PCAdmix: инструмент и методология для оценки происхождения хромосомных сегментов

В марте прошлого года  Сергей Козлов — один из соавторов данного блога, — опубликовал важную с точки зрения методологии генетико-генеалогического анализа заметку о принципах оценки вероятности определения времени жизни последнего общего предка при попарном сравнении аутосомных данных двух или более сравниваемых индивидов.  Действительно, в последние годы среди людей, интересующихся генеалогией, приобрели заметную популярность сервисы, производящие поиск генетических родственников по всем линиям, а не только по прямой мужской и прямой женской. В качестве примера можно привести Family Finder от FTDNA и DNA relatives от 23andMe. Участник получает достаточно длинный список так называемых «совпаденцев» — людей, имеющих с ним один или более участок половинного совпадения (УПС) на аутосомах (неполовых хромосомах). Если участок достаточно длинный (а его длина измеряется в сантиморганидах, обозначающих вероятность разрыва участка при каждой передаче в следующее поколение), то это говорит о наличии общего предка (от которого участок и получен).
Для значительной части клиентов сервисов персональной коммерческой геномики, интересующихся исключительно вопросами своего происхождения, вопрос о достоверном определении времени жизни общих предков имеет первостепенное значение. И вместе с тем, именно проблема с получением четкого ответа на этот краеугольный вопрос служит одной из главных причин недовольства и раздражения клиентов компаний вроде FTDNA или 23andme.

Действительно, изучив длинные сегменты генома, передававшихся от поколения к поколению и встречающиеся у многих людей, можно примерно определить степень и интенсивность предковых связей, берущих начало много тысяч лет назад.  Здравый смысл подсказыает — дальние родственники имеют такие длинные сегменты генома потому, что они унаследовали их от общих предков. У более далеких родственников длина сегментов общих геномов соответственно становится короче, поскольку происходит рекомбинация гомологичных хромосом, в результате чего с каждым следующим поколением происходит перемешивание всей совокупности генов или генотипа. Очевидно, что число и размер совпадающих общих по происхождению сегментов геномов у двоих произвольно взятых лиц из однородной метапопуляции коррелирует с географический дистанцией —  количество общих генетических предков резко уменьшается по мере увеличения географического расстояния.

Однако наряду с  географически близкими (в пределях 50-100 км)  «совпаденцами», нередко в списках «совпаденцев», предоставляемых в 23andme или FTDNA появляются совершенно экзотические «совпаденцы». Например, у финна может появится совпаденец из Италии, а у корейца — из  Великобритании. Совершенно очевидно, что подобные случаи очень сложно объяснить не только простым сопоставлением сведений о географическом происхождении предков, но даже и безотказной в простых случаях  моделью наложения «этнопопуляционного аутосомного фона в виде коротких реликтовых  IBD сегментов».

В этой связи возникает практический вопрос — как интерпретировать подобные случаи, при условии что подобные сегменты представляют собой не «ложно-позитивные», а вполне достоверные совпадения, указываюшие на существование в неопределенный момент прошлого некоего общего предка. И подобные случаи характерны не только для коммерческих «выборок», но и для вполне серьезных научных баз данных, например 1000 Genomes. В частности,  в этой базе данных при сравнении редких снипов у 89 британцев и 97 китайцев были обнаружены три англо-китайские пары с отдаленным генеалогическим родством ( в геноме этих пар были обнаружены идентичные по происхождению фрагменты (IBD сегменты) ДНК,  которые составляют 0,001%, 0,004% и 0,01%  их геномов).

Самое простое решение этой проблемы некоторые из любителей генетической генеалогии пытались найти в обращении к сервисам главного инструмента аутосомной генетической генеалогии  Gedmatch. В частности, как известно, данный сервер содержит онлайн-версии практически всех популярных среди любителей модификаций DIYDodecad калькуляторов. Например, выбрав разработанный мною калькулятор MDLP K23b в режиме Chromosome painting: Paint differences between 2 kits, 1 chromosome   и сравнив характер распределения предковых компонентов на гомологичных хромосомах у двух сравниваемых людей, можно получить примерное представление о географическом ареале, в котором мог жить общий предок этих людей (вероятно, на этот ареал будет указывать доминирующий на совпадающем сегменте компонент). Логика простая. Предположим, например, что мы сравниваем  сегменты хромосомы X в данных индивида A этнического происхождения D c данными индивида В этнического происхождения С. Здесь возможны три варианта

  • С-происхождение предка или предков индивида A
  • D-происхождение предка или предков индивида B
  • Y-происхождение подмножества предков обоих индивидов

Используя эту логику,  можно предположить что если в попарном сравнении  сегмента обозначится хорошо выраженное преобладание (по отношению к средним значениям) компонента, характерного для этнопопуляции С, то следует выбрать первый сценарий; аналогично, если обнаружится избыток компонентов характерных для этнопопуляции D, то следует выбрать второй сценарий; если будет замечено преобладание редких  для этнопопуляций С и D компонентов, то следует остановится на третьем варианте.

 


Пример I.

В этом примере мы будем использовать свои данные и данные женщины, с которой у нас был обнаружен подтвержденный генеалогией общий предок, живший в середине 19 века.  При сравнении наших данных, алгоритм поиска достоверных генеалого-генетических совпадений обнаружил три сегмента с генетической дистанцией > 7 cантиморганов, cостоящих в блочной записи из более чем 700 последовательно совпадающих снипов

Start Location End Location Centimorgans (cM) SNPs
4 32232224 42421625 13.2 1115
7 8295405 13845989 9.8 885
11 36784445 45084878 8.0 881

Самый большой сегмент = 13.2 cM
Общий размер сегментов с сантиморганах > 7 cM = 30.9 cM
Приблизительное число поколений до общего предка  = 4.4

Задетектированные  сегменты хромосом идеографически отображаются при попарном сравнении в цветовой гамме — черный цвет означает несовпадающие сегменты, другие цвета — компонентную привязку к одному из компонентов моего калькулятора MDLP K23b.  Ниже приведены фрагменты идеографического отображения 2 из 3 вышеуказанных совпадающих сегментов на кариограмму 4 и 7 хромосомы.:

M051225_F298455_4_D64088
Сегмент на 4 хромосоме
M051225_F298455_7_BC1A38
Сегмент на 7 хромосоме

Самый значительный сегмент (13.2 сM) на 4 хромосоме имеют хорошо заметную привязку к северо-восточно-европейскому компоненту [зеленый цвет], в исторической перспективе связанному с наследием мезолитического населения этого региона. А вот сегмент на 7 хромосоме имеет более сложную структуру, в которой характерно преобладание кавказского компонента [голубой цвет]. Таким образом можно уверено утверждать, что общий предок (или предки) могли жить в регионе восточной Европы.

К сожалению, данный инструмент сегментного сравнения на  Gedmatch хотя и прост в обращении (в силу интуитивной понятности), однако  далек от совершенства. В первую очередь, на аккуратность определения «генографического»происхождения сегмента влияет отсутствие на сервере  гаплоидных фаз похромосомных данных. В результате, сравнение ведется не по конкретной фазе (т.е по конкретной хромосоме доставшейся ребенку от каждого из родителей), а по диплоидному составному блоку, т.е вместо настоящих IBD мы можем оперировать half-IBD (HBD), которые на слэнге русскоязычных любителей именуются УПС-ами. Во вторых, аккуратность генографического определения  зависит от аккуратности определения предковых компонентов в используемом варианте калькулятора, но это отдельная тема для разговора.


К счастью, парадокс «экзотических» совпаденцев имеет более точное решение с помощью одной из программ, позволяющих определять геногеографическую структуру или «локальное происхождение» совпадающих сегментов.  Можно использовать разные программы, HAPMIX, LAMP , HAPAA, ANCESTRYMAP — так как несмотря на ряд принципиальных отличий, все они используют алгоритмы моделнй скрытых марковских цепей (HMM) и поэтому выдают в целом схожие результаты. К этому же классу программ относится и более новая програма PCAdmix, которую я буду использовать в своем втором примере, в котором я задействую фазированные в BEAGLE генотипы.  В целях разжевывания принципов работы программы, следует вкратце описать рабочий процесс PCAdmix.
PCAdmix являет cобой метод, который оценивает локальное происхождение хромосомных сегментов с помощью анализа главных компонентов (PCA)  фазированных гаплотипов. В самом начале выполняется анализ главных компонентов в 2-3 референсных панелех, необходимых доя построения пространства главных компонентов, например, для хромосомы 22 . Поскольку метод использует фазированные данные, каждая копия хромосомы 22 в референсных панелях рассматривается как отдельная точка в пространстве главных компонентов. Первые две главные компоненты, как правило, представляют собой оси «предкового» расхождения популяций референсных панелей, что хорошо заметно на графиках. Если подобного рассхождения не наблюдается,  то скорее всего в популяциях референсных панелей «маскируется» присутствие неявной популяционной субструктуры. В построенное таким способом пространство главных компонентов в дальнейшем проецируется группа лиц «смешанного» происхождения, и затем определяется значение нагрузки главных компонентов для каждого снипа.  После этого метод переходит к анализу коротких «окон» снипов — для каждого из этих окон вычисляются  вероятности того, что данное окно в гаплотипе человека «смешанного» происхождения происходит от одной из референсных популяций. Вычисленные таким образоом вероятности различных вариантов происхождения каждого окна снипов, используются на заключительном этапе метода в  скрытой моделе Маркова (HММ) для сглаживания шума в определении происхождения «окон» снипов. Таким образом, данная скрытая модель Маркова НММ зависит от значений главных компонентов, доли каждого «компонента происхождения» на заданной хромосоме, а также матрицы перехода, которая, в свою очередь, зависит от числа поколений прошедших с момента смешивания популяций и генетического расстояния (сM) между двумя окнами снипов. В текущей версии метода, рекомбинаторные расстояния и число поколений определяются параметрами.
Конечным результатом рабочего процесса PCAdmix является матрица состяний скрытой модели Маркова, содержащая апостериорную вероятность каждого из возможных вариантов происхождения для данного «окна снипов», и эта вероятность обусловлена остальной частью данных для хромосомы. Важно отметить, что происхождение каждого окна снипов определяется только в том случае если апостериорная вероятность для одного из возможных происхождений > = 0,8. Любое окно, для которого максимальная апостериорная вероятность любого варианта происхождения <0,8, считается «неопределенным».


Пример 2

Данный пример основан на реальном случае, когда ко мне обратился человек, чьи предки происходят из центральных регионов Азии. Смущенный наличием в списке своих совпаденцев в сервисе Relative Finder 23andme  человека с корейскими и японскими корнями, а также  семейными легендами о «восточноазиатской»прабабушке, он попросил меня определить вероятность присутствия японцев в числе своих ближайших (в пределах 5 поколений) предков, опираясь исключительно на аутосомные данные.

В этом эксперименте, я решил скурпулезно следовать инструкциям разработчиков PCAdmix, и для начала произвел фазирование (биоинформатическую реконструкцию гаплотипных фаз аутосомных хромосом) в программе BEAGLE. Данные тестанта (ок 400 тыс. снипов) были фазированы в присутствии 3 контрольных референсных групп популяций — британцев GBR, китайцев CHB и японцев JPT — поскольку эти группы были позднее задействованы мной в качестве 3 референсных панелей. В целях уменьшения количества ошибок, которые неизбежно появляются в результате импутации пропущенных «генотипов» снипов, я использовал только те общие снипы, которые были определены как в аутосомных данных клиента 23andme, так и в трех референсных группах.

Затем фазированные данные тестанта были похромосомно обработаны в рабочих циклах программы PCAdmix. Программа отфильтровала cнипы с низким значением MAF и высоким значением LD, в результате чего число снипов уменьшилось почти вдвое. Оставшиеся снипы были разбиты на «окна снипов», каждое из которых состяло из 20 снипов.  При расчете по всем 22 хромосомах, общее количество полученных таким разбиением «окон» составило 11 997. В конце рабочего цикла (метод главных компонентов + HMM) программа выдала для каждой парной аутосомной хромосомы A и B  файл в формате bed, удобном для отображения дополнительной информации в аннотации генома (номер хромосомы, начало и конец сегмента, наиболее вероятный регион происхождения сегмента, cM, максимальная вероятность и апостериорная вероятность одного из трех вариантов происхождения — JPT, GBR, CHB, непоказана в таблице). В конечном отчете GBR используется как индикатор сегментов не-восточноазиатского происхождения (nEA), JPT — японского происхождения (JPA), CHB — неспецифичных сегментов восточноазиатского происхождения (EA) :

10 111955 468599 GBR 0.004885 0.134147 GBR* 0.636943
10 521723 811876 GBR 0.142147 0.582463 GBR* 0.646868
10 815149 1151723 GBR 0.585829 0.898724 GBR* 0.676252
10 1156487 1335849 GBR 0.901503 1.23673 GBR 0.925059
10 1337709 1449849 GBR 1.24246 1.60705 GBR 0.99999
10 1454864 1510208 GBR 1.61249 1.76798 GBR 0.999506
10 1512546 1623734 GBR 1.77039 2.12653 GBR 0.999647
10 1624900 1669347 GBR 2.13038 2.25357 GBR 0.999778


Выбор формата BED в качестве формата выходных в моем случае также был далеко неслучайным. C помощью одной из библиотеки платформы Bioconductor формат BED легко отображается в кариограмме 22 пар аутосомных хромосом человека (я использовал координаты геномного билда b37). Чтобы было понятно, что именно изображают эти «кариоплоты» (идеографические изображения хромосом), необходимо пояснить, что  «японское происхождение» (JPA) приписывалась 20-сниповому сегменту только в том случае, если апостериорная вероятность японского происхождения данного «окна из 20 снипов» составляла > = 0,8. Любое окно, для которого максимальная апостериорная вероятность любого варианта составляля <0,8, засчитывалось как окно  с «неопределенным» происхождением (UND).Chromosomes A

Chromosomes A

 

Chromosomes B
Chromosomes B

Эксперимент показал, что среди 11997 «окн» число  «окон» не-восточноазиатского (nEA) происхождения (7650) почти в два раза больше чем число «восточноазиатских» сегментов. Происхождение 2750 геномных «окон» снипов невозможно определеить, и только 965 «окна» могут быть определены как «японские по происхождению». Вместе с 617 окнами «китайского» (EA),  восточно-азиатские сегменты составляют меньше, чем 10% генома.
Не менее важно и то обстоятельства, что значительная доля этих сегментов-окон пришлась на низких «консервативные, низкорекомбинантные» области хромосом,  — такие, как  например, теломеры, центромеры и регионы с низкой плотностью снипов: сегменты в таких регионах могут переходить от одного поколения к другому фактически в неизменном виде. Наконец, те же закономерности распределения родословной были отмечены в обеих фазированных наборах аутосомных хромосом, что опровергает версию о недавной «восточноазиатской» примеси со стороны одного из родитедей и скорее  свидетельствует о древнем эпизоде смешивание определенных центрально- и юго-западноазиатских групп с группами восточноазиатского происхождения (например, в ходе монгольских или тюркских нашествий).

Разумеется, как и во многих других моделях анализа, основанных на вероятностях, наше заключение нельзя считать окончательным вердикторм. Вместо этого, лучше сказать, что шансы в пользу существования «недавнего японского предка» против шансов отсутствия такого, составляют 10 к 90. Другими словами, вариант с недавней японской «примесью» нельзя полностью исключить, поскольку вероятность такого сценария  составляет 11%.

 

Методологические заметки к созданию неандертальского калькулятора

Данная заметка представляет собой критический анализ методологических предпосылок создания неандертальского калькулятора, имплементированного в cоответствующем сервисе 23andme (Neanderthal lab). В основу заметки положен перевод технического документа 23andme (white paper), описывающего процесс создания неандертальского калькулятора.

Существует несколько методологических подходов  к созданию неандертальского калькулятора (т.е инструмента для оценки того, сколько процентов ДНК  в геноме анализируемого индивида имеет  неандертальское происхождение).   Есть несколько способов прямой экспериментальной оценки величины процента «неандертальской » ДНК с помощью ресеквенирования ДНК клиента в тех регионах, в которых ученые обнаружили возможные варианты, имеющие предполагаемое неандертальское происхождение. Но в силу технической сложности реализации этих способов и необходимости каждый раз заново производить секвенирование в полном объеме  регионов неандертальского происхождения, нет особой нужды рассматривать их в этой записи. Вместо этого я предлагаю рассмотреть две оставшиеся методики определения вклада неандертальского ДНК.  Хотя оба метода не без своих изъянов, они позволяют существенно снизить влияние неопределенности (ascertainment bias) в оценке вклада неандертальского ДНК, и в принципе,  других приемлемых альтернатив этим методам не существует, так как в противном случае получаемый другими методами (например, Dstatisticsили ABBABABA) разброс оценки величины неандертальского вклада будет в несколько раз отличаться от тех величин, которые получаются на выходе соответствующих программ, используемых в  NationalGeographicGeno и 23andme (обе программы основаны на одном из двух нижеописанных методов).Именно по этой причине, каждая из нижеприведенных методик заслуживает отдельного рассмотрения. 

  1. Метод PCA

На мой личный взгляд, наилучшим  (как в плане аккуратности, так и в плане легкости реализации) методом оценки величины неандертальца в ДНК клиентов является метод главных компонент PCA, так как он представляет собой очень мощный инструмент для представления корреляции данных высокой размерности (порядка миллионов снипов и даже больше) в виде гораздо меньшего, некоррелирующего набора переменных, которые носят название «главные компоненты». Итак, метод главных компонент — это один из способов понижения размерности, состоящий в переходе к новому ортогональному базису, оси которого ориентированы по направлениям максимальной дисперсии набора входных данных (в нашем случае это набор генотипов снипов). Вдоль первой оси нового базиса дисперсия максимальна, вторая ось максимизирует дисперсию при условии ортогональности первой оси, и т.д., последняя ось имеет минимальную дисперсию из всех возможных. Такое преобразование позволяет понижать информацию путем отбрасывания координат, соответствующих направлениям с минимальной дисперсией. Можно отметить, что в основе метода главных компонент лежат следующие допущения: (a) допущение о том, что размерность данных может быть эффективно понижена путем линейного преобразования, и  (b)  допущение о том, что больше всего информации несут те направления, в которых дисперсия входных данных максимальна.

 

На первом этапе анализа необходимо вычислить главные компоненты отображающие дисперсию данных неандертальца по отношению данным современного человека. Для этого необходимо  провести PCA анализ, в который будут включен набор снипов неандертальцев, набор снипов денисовского человека, и набор снипов шимпанзе (Clint). 

Сначала скачиваем полные геномы неандертальца, денисовского человека, и шимпанзе Clint. Затем с помощью программы samtools генерируем для каждого из трех геномов файлы с геномными вариантами (vcf), отфильтровываем из полученных файлы инделы, таким образом чтобы на выходе остались только снипы и проводим аннотацию  снипов с использованием базы данных dbSNP; при аннотации находятся те варианты, которые присутствуют в базе данных и им назначается соответствующий индекс, например rs4213456 (это условный пример). Затем необходимо выбрать из это файла только те cнипы, которые присутствуют в контрольной выборке с референсными популяциями современного человека. Описание примерного порядока выполнения этой задачи можно найти в двух записях в моем блоге (здесь и здесь).

В конечном итоге, по окончанию первого этапа,  мы получаем три файла VCF c аннотированным снипами, которые необходимо соединить в один файл либо в vcftools, либо в Plink. Затем провести анализ PCA с двумя заданными главными компонентами (K2) в самом Plink, либо конвертировать данные в формат Eigenstrat и провести в программе Eigensoft анализ PCA (также с двумя заданными главными компонентами). Последний вариант предпочтителен, так алгоритм Eigensoftдает более точные данные за счет kernel-преобразований данных. В конечном результате проведенного анализа двух основных компонентов должны получится нормированный лист cобственных векторов — эйгенвекторов так называемый лист факторной загрузки –factor loading) для каждого из индивидуальных образцов, входящих в анализируемый набор. Первый главный компонент, PC1 , чьи значения отображаются вдоль первой оси ортогонального  базиса, характеризуется максимальной дисперсией набора снипов входящих данных, эта ось отображает общее генетическое сходство архаичных людей (неандертальца и денисовского человека). Ось второго компонента , PC2 , оптимизирует дисперсию при условии ортогональности первой оси (т.е, PC1), и  отображает генетическое расхождение между неандертальцами и денисовским человеком. 

pca

 

На следующем этапе генотипы клиентыпроецируются на плоскость, образованную двум яосями PC1 и PC2.  Я полагаю, что на этом этапе в самом PCA анализе нет необходимости, вместо этого можно имплементировать метод с использованием высчитанного в первом анализе PCA листа загрузки компонентов (loadings). Подобный подход реализован, например, в программе shellfish. 

В случае успешного выполнения промежуточной задачи на этом этапе, те клиенты, у которых нет неандертальского или денисовского вклада в геном,  должныр авномерно  распределиться в центре графика, то есть внутри условного треугольника, образованного референсными геномами неандертальца,  денисовского человека и шимпанзе.В то время, как клиенты с  неандертальской примесью должны  будут проецироваться ближе к неандертальца .

Как видно из иллюстрации к работе (Reich et al.2011), европейцы и жители Восточной Азии существенно сдвинуты в сторону неандертальцев по сравнению с афро-американцами (как видно из приведенного ниже графика,  расстояние между неандертальским «углом» и положением афроамериканцеввесьма значительно, это следствие неопределенности определения предковых аллелей неандертальца по африканским популяциям, поэтому для коррекции этой дистанции в 23andme высчитали центроид генетического положения африканцев с использование данных проекта 1000G, и расчет дистанции вели от него).

reich

 

На третьем этапе необходимо преобразовать PCAоординаты популяций современных людей в процент неандертальского ДНК,  т.е привести к тому виду, который выдается клиенту на выходе.  Для этих целей каждый клиент проецируется на расчетную «неандертальскую» ось, представляющую собой линию, соединяющий центроид предковой популяции клиента с точкой, координаты которой соответствует положению неандертальца на графике.

  1. Методтеговых (маркерных) снипов— NAIM (Neanderthal Ancestry Informative Markers)

Существует более прямой и простой способ  вычисления неандертальского вклада в геном клиентов. Простота метода обусловлена отсутствием надобности в сравнительно сложных алгоритмах вычисления главных компонентов. Согласно известной публикации драфтовой версии генома неандертальца (Green et al., 2010), в геномах современных людей были обнаружены 13 геномных регионов, которые, как предполагают авторы, имели неандертальское происхождение.  Эти регионы генома  современных людей  были маркированы с помощью маркерных (теговых) снипов – то есть таких снипов, в которых неандертальский вариант часто встречается в современных неафриканских популяциях людей, но отсутствует в коренных африканских популяциях.

В процитированной выше работе был предложен набор  из 180 подобных снипов, которые маркируют эти 13 регионов, предположительного неандертальского происхождения.  Таким образом, простым арифметическим подсчетом у современных людей количества известных неандертальских вариантов этих 180 снипов,  можно было бы определить процент неандертальского вклада в геном современных людей.  Ниже приведена таблица, в которых показаны физические координаты регионов-сегментов (хромосома, начало и конец сегмента – приведены в физических положениях сегмента  в билде 36).
ытзы

Тем не менее, несмотря на простоту метода, он характеризуется целым рядом недостатков, о которых следует упоминуть подробнее:

  1. Во-первых, не существует никаких формальных гарантий того, что эти варианты действительно  имеют неандертальское происхождение.
  2. Во-вторых, даже в том идеальном случае, когда все эти 180 вариантов действительно имеют неандертальское происхождение, они охватывают только 13 геномных регионов, самый длинный из которых представляет собой сегмент длиной всего лишь в 160 000 базовых пар. Эта длина на два порядка величин ниже, чем среднестатистические 2,5% неандертальского вклада в среднестатистическом геноме современного человека неафриканского происхождения . Поэтому простой подсчет числа неандертальских вариантов в маркерных снипах, где встречается будет в 2-3  раза занижать реальный процент неандертальского вклада в клиентском геноме.
  3. В-третьих, существует еще несколько трудных моментов, связанных с практической реализацией этого метода.

3.1.     Списка вышеупомянутых 180 снипов нет в открытом доступе, и так как в оригинальной статье было упомянуто другое количество снипов (166), похоже на то, что это число снипов варьируется в зависимости от использованного чипсета (поэтому и число снипов разное).

3.2.     Технически  эту проблему можно решить следующим образом. Самый простой способ состоит в определении того, какие снипы из используемого компанией чипсета попадают в эти сегменты. Например, берется первый сегмент на хромосоме 1 (начало 168 110 000 – конец 168 220 000, длина в базовых парах – 110 000) и выбираются снипы попадающие в этот регион, и так далее по всем регионам. При этом сначала надо узнать какой билд используется в контрольной выборке популяций современных людей. Если используется build 37, тогда необходимо конвертировать координаты сегментов в более ранний build 36. После того, как будут определены все снипы попадающие в эти 13 сегментов, нужно найти неандертальские варианты этих файлов (это можно сделать в базе данных неандертальских снипов) и составить список, который затем использовать в качестве затравки при сравнении с значениями снипов у современных людей.

3.3.     Другой вариант более сложный, но очевидно более точный. Список снипов найденных в ходе сравнения геномов шимпанзе, 5 референсных популяций современных людей и неандертальца  выгружен на сайте геномного браузера UCSC. Это большой файл (в распакованном виде 363 Mb), общее количество снипов 5 615 438. Формат файла следующий:

971    chr1       50600811             50600812             AA_AAD:0D,1A  0             +             50600811             50600812             0

971    chr1       50603655             50603656             AAD_AA:0D,2A    0             +             50603655             50603656             0

971    chr1       50604033             50604034             AADAA_:0D,1A    0             +             50604033             50604034             0

971    chr1       50605949             50605950             AAA_DA:0D,1A    0             +             50605949             50605950             0
Первая колонка представляет собой номер сегмента чтения, вторая – название хромосомы, вторая и третья – физическое положение снипа, далее идет длинная колонка с указанием характера варианта в  шимпанзе, 4 популяций людей и неандертальца. «A» обозначает предковое значение аллеля, «D» — derived, т.е мутировавшее значение. После двоеточия идет специфическая неандертальская колонка (например, :0D,1A)с указанием того сколько предковых и сколько мутировавших значений снипа обнаружено в исследованных геномах неандертальцев. В данном случае, в первом снипе обнаружено 0D (0 мутировавших) и 1A (1 предковое значение). Трудность задачи состоит в определении только тех снипов, в которых  у неандертальцев нет предковых значений, а встречаются только мутировавшие значения. Эти снипы — кандидаты на неандертальский вклад в человеческий геном. Затем сравнить отфильтрованный список со списком снипов в  контрольной выборке (опять-таки, надо знать какой билд используется, координаты этого списока  приведен по билду 36) и выбрать только те, что имеются в чипсете компании. Далее алгоритм тот же, что и выше – определяется значение снипа у неандертальца и  сравнивается с соответствующим значением у современных людей. Совпадающие у неандертальца и современных людей варианты подсчитываются и определяется конечный процент неандертальского вклада.

 

Эксперимент.

 

Я решил проверить эфективность первого метода (метода PCA) на своей контрольной выборке (2778 образцов современных людей, шимпанзе, денисовского человека и неандертальского человека и 142429 снипа). В качестве рабочей программы я использовал новую версию Plink, которая позволяет использовать в анализе PCA заданные контрольные кластеры, в которые проецируются исследуемые индивиды. В качестве трех контрольных групп я выбрал, следуя рекомендациям авторов обсуждаемого исследования,  геномы шимпанзе, неандертальца из Vindja и денисовского человека. Однако число априорных главных компонентов я намерено изменил,  с 2 на 3 (K3), таким образом на выходе я получил эйгенвекторы трех главных компонентов.  По этой причине, полученный мной график PCA несколько отличается от вышеприведенного графика 23andme (вместо PC1 и PC2 я использовал PC2 и PC3, то есть второй и третьи главные компоненты, более точно описывающие в данном случае сходство/различие геномов архаичных и современных людей).

R Graphics Output
Как видно из наших результатов, все популяции современных людей разместились внутри условного треугольника образованного дисперсией геномов денисовского человека, неандертальца и шимпанзе.
Впрочем, на графике нельзя разглядеть, какие именно популяции сдвигаются в сторону неандертальца, а какие — в сторону денисовского человека (такой сдвиг свидетельствовал бы о наличии адмикса).  Чтобы устранить этот досадный артефакт графика, придется убрать с графика геномы денисовца, неандертальца и шимпанзе (из-за значительной генетической дистанции популяции современных людей сдвигаются в одну кучу).

 

R Graphics Output
R Graphics Output

 

Положение удаленных денисовца, неандертальца и шимпанзе размечено на новом графике буквенными обозначениями — D, N, Chimp. Из человеческих популяций я разметил группы африканских популяций (Africans), и коренных американцев (Native Americans). Европейские и азиатские популяций смещены в одну общую группу, с сильным креном в сторону неандертальца. Судя по всему, мои результаты, в общих чертах, практически не отличаются от результатов исследований Грина и Райха. Как отмечает  Дробышевский: » «денисовские гены», несмотря на свою экзотичность, обнаружились у современных людей. Первоначально они были найдены у папуасов Новой Гвинеи и меланезийцев острова Бугенвиль (Reich et al., 2010), затем – у австралийских аборигенов (Gibbons, 2011), а полнейшее исследование вопроса констатировало наличие их у огромного числа популяций (Reich et al., 2011). Они были выявлены в тридцати трёх популяциях Океании и Юго-Восточной Азии, в том числе у папуасов Новой Гвинеи, австралийских аборигенов (даже больше, чем у папуасов), полинезицев, фиджийцев, восточных индонезийцев с разных островов, филиппинцев и у филиппинских аэта-маманва.»

Что касается неандертальца, то уже с 2010 года известно, что в целом неандертальская ДНК составляет 1-4% генома нынешних людей, живущих за пределами Африки. Авторы двух исследований, опубликованных в среду журналах Science и Nature, выяснили, что чаще всего неандертальская наследственность присутствует в нескольких генах, связанных с выработкой кератина, присутствующего в коже, волосах и ногтях. В этой части генома неандертальские аллели обнаружены у 70% европейцев и 66% азиатов.

Гораздо интереснее те мои результаты, которые отличаются от общепринятых. Так например, довольно неожиданным результатом является наблюдаемое на графике значительное смещение южноамериканских индейцев в сторону денисовского человека, причем это смещение гораздо значительнее смещения папуасов и меланезийцев, у которых были найдены «денисовские гены» в наибольшем количестве. Что это означает, трудно сказать — наличие реального сигнала смешивания в данном случае равновероятен обнаружению статистического артефакта.  Впрочем, если верить работам Скоглунда этот результат может быть правдоподобным — моделирование миграций генов показало, что «денисовские» гены должны встречаться не только в Юго-Восточной Азии, но даже в некоторых группах Южной Америки (Skoglund et Jakobsson, 2011)

Оставим в стороне этот вопрос, который нуждается в более детальном изучении, и передем к расчетам процентной величины вклада неандертальских генов в популяции современных людей. Очевидно, что средняя величина этого вклада по каждой из популяций может дать только приблизительное представление о характере архаичной интрогресси неандертальских генов. Индивидуальный уровень вклада в каждой популяции может иметь большую частотную амплитуду в интервале между 1 и 6% процентами. Тем не менее, представляется возможным апроксимировать эти значения путем умножения собственного вектора (eigenvector) главных компонентов каждого индивида каждой популяции на собственное число линейного преобразования (eigenvalue), и последующим усреднением по популяции.

Ниже приведены эти усредненные значения в процентах (неандертальских генов), в порядке уменьшения. Вызывают сомнения ультра-высокие значения в первых десяти популяциях — скорее всего это результат комплексного воздействия статистических эфектов недостаточной представленности выборки, а также высокой степени гомозиготности, характерной для изолированных популяций (исландцев, албанцев и басков). Довольно высок уровень неандертальского вклада в образцах древних европейцев, хотя это и логично с точки зрения исторической модели адмикса. С другой стороны, средние значения (2-2.7%) неандертальского адмикса в популяциях Восточной Европы выглядят реалистичными. Так, например, по расчетам 23andme у меня уровень «неандертальских генов» составляет 2.67% :

Icelandic 10.50%
Norwegian 9.00%
1_Motala12 8.00%
Spain_BASC 8.00%
Albanian 7.00%
Korean 7.00%
Tiwari 5.11%
1_LBK380 5.00%
1_Loschbour 5.00%
French_South 4.00%
Kashmiri 4.00%
Tubalar 4.00%
Atayal_Coriell 3.60%
Ami_Coriell 3.10%
1_Motala_merge 3.00%
Bolivian 3.00%
Croatian 3.00%
Totonac 2.80%
Qatari 2.71%
Mixed_East_Slav 2.57%
Gujarati 2.43%
Ulchi 2.39%
North-Russian 2.36%
Center-Russian 2.36%
Aonaga 2.33%
British 2.33%
Chenchu 2.33%
East-Belarusian 2.33%
Ukrainian 2.33%
Finn 2.29%
Latvian 2.29%
Mixed_European 2.28%
South-Russian 2.27%
Pole 2.26%
Lithuanian 2.25%
West-Belarusian 2.25%
Belarusian 2.23%
Vepsa 2.23%
Bosnian 2.22%
Cree 2.20%
Georgian_Imereti 2.20%
Polish 2.20%
Orcadian 2.15%
Russian 2.15%
Karelian 2.13%
Welsh 2.12%
Swede 2.11%
Ukranians 2.11%
Greek 2.10%
Lithuanians 2.10%
Gagauz 2.09%
Croat 2.08%
Slovak 2.08%
Estonians 2.08%
Adygei 2.07%
Serb_Serbia 2.07%
Toscani 2.07%
French 2.06%
Komi 2.06%
1_LaBrana 2.00%
Algonquin 2.00%
Avar 2.00%
Azeri_Dagestan 2.00%
Azov_Greek 2.00%
Bashkir 2.00%
Belgian 2.00%
Bulgarians 2.00%
Central-Greek 2.00%
CEU 2.00%
Cirkassian 2.00%
Cochin_Jew 2.00%
Corsican 2.00%
Cretan 2.00%
Croat_BH 2.00%
Don_cossack 2.00%
Eskimo 2.00%
Haida 2.00%
Hungarian 2.00%
Hungarians 2.00%
Inkeri 2.00%
Inkeri-Finn 2.00%
Italian_Abruzzo 2.00%
Kets 2.00%
Kosovar 2.00%
Kryashen 2.00%
Kuban_cossack 2.00%
Lezgin 2.00%
Macedonian 2.00%
Meghawal 2.00%
Mishar 2.00%
Mixed_CEU 2.00%
Mixed_East_European 2.00%
Mixed_German 2.00%
Mixed_Slav 2.00%
Montenegrian 2.00%
Mordovian 2.00%
Mordovians 2.00%
North_Italian 2.00%
Occitan 2.00%
Roma_Bulgarian 2.00%
Roma_Macedonian 2.00%
Romanian_Jew_2 2.00%
Russian_South 2.00%
Saami 2.00%
Selkup 2.00%
Serb_BH 2.00%
Slovenian 2.00%
South_Greek 2.00%
Swedish 2.00%
Tabassaran 2.00%
Tatar_Lithuanian 2.00%
Velama 2.00%
West_Greenland 2.00%
French_Basque 1.95%
Chechens 1.94%
Iberian 1.94%
Chuvash 1.94%
Tatar 1.93%
Balkars 1.92%
German 1.92%
North-Ossetian 1.92%
Hant 1.89%
North_Greek 1.89%
Georgians 1.88%
Lak 1.88%
Abhkasians 1.85%
Sardinian 1.84%
Udmurd 1.84%
Maris 1.82%
Romanians 1.82%
Georgian_Laz 1.80%
Kumyks 1.80%
Lodi 1.80%
Mansi 1.77%
Chukchis 1.75%
Crimean_Tatar 1.75%
Italian_Piedmont 1.75%
Ket 1.75%
Moldavian 1.75%
Vaish 1.75%
Hallaki 1.67%
Lezgins 1.67%
Ossetian 1.67%
Tlingit 1.67%
Greek-Islands 1.63%
Turks 1.63%
Armenians 1.60%
Nogais 1.60%
Selkups 1.60%
Hakas 1.57%
Ashkenazy_Jews 1.56%
Apache 1.50%
Jew_Tat 1.50%
Kabardin 1.50%
Karitiana 1.50%
Kurds 1.50%
Nenets 1.50%
Samaritians 1.50%
Santhal 1.50%
Srivastava 1.50%
Syrian_Jew 1.50%
Tuva 1.50%
Uygur 1.50%
Mexican 1.45%
Italian_Jew 1.40%
Portugese 1.40%
Tajiks 1.40%
Kyrgyzians 1.38%
Roma_Slovenian 1.38%
Altaians 1.36%
Koryaks 1.33%
Pashtun 1.33%
Satnami 1.33%
Sicilian 1.33%
Yakut 1.31%
Cypriots 1.30%
Spaniards 1.30%
Turkmen 1.30%
French_Jew 1.29%
Iraqi_Jews 1.29%
Sephardic_Jews 1.29%
Turkmens 1.29%
Parsi 1.28%
Buryats 1.27%
Pathan 1.27%
Tadjik 1.27%
Athabask 1.25%
Iran_Jew 1.25%
Kurd_Jew 1.25%
Nganassans 1.25%
Nysha 1.25%
Azeri 1.22%
Mixtec 1.22%
Tharu 1.20%
Tunisian_Jew 1.20%
Uzbek 1.20%
Evenkis 1.18%
Kazakhs 1.18%
Roma 1.17%
Tuvinians 1.17%
Druze 1.16%
Karakalpak 1.14%
Mongolians 1.14%
Uzbeks 1.13%
Ojibwa 1.10%
Buryat 1.00%
Cochimi 1.00%
Cucupa 1.00%
Dolgan 1.00%
Dolgans 1.00%
Even 1.00%
Evenk 1.00%
Hazara 1.00%
Huichol 1.00%
Kalash 1.00%
Kalmyk 1.00%
Kamsali 1.00%
Koryak 1.00%
Kumiai 1.00%
Lambadi 1.00%
Luiseno 1.00%
Maya 1.00%
Mongol_Halha 1.00%
Nganassan 1.00%
Oroqen 1.00%
Pima 1.00%
Roma_BH 1.00%
Romanian_Jew_1 1.00%
Romanian_Jew_3 1.00%
Shor 1.00%
Surui 1.00%
Tharus 1.00%
Tsimsian 1.00%
Uyghur 1.00%
Uzbekistan_Jew 1.00%
Uzbekistani_Jews 1.00%
Vysya 1.00%
Yukaghirs 1.00%
Sindhi 0.91%
Hezhen 0.86%
Xibo 0.80%
Navajo 0.78%
Bhil 0.75%
Brahmins_UP 0.75%
Burusho 0.75%
Mongola 0.75%
Naga 0.75%
Iranians 0.71%
Daur 0.67%
Kshatriya 0.67%
Mala 0.67%
Moroccan_Jews 0.67%
Japanese 0.58%
Chinese_Dai 0.53%
Evens 0.50%
Kol 0.50%
Morocco_Jew 0.50%
Mumbai_Jews 0.50%
Scheduled_Caste_UP 0.50%
South_Han 0.50%
Tu 0.50%
North_Han 0.45%
Brahui 0.45%
She 0.44%
Tujia 0.44%
Iraki 0.43%
Naxi 0.43%
Dharkars 0.40%
Han 0.40%
Kanjars 0.40%
Miaozu 0.40%
Velamas 0.38%
Balochi 0.33%
Chenchus 0.33%
Dusadh 0.33%
Hakkipikki 0.33%
Lahu 0.33%
Piramalai_Kallars 0.33%
Yizu 0.33%
Colombian 0.25%
Chamar 0.22%
Syrians 0.22%
Dai 0.20%
Libyan_Jew 0.17%
Makrani 0.08%

За кулисами: как создавался этно-популяционный калькулятор World-22

Летом 2011 года я создал целый рядсобственных модификаций получившего широкую известность калькулятора DIY Dodecad гениального грека Диенека Понтикоса. К моему приятному удивлению, за прошедшее время калькулятором успело воспользоваться несколько тысяч людей, некоторые из которых даже выложили свои результаты в Интернете.  Разумеется, многие также разместили и свои собственные интерпретации полученных результатов. Некоторые из приведенных в комментариях интерпретации выделялись (в хорошем смысле этого слова) высоким академическим уровнем, но мне попадались и такие комментарии, при чтении которых становилось понятно, что авторы не только не понимают принципов и сути парадигмы анализа, предложенного Понтикосом, но и — что гораздо хуже — выдавали свои фантазии за действительности. Особенно часто мне попадались подобные фантастические рассуждения в русскоязычном секторе Интернета.Пример такого невежества можно найти в рассуждениях само-провозглашенного академика ДНК-генеалогии Анатолия  Клесова:

Но и в этом случае различия все равно будут между русскими и монголами. Качественно и как-то полуколичественно его можно рассматривать, но не в виде профанации, как это делает Понтикос. Более того, это рассмотрение – если правильно – надо проводить не на выбранных маленьких фрагментах, а действительно по всему геному. На маленьких фрагментах будут вылезать отдельные особенности – то присущие в основном, например, гаплогруппам Y-I2 и мтДНК-Н, то кому-то еще. И это еще будет зависеть от разрешения, которые и обозначают индексами К=4, К=8 и другими. То есть берут маленький фрагмент генома, да еще с малым (или бóльшим) разрешением, стягивают в точку, и все равно получают в целом ерунду. Но для коммерции годится. Годятся для коммерции и вот такие, в частности, «открытия» того же Понтикоса: Перевод: Интересно то, что европейская популяция показывает присутствие американских индейцев, что показывает и f-статистика, и она же показывает присутствие компонента с Сардинией. Как видим, Понтикос уже забыл, что названия им придуманы как попало, и уже придает им абсолютные значения. Про Сардинию Понтикос уже вошел в состояние экзальтации. Он придает Сардинии некую пра-европейскую значимость, на основании, конечно, этой ерунды с «геномом», который анализирует как хочет. Пример – он трубил по всему свету, что Отци, «ледовый человек», имел геном «Сардинии». Однако только что опубликована статья о том, что Отци – никакая не Сардиния, а типичная Центральная Европа. Ну, и что делать будем? Понтикос, с его страстным желанием сенсаций, каждый раз наступает на одни и те же грабли. Впрочем, фарс продолжается. Теперь тем же занялся некто российский Веренич, а именно тоже насчитывает «польскую компоненту», пользуясь подходом своего гуру-Понтикоса.

Принимая во внимание вышесказанное, я решил просветить русскоязычную общественность относительно каким образом создавалось один из вышеупомянутых калькуляторов-модификаций (а именно World22, поскольку я считаю ее самой удачной модификацией). Тем более что в ходе многочисленных экспериментов было убедительно показано, что результаты моего калькулятора являются наиболее точными для выходцев из Восточной Европы.  В просветительских целях я перевел одно  из сообщений своего англоязычного блока на русский язык.  Надеюсь, что по прочтению этого текста, у читателя сложится более полное представление о принципах этно-популяционного анализа с помощью DIY калькуляторов.

Предварительные замечания

Как вы возможно знаете, MDLP блог не обновлялся с февраля 2012 года.  Полгода тому назад я пообещал себе, что я не буду писать новые сообщения на MDLP блоге до те пор пока я не напишу краткую научный отчет о проделенной работе. Так как приоритеты завершения научной работы были важнее рутиного обновления блога,  то  в связи с нехваткой времени, я был не в состоянии продолжать обновление блога на регулярной основе, в связи с нехваткой времени, я должен был внести изменения в свой исследовательский график. Поэтому я решил воздерживался от размещения новых данных на блоге в течение нескольких месяцев, фокусируясь на более важных вопросах. Несмотря на все ограничения, я продолжал втайне работать  на проектом MDLP, сбором необходимых данных и выполением различных ‘геномных’ экспериментов в целях достижения своей конечной цели. Однако с течением времени, некоторые результаты секретных экспериментов с новыми полногеномными популяционными выборками и инструментами в конечном итоге просочились в Интернет,  порождая огромный интерес к моему проекту. После выпуска новой версии моей собственной модификации DIYDodecad калькулятор на сайте Gedmatch.com, я был буквально завален письмами пользователями сервиса Gedmatch.com.
Тогда я осознал свою основную стратегическую ошибку, которая заключалась в  отсутствии подробной документации к выпущенными мной данными и результатам анализа, и почувствовал себя обязанным разместить более подробные разъяснения. Очевидно, я начну новую серию публикацию в своем блоге,  которая будет тесным образом связанна с теми аспектами моей работы, которая наиболее интересует общественность, то есть с калькулятором MDLP World22.

Основы отбора референсных популяций калькулятора MDLP World22.

Референсный набор  популяций в этом калькуляторе был собран в программе PLINK   методом «intersection&thinning» ( дословно «пересечением и истончением») образцов из различных источников данных: HapMap 3 (отфильтрованный набор данных КЕС, YRI, JPT, CHB), 1000genomes,   Rasmussen et al. (2010),   HGDP (кураторская база данных Стэнфордского университета), Metspalu et al. (2011),  Yunusbayev et al (2011), Chaubey et al. (2010) и т.д.
Кроме того, я отобрал произвольным образом по 10 сэмплов (или максимальное количество доступных сэмплов в тех случаях, когда общее число сэмплов в популяции было меньше 10) от каждой европейской страны, представленной в панеле базе данных POPRES. Наконец, для того чтобы оценить степень корреляции между современным и древним генетическим разнообразием населения Европы, я также включил в выборку образцы древней ДНК Эци (Keller et al. (2012)) ,  образцы житлей шведского неолита Gök4, Ajv52, Ajv70, Ire8, STE7 ( Skoglund et al. (2012)) и 2 образца La Braña  — останков мезолитических жителей Пиренейского полуострова (Sánchez-Quinto et al.(2012)).
Затем я добавил 90 образцов — анонимизированных данных — участников моего проекта. После слияния вышеупомянутых наборов данных и истончения набора SNP с  помощью особой команды PLINK, я исключил SNP-ы с  более чем 1% минорных аллелей. После чего я отфильтровал дубликаты, лиц с высоким уровнем общих по происхождению идентичных сегментов (IBD). В качестве критерия фильтрации  были использованы расчеты IBD в Plink, где IBD представлена как средняя доля аллелей общих между двумя людьми по всем анализируемым локусам.  Затем я удалил из выборки лиц с  высоким коэффициентом предпологаемого родства (коэффициенты родства были вычислены в программном обеспечении King). Для получения более стабильных результатов, я также отфильтровал сэмплы с более чем 3 стандартными отклонениями от средних данных  по популяции. Поскольку коэффициент родства может быть надежно определен с помощью оценки HWE (ожидания, вытекающего из закона Харди-Вайнберга) между SNP-ами с той же базовой частотой аллелей, то SNP-ы с существенным отклонением (p < 5.5 x10−8) от  ожидания Харди-Вайнберга были удалены из объединенного набора данных. После этого я выделил те SNP-ы, которые присутствовали в чипах Illumina / Affymetrix, и затем произвел фильтрацию снипов на основе расчетов степени неравновесного сцепления  (в этой я использовал хромосомное ‘окно’ размером в 50 базовых пар, с шагом 5 базовых пар и пороговым значением уровня сцепления R ^ 2, равным 0,3).
По окончанию этой сложной последовательности операций, я получил окончательноый набора данных, который включал в себя 80 751 снипов,  2516 человек и 225  референсных популяций.

Анализ этно-популяционного адмикс

 В ходе следующенго этапа, окончательный набор данных по референсным популяциям (которые я храню в linkage-формате PLINK) был обработан в программе Admixture.  Во время выбора подходящей модели проведения теста на этно-популяционный адмикс, я столкнулся с крайне трудной задачей: как было показано в профильных научных исследованиях (Patterson et al.2006) количество маркеров, необходимых для надежной стратификации популяций в анализе обратно пропорциональна генетическому расстоянию (фСТ) между популяциями. Согласно рекомендациям пользователей программы Admixture, считается что примерно 10 000 генетических SNP-маркеров достаточно для выполнения интер-континентальной GWAS -коррекции обособленных популяций (например, уровень дивергенции между африканскими, азиатскими и европейскими популяциями  FST > 0.05), в то время как для аналогичной коррекции между внутриконтинентальными популяциями требуется более чем 100000 маркеров (в Европе, например, ФСТ < 0.01). Для повышения точности результатов Admixture я решил использовать метод, предложенный Dienekes. Этот метод позволяет преобразовать частот аллелей в «синтетические» индивиды (см. также пример Зака Аджмала из проекта HarappaDNA). Идея метода довольно проста: сначала необходимо запустить unsupervised анализ Admixture с целью вычисления частот аллелей в так называемых предковых компонентов, а затем на основании аллельных частот сгенерировать «фиктивные популяции».  Именно эти фиктивные популяции и индивиды будут использоваться в ходе чистых референсов в ходе последующего анализа этно-популяционного анализа.
Впрочем, как и любой другой исследователь, работающий над четким решением проблемы этно-популяционного адмикса, я вынужден считаться с ограничениями этого подхода. Хотя я и отдаю себе отчет в существовании явных методологