Belarusian 2.23%
Vepsa 2.23%
Bosnian 2.22%
Cree 2.20%
Georgian_Imereti 2.20%
Polish 2.20%
Orcadian 2.15%
Russian 2.15%
Karelian 2.13%
Welsh 2.12%
Swede 2.11%
Ukranians 2.11%
Greek 2.10%
Lithuanians 2.10%
Gagauz 2.09%
Croat 2.08%
Slovak 2.08%
Estonians 2.08%
Adygei 2.07%
Serb_Serbia 2.07%
Toscani 2.07%
French 2.06%
Komi 2.06%
1_LaBrana 2.00%
Algonquin 2.00%
Avar 2.00%
Azeri_Dagestan 2.00%
Azov_Greek 2.00%
Bashkir 2.00%
Belgian 2.00%
Bulgarians 2.00%
Central-Greek 2.00%
CEU 2.00%
Cirkassian 2.00%
Cochin_Jew 2.00%
Corsican 2.00%
Cretan 2.00%
Croat_BH 2.00%
Don_cossack 2.00%
Eskimo 2.00%
Haida 2.00%
Hungarian 2.00%
Hungarians 2.00%
Inkeri 2.00%
Inkeri-Finn 2.00%
Italian_Abruzzo 2.00%
Kets 2.00%
Kosovar 2.00%
Kryashen 2.00%
Kuban_cossack 2.00%
Lezgin 2.00%
Macedonian 2.00%
Meghawal 2.00%
Mishar 2.00%
Mixed_CEU 2.00%
Mixed_East_European 2.00%
Mixed_German 2.00%
Mixed_Slav 2.00%
Montenegrian 2.00%
Mordovian 2.00%
Mordovians 2.00%
North_Italian 2.00%
Occitan 2.00%
Roma_Bulgarian 2.00%
Roma_Macedonian 2.00%
Romanian_Jew_2 2.00%
Russian_South 2.00%
Saami 2.00%
Selkup 2.00%
Serb_BH 2.00%
Slovenian 2.00%
South_Greek 2.00%
Swedish 2.00%
Tabassaran 2.00%
Tatar_Lithuanian 2.00%
Velama 2.00%
West_Greenland 2.00%
French_Basque 1.95%
Chechens 1.94%
Iberian 1.94%
Chuvash 1.94%
Tatar 1.93%
Balkars 1.92%
German 1.92%
North-Ossetian 1.92%
Hant 1.89%
North_Greek 1.89%
Georgians 1.88%
Lak 1.88%
Abhkasians 1.85%
Sardinian 1.84%
Udmurd 1.84%
Maris 1.82%
Romanians 1.82%
Georgian_Laz 1.80%
Kumyks 1.80%
Lodi 1.80%
Mansi 1.77%
Chukchis 1.75%
Crimean_Tatar 1.75%
Italian_Piedmont 1.75%
Ket 1.75%
Moldavian 1.75%
Vaish 1.75%
Hallaki 1.67%
Lezgins 1.67%
Ossetian 1.67%
Tlingit 1.67%
Greek-Islands 1.63%
Turks 1.63%
Armenians 1.60%
Nogais 1.60%
Selkups 1.60%
Hakas 1.57%
Ashkenazy_Jews 1.56%
Apache 1.50%
Jew_Tat 1.50%
Kabardin 1.50%
Karitiana 1.50%
Kurds 1.50%
Nenets 1.50%
Samaritians 1.50%
Santhal 1.50%
Srivastava 1.50%
Syrian_Jew 1.50%
Tuva 1.50%
Uygur 1.50%
Mexican 1.45%
Italian_Jew 1.40%
Portugese 1.40%
Tajiks 1.40%
Kyrgyzians 1.38%
Roma_Slovenian 1.38%
Altaians 1.36%
Koryaks 1.33%
Pashtun 1.33%
Satnami 1.33%
Sicilian 1.33%
Yakut 1.31%
Cypriots 1.30%
Spaniards 1.30%
Turkmen 1.30%
French_Jew 1.29%
Iraqi_Jews 1.29%
Sephardic_Jews 1.29%
Turkmens 1.29%
Parsi 1.28%
Buryats 1.27%
Pathan 1.27%
Tadjik 1.27%
Athabask 1.25%
Iran_Jew 1.25%
Kurd_Jew 1.25%
Nganassans 1.25%
Nysha 1.25%
Azeri 1.22%
Mixtec 1.22%
Tharu 1.20%
Tunisian_Jew 1.20%
Uzbek 1.20%
Evenkis 1.18%
Kazakhs 1.18%
Roma 1.17%
Tuvinians 1.17%
Druze 1.16%
Karakalpak 1.14%
Mongolians 1.14%
Uzbeks 1.13%
Ojibwa 1.10%
Buryat 1.00%
Cochimi 1.00%
Cucupa 1.00%
Dolgan 1.00%
Dolgans 1.00%
Even 1.00%
Evenk 1.00%
Hazara 1.00%
Huichol 1.00%
Kalash 1.00%
Kalmyk 1.00%
Kamsali 1.00%
Koryak 1.00%
Kumiai 1.00%
Lambadi 1.00%
Luiseno 1.00%
Maya 1.00%
Mongol_Halha 1.00%
Nganassan 1.00%
Oroqen 1.00%
Pima 1.00%
Roma_BH 1.00%
Romanian_Jew_1 1.00%
Romanian_Jew_3 1.00%
Shor 1.00%
Surui 1.00%
Tharus 1.00%
Tsimsian 1.00%
Uyghur 1.00%
Uzbekistan_Jew 1.00%
Uzbekistani_Jews 1.00%
Vysya 1.00%
Yukaghirs 1.00%
Sindhi 0.91%
Hezhen 0.86%
Xibo 0.80%
Navajo 0.78%
Bhil 0.75%
Brahmins_UP 0.75%
Burusho 0.75%
Mongola 0.75%
Naga 0.75%
Iranians 0.71%
Daur 0.67%
Kshatriya 0.67%
Mala 0.67%
Moroccan_Jews 0.67%
Japanese 0.58%
Chinese_Dai 0.53%
Evens 0.50%
Kol 0.50%
Morocco_Jew 0.50%
Mumbai_Jews 0.50%
Scheduled_Caste_UP 0.50%
South_Han 0.50%
Tu 0.50%
North_Han 0.45%
Brahui 0.45%
She 0.44%
Tujia 0.44%
Iraki 0.43%
Naxi 0.43%
Dharkars 0.40%
Han 0.40%
Kanjars 0.40%
Miaozu 0.40%
Velamas 0.38%
Balochi 0.33%
Chenchus 0.33%
Dusadh 0.33%
Hakkipikki 0.33%
Lahu 0.33%
Piramalai_Kallars 0.33%
Yizu 0.33%
Colombian 0.25%
Chamar 0.22%
Syrians 0.22%
Dai 0.20%
Libyan_Jew 0.17%
Makrani 0.08%

Неандертальские варианты генов метаболизма жиров у современного человека

Реконструированный геном неандертальца, опубликованный несколькими годами ранее, обеспечил исследователями генетических вариантов высших приматов богатым материалом для изучения на годы вперед. Уже при публикации чернового (драфт) варианта реконструированного генома неандертальца (вернее неандертальцев, поскольку при создании референсного генома неандертальца, также как и при реконструкции референсного генома человека, использовались совокупные геномы нескольких особей неандертальцев), было понятно, что сравнительный анализ геномов неандертальца и современного человека прольет свет на многие, ранее неразрешимые, вопросы эволюции человека.

Например, появился ряд работ, в которых были представлены убедительные доказательства того, что определенные генетически детерминированные варианты микроцефалии у людей появились в результате «вливания неандертальских генов». В другой работе авторы пришли к выводу о неандертальском происхождении ряда характерных аллельных вариантов генов гистосовместимости, распространенных в Европе. В новом исследовании, исследователи анализировали статистику представленности неандертальских вариантов генов в человеческой популяции. Доля таких генов у современных людей не-африканского происхождения в среднем составляет около 1–4 процентов генома. Она почти одинакова в разных популяциях за пределами Африки, однако при более тщательном анализе ученые обнаружили, что у европейцев существуют гены, которые как минимум в три раза обогащены именно неандертальскими вариантами.

Большая часть этих генов оказалась связана с метаболизмом жирных кислот, – веществ, которые входят в состав жира и составляют основу клеточных мембран. Статистический анализ говорит о том, что нендертальские варианты генов были предметом отбора, то есть накапливались у европейцев, а значит они давали некоторое эволюционное преимущество своим обладателям.

 

 

 

Новая работа по геному неандертальцев и денисовцев.

В июле этого года в журнале Gene появилась замечательная работа Neanderthal and Denisova genetic affinities with contemporary humans:
Introgression versus common ancestral polymorphisms/Robert K. Lowery, Gabriel Uribe , Eric B. Jimenez , Mark A. Weiss, Kristian J. Herrera, 
Maria Regueiro, Rene J. Herrera. Gene . Особого внимания в этой работе заслуживает постановка вопроса в исследовании вопроса о схожести геномов денисовцев и неандертальцев с современными человеческими популяциями.  В этой связи я позволю себе удовольствие процитировать краткий реферат этой статьи в изложении профессионального русскоязычного генетика Людмилы Р.:

Авторы решали вопрос — являются ли те 1-4% генетического сходства между
архаичными гоминидами и современными людьми результатом имевшего место смешивания или общего наследственного полиморфизма, который сохранился в человеческой популяции?
Авторы сравнили 5 млн.SNPs (финальный набор 37,758 SNPs) ныне живущих людей (n=827 из 11 популяций) и архаичных гоминид. Они разделили снипы на 4 группы, которые, логично предположить, происходили в разные отрезки времени –
NdDa –у неандертальцев –derived (мутировавшие) и ancestral (предковые) – у денисовцев,
NaDd — у неандертальцев – ancestral и derived у денисовцев,
NdDd — derived у неандертальцев и денисовцев,
NaDa – ancestral у неандертальцев и денисовцев.
Ancestral и derived снипы определялись по сравнению с шимпанзе.
Ранее предполагалось, что не-Африканские популяции содержат 1-4% генома, доставшегося им от неандертальцев, в отличие от популяций Sub-Saharan-Africans, за счет того, что было смешивание с неандертальцами после выхода человека из Африки. По этому сценарию, все потомки древней человеческой популяции должны содержать равное количество неандертальской ДНК. При этом отличия Sub-Saharan-Africans и non- Sub-Saharan-Africans приписываются gene flow от неандертальцев. Но то, что какой-то SNP у человека, найден у неандертальцев, но не найден у шимпанзе, не означает, что он появился у неандертальца. Такая мутация могла произойти от времени разделения линий шимпанзе и гоминид ( 4-7 млн.лет назад) до времени разделения ветвей человека и неандертальца (400-800 тыс.лет назад). Т.е. выявленные общие SNPs у человека и неандертальцев могут означать их общий предковый полиморфизм.
Авторы не отказываются от “выхода человека из Африки”, но предполагают, что региональные различия в Африке внутри общей предковой популяции были уже на ранних стадиях, и люди, которые мигрировали из Африки, могли представлять собой субпопуляции с более высоким сродством с неандертальцами или денисовцами.
11 популяций, которые участвовали в сравнении:
Abbreviation n Region Populations included
a 123 Sub-Saharan Africa Yoruba, Mandenka, San, Bantu,
Biaka Pygmy, Mbuti Pygmy
b 41 Northern Africa Ethiopians, Egypt, Morocco
c 68 Caucasus Georgia, Armenians, Lezgins, Adygei
e 124 Europe Lithuanian, Belorussian, Romanian,
Cypriot, Hungarian, Basque, Russian,
Spanish, Chuvash
m 33 Melanesian Papuan, Bouganville
n 31 Amerindian Pima, Piapoco, Curripaco, Mayan
s 67 South Central Asia Paniya, Kannadi, Sakilli, Kalash, Uygur,
Barusho, Balochi
r 35 SouthWest Asia Iranian, Uzbekistan
d 30 South East Asia Yizu, Cambodian, Lahu, Malayan
t 34 North East Asia Yakut, Mongolian, Daur
z 241 Near-East Jordan, Samaritan, Syrian, Druze,
Bedouin, Mozabite, Palestinian,
Turkey, Lebanon, Saudi, Yemen
В работе использовали методы популяционной генетики — Principal component (PC) и Structure analyses, D-statistics. Авторы делают выводы, что присутствие 3,6 % неандертальских генов в европейских геномах более похоже на полиморфизм нашего общего предка, чем на результат спаривания видов. % общих генов уменьшается с продвижением на восток в Евразию. Предполагаемая примесь у меланезийцев денисовских генов может также свидетельствовать об их общем предке.

Примечательно, что задолго до публикации этой интересной статьи, к аналогичным выводам пришли любители — антрополог Джон Хоукз (анализ интрогрессии геномов в выборке 1000genomes) и уже ставший живой легендой геномный блогер Диенек Понтикос ( пост о вопросе наличия неандертальский/денисовский адмикса) . Эти выводы противоречат широко растиражированному в масс-медиа выводу о том что «неандертальцы занимались сексом с предками современных людей, за исключением африканцев из региона Суб-Сахары». Этот фривольный медиа-мем возник на основании вольной интерпретации серьезного исследования коллектива под руководством Сванте Паабо. Позже появилось еще одно исследование «The Shaping of Modern Human Immune Systems by Multiregional Admixture with Archaic Human», в котором было показано, что  вклад денисовца в евразийские гены оказался более скромным, однако его доля, как выяснилось, достигает 6% у современных меланезийцев и населения Новой Гвинеи. Соответственно, в средства массовой информация прошла очередная ‘сексуальная’ новость — оказывается, «cпособность успешно противостоять евразийским микробам мы обрели благодаря бракам с неандертальцами и денисовцами». Причем никто из журналистов, похоже не вникал в технические особенности этих работ, в которых ascertainment (установление) снипов производилось по субсахарской популяции бушменов.

Обсуждаемая здесь новая статья позволяет взглянуть на эту проблему под другим углом, c использованием новых методов попгенетики  анализ адмикса, главных компонентов разнообразия и D-статистики.  При интерпретации авторы обосновано отмечают ряд недостатков растиражированной в масс-медиа версии о сексе с архаичными гомининами:

Существуют два возможных сценария генезис снипов, которые обнаружены у неандертальцев, денисовских людей и современных людей: 1) они возникли у общих предков всех трех групп или 2) снипы могут являться следствием  обмена генами между эти тремя группами.

Результаты D-статистических анализов демонстрируют более высокое присутствие NdDd (derived у неандертальцев и денисовцев) аллелей в Африке к югу от Сахары относительно всех евразийцев и населения Северной Африки. Конечно, сочетание этих двух сценариев может объяснить происхождение подмножества снипов в наборе NdDd подмножество. В модели европейской примеси (адмикса),  у африканцев Субсахары должно быть меньше NdDd аллелей, чем у евразийцев и населения Северной Африки. Исходя из этого, высокий процент NdDd аллелей в субсахарских популяциях является решающим  аргументом в пользу происхождения этих аллелей от древних гоминид, а не в пользу версии смешивания с архаичными людими. Кроме того, к югу от Сахары доля 3 из 5 NdDd компонентов адмикса , включает в себя примерно 30% от общего числа снипов в NdDd  (1 компонент, 6 и 10 на рис. 10), что предполагает общее происхождение предков, а не трехстороннее смешивание для снипов, включенных в панель NdDd . Дополнительным аргументов в пользу сценария общего предкового полиморфизма является расположение снипов NdDd неандертальцев и Денисова NdDd в пространстве первого главного компонента разнообразия PC1 (рис. 5) рядом с субафриканскими популяциями. Этот результат является неожиданным, учитывая, что генотипы NdDd состоят только из деривативных (derived) аллелей. Интересно, что снипы NdDd демонстрируют сопоставимые характеристики D-статистики  в популяциях меланезийцев и африканцев Субсахары. Обе группы — меланезийцы и субсахарские африканцы —  генерируют более высокие показатели D-статистики на основании снипов NdDd основана D-статистики, — примерно на 0,7% выше, чем у выходцев из Северной Африки и на 1,5% выше, чем у жителей Северо-Восточной Азии (табл. 2;. Рис 11). Кроме того, если мы предположим, что смешивание между тремя группами (предками современных людей, неандертальцами и денисовцами) является важным источником снипов NdDd , то можно  было бы ожидать более высокую степень генетического обмена между европейцами и меланезийцами, однако, во всех наших анализах Structure, ни один такой обмен не наблюдается.

science science2

Эксперимент

С целью проверки выводов этого исследования я провел дополнительное исследование этого вопроса с использованием большого количества современных популяций (более трехста популяций), большего числа снипов (примерно 300 000 снипов) и альтернативных методов — программы Admixture и MDS (мультидименсионального скалирования).

Результаты нашего анализа замечательно согласуются с результатами в обсуждаемой статье. Например, на графике PCA (в пространстве двух первых главных компонентов генетического разнообразия), неандертальцы и денисовцы оказываются в окружении трех субсахарских популяций — гумуз, ари из Восточной Африки и лемба из южной Африки. 

R Graphics Output

R Graphics Output

Результаты Admixture также мало чем отличаются от результатов аналогичного анализа Structure в работе профессиональных попгенетиков. Снипы неандертальцев и денисовского человека (взятые из кураторского набора данных лаборатории Райха (SNP ascertainment panel)) образуют особый компонент вместе со снипами субсахарских популяций бушменов, коса и сандаве.

Denisova Denisova 99,98%
Neander Vindija 99,98%
San HGDP00991 99,98%
San HGDP01032 99,98%
San HGDP01036 99,98%
San SA36 99,98%
San SA34 99,98%
San SA52 99,98%
San SA19 99,98%
San HGDP00988 99,54%
San HGDP01029 99,19%
San HGDP00992 98,47%
San SA53 97,53%
San SA47 93,98%
San SA41 93,28%
San SA22 92,13%
San SA32 91,10%
Neander Clint 90,75%
San SA48 89,58%
San SA30 89,40%
San SA55 88,93%
San SA35 88,18%
San SA61 85,45%
San SA50 83,92%
San SA29 81,14%
San SA04 78,20%
San SA37 74,40%
San SA56 74,34%
San SA38 74,17%
San SA21 70,00%
San SA06 69,85%
San SA28 61,13%
San SA03 57,39%
San SA40 56,62%
San SA49 54,89%
San SA45 47,39%
San SA58 43,01%
San SA39 41,33%
San SA59 34,80%
Bantu HGDP01030 33,37%
Xhosa XH4 26,85%
Xhosa XH20 25,99%
Xhosa XH14 24,78%
Bantu HGDP00993 23,99%
Bantu HGDP00994 23,02%
Bantu HGDP01034 21,48%
San SA25 21,28%
Bantu HGDP01033 15,40%
Sandawe HG43 14,20%
Sandawe HG60 14,04%
Sandawe HG40 13,77%
Sandawe HG35 13,56%
Sandawe HG44 13,51%
Sandawe HG56 13,37%
Sandawe HG46 13,26%
Sandawe HG41 13,25%
Sandawe HG66 13,18%
Sandawe HG47 13,09%
Sandawe HG49 12,93%
Sandawe HG67 12,75%
Sandawe HG55 12,63%
Sandawe HG45 12,43%
Sandawe HG63 12,14%
Aricultivator Aricultivator11 12,13%
Ariblacksmith Ariblacksmith2 12,13%
Sandawe HG42 12,10%
Ariblacksmith Ariblacksmith3 11,92%
Sandawe HG38 11,85%
Ariblacksmith Ariblacksmith7 11,83%
Sandawe HG53 11,76%
Ariblacksmith Ariblacksmith6 11,70%
Aricultivator Aricultivator2 11,67%
AricultivatorIbd Aricultivator23Ibd 11,54%
Ariblacksmith Ariblacksmith10 11,49%
Ariblacksmith Ariblacksmith8 11,48%
Aricultivator Aricultivator17 11,46%
Aricultivator Aricultivator4 11,42%
AricultivatorIbd Aricultivator24Ibd 11,28%
Sandawe HG48 11,22%
Aricultivator Aricultivator15 11,18%

Более любопытные результаты получены при применении рекомендованного Диенеком Понтикосом метода Mclust, метода который позволяет за счет редуцирования числа измерений набора статистических данных избавиться от шума и проблем, связанных с различием в составе использованных выборок. Как видно, из приведенной ниже таблицы набор снипов неандертальцев и денисовцев кластеризуется не только с африканскими популяциями, но и с меланезийцами, и даже инбридинговыми популяциями индейцев из южной Америки, популяциями с хорошо заметным эффектом генного дрейфа

Neander Clint 100,00%
Denisova Denisova 100,00%
Neander Vindija 100,00%
Papuan HGDP00542 100,0000%
Papuan HGDP00554 100,0000%
NAN_Melanesian HGDP00662 100,0000%
NAN_Melanesian HGDP01027 100,0000%
Papuan HGDP00543 100,0000%
Papuan HGDP00555 100,0000%
NAN_Melanesian HGDP00663 100,0000%
Papuan HGDP00544 100,0000%
Papuan HGDP00556 100,0000%
NAN_Melanesian HGDP00664 100,0000%
Papuan HGDP00545 100,0000%
NAN_Melanesian HGDP00490 100,0000%
NAN_Melanesian HGDP00787 100,0000%
Papuan HGDP00546 100,0000%
NAN_Melanesian HGDP00491 100,0000%
NAN_Melanesian HGDP00788 100,0000%
Papuan HGDP00547 100,0000%
NAN_Melanesian HGDP00655 100,0000%
NAN_Melanesian HGDP00789 100,0000%
Papuan HGDP00548 100,0000%
NAN_Melanesian HGDP00656 100,0000%
NAN_Melanesian HGDP00823 100,0000%
Pima HGDP01048 100,0000%
Papuan HGDP00541 100,0000%
Papuan HGDP00553 100,0000%
NAN_Melanesian HGDP00661 100,0000%
NAN_Melanesian HGDP00979 100,0000%
Karitiana HGDP00998 100,0000%
Karitiana HGDP01011 100,0000%
Surui HGDP00833 100,0000%
Surui HGDP00846 100,0000%
Karitiana HGDP01010 100,0000%
Surui HGDP00832 100,0000%
Surui HGDP00845 100,0000%
Papuan HGDP00550 100,0000%
NAN_Melanesian HGDP00658 100,0000%
NAN_Melanesian HGDP00825 100,0000%
Karitiana HGDP00999 100,0000%
Karitiana HGDP01012 100,0000%
Surui HGDP00834 100,0000%
Surui HGDP00847 100,0000%
Papuan HGDP00540 100,0000%
Papuan HGDP00552 100,0000%
NAN_Melanesian HGDP00978 100,0000%
Karitiana HGDP01000 100,0000%
Karitiana HGDP01013 100,0000%
Surui HGDP00835 100,0000%
Surui HGDP00848 100,0000%
Karitiana HGDP01001 100,0000%
Karitiana HGDP01014 100,0000%
Surui HGDP00837 100,0000%
Surui HGDP00849 100,0000%
Karitiana HGDP01003 100,0000%
Karitiana HGDP01015 100,0000%
Surui HGDP00838 100,0000%
Surui HGDP00850 100,0000%
Karitiana HGDP01004 100,0000%
Karitiana HGDP01016 100,0000%
Surui HGDP00839 100,0000%
Surui HGDP00851 100,0000%
Surui HGDP00843 100,0000%
Pima HGDP01050 100,0000%
Karitiana HGDP01005 100,0000%
Karitiana HGDP01017 100,0000%
Surui HGDP00840 100,0000%
Surui HGDP00852 100,0000%
Karitiana HGDP01006 100,0000%
Karitiana HGDP01018 100,0000%
Surui HGDP00841 100,0000%
Karitiana HGDP00996 100,0000%
Karitiana HGDP01008 100,0000%
Papuan HGDP00551 100,0000%
Karitiana HGDP00995 100,0000%
Karitiana HGDP01007 100,0000%
Karitiana HGDP01019 100,0000%
Surui HGDP00842 100,0000%
Karitiana HGDP00997 100,0000%
Surui HGDP00830 100,0000%
Surui HGDP00844 100,0000%
NAN_Melanesian HGDP00657 100,0000%
NAN_Melanesian HGDP00824 100,0000%
Papuan HGDP00549 100,0000%
Hadza BAR01 100,0000%
Hadza BAR04 100,0000%
Hadza BAR07 100,0000%
Hadza BAR08 100,0000%
Hadza BAR10 100,0000%
Hadza BAR11 100,0000%
Hadza BAR13 100,0000%
Hadza END08 100,0000%
Hadza END09 100,0000%

Сванте Паабо: подсказки ДНК о нашем внутреннем неандертальце — лекция TED.com

Делясь результатами массивного, всемирного исследования, генетик Саванте Паабо предъявляет ДНК-доказательство о том, что ренние люди смешивались с Неандертальцами после выхода из Африки. (Да, у многих из нас есть Неандертальское ДНК). Он также показывает как мизерной кости пальца ребенка было достаточно для определения целого нового вида гуманоида.

Svante Pääbo explores human genetic evolution by analyzing DNA extracted from ancient sources, including mummies, an Ice Age hunter and the bone fragments of Neanderthals. Full bio »

Translated into Russian by Lola Bakhareva
Reviewed by Alexandra Belyakova-Bodina

Элементы — новости науки: Наши предки заимствовали у неандертальцев и денисовцев важные гены для защиты от вирусов

Элементы — новости науки: Наши предки заимствовали у неандертальцев и денисовцев важные гены для защиты от вирусов.

Успехи палеогенетики позволили обнаружить в генофонде внеафриканского человечества заметную примесь неандертальских и денисовских генов. До сих пор, однако, не было известно, какие полезные признаки приобрели наши предки в результате гибридизации с архаичными человеческими популяциями. Новое исследование показало, что сапиенсы заимствовали у неандертальцев и денисовцев несколько широко распространенных за пределами Африки вариантов (аллелей) трех генов Главного комплекса гистосовместимости —HLA-AHLA-B и HLA-C, — от которых зависит устойчивость к вирусным инфекциям.

Гены и белки Главного комплекса гистосовместимости (ГКГ) класса I играют у позвоночных ключевую роль в борьбе с вирусными инфекциями, а также с переродившимися (например, раковыми) клетками собственного организма. У человека этих генов три, называются они HLA-AHLA-B иHLA-C и располагаются все вместе (единым кластером) на шестой хромосоме.

Белки ГКГ необходимы для того, чтобы специализированные клетки иммунной системы — T-лимфоциты и NK-лимфоциты — могли своевременно распознать присутствие в клетках организма чужеродных белков (например, вирусных). Все белки, имеющиеся в клетке, рано или поздно отправляются на переработку: специальные молекулярные «мясорубки» — протеасомы — режут их на короткие фрагменты (см.: Белки попадают в протеасому через «преддверие» уже развернутыми, «Элементы», 05.11.2010). Некоторые из этих фрагментов — пептиды длиной по 8–10 аминокислот — присоединяются к белкам ГКГ и вместе с ними транспортируются на поверхность клетки. Сидящие на поверхности клеток комплексы из белков ГКГ и прикрепленных к ним пептидов представляют собой что-то вроде «паспорта» клетки. Лимфоциты «ощупывают» их своими рецепторами, и если будет замечен чужеродный пептид, клетка может быть атакована и уничтожена.

Упрощенная схема участка шестой хромосомы, содержащего гены ГКГ класса I. Рисунок из обсуждаемой статьи в Science

Упрощенная схема участка шестой хромосомы, содержащего гены ГКГ класса I. Рисунок из обсуждаемой статьи в Science

Каждый белок ГКГ может прикрепить к себе не любой пептид, а только принадлежащий к определенному классу (с определенными аминокислотами, занимающими несколько «ключевых» позиций). Поэтому от набора генов ГКГ в геноме зависит, от каких вирусов организм будет хорошо защищен, а от каких — не очень. Поскольку вирусов много и они быстро эволюционируют, гены ГКГ находятся под действием так называемого балансирующего отбора, поддерживающего высокий уровень генетического полиморфизма. Действительно, гены ГКГ класса I чрезвычайно полиморфны: каждый из них присутствует в генофонде в виде сотен вариантов (аллелей). Хотя у одного человека в геноме может быть, конечно, только по два аллеля каждого из трех генов.

Полиморфизм генов ГКГ дополнительно поддерживается половым отбором, потому что многие позвоночные выбирают партнеров на основе индивидуального запаха, который во многом определяется набором пептидов ГКГ, причем предпочтение часто отдается запаху, несхожему со своим собственным (см.: Видообразование — личное дело каждого, «Элементы», 15.02.2006). Такой алгоритм выбора партнера дает преимущество редким аллелям ГКГ, и в том же направлении действует отбор, осуществляемый эпидемиями вирусных заболеваний.

Ранее было показано, что в генофонде современного внеафриканского человечества имеется примесь генов архаичных евразийских человеческих популяций — неандертальцев и денисовцев (см.: Геном неандертальцев прочтен: неандертальцы оставили след в генах современных людей, «Элементы», 10.05.2010; Прочтен ядерный геном человека из Денисовой пещеры, «Элементы», 23.12.2010). Логично предположить, что среди заимствованных генов были и какие-то аллели ГКГ. Вышедшие из Африки сапиенсы наверняка были хуже приспособлены к местным инфекциям, чем коренные обитатели Евразии, поэтому такое заимствование могло оказаться для них весьма полезным.

Большая международная группа генетиков решила проверить это предположение. О результатах проверки рассказано в статье, опубликованной в последнем выпуске журнала Science. Авторы сопоставили набор аллелей генов HLA-AHLA-B и HLA-С у трех неандертальцев из пещеры Виндия в Хорватии (у всех троих, кстати, набор аллелей ГКГ класса I оказался одинаковым, что свидетельствует об очень близком родстве) и у человека из Денисовой пещеры с разнообразием аллелей этих генов в современном человечестве. В ходе анализа использовалось несколько взаимодополняющих подходов и статистических методов. В частности, учитывались данные по так называемому «неравновесию по сцеплению» (linkage disequilibrium, LD) — этим неудобоваримым термином генетики обозначают повышенную, по сравнению с ожидаемой при случайном распределении, частоту совместной встречаемости двух генетических вариантов (например, определенного аллеля HLA-B с определенным аллелем HLA-C).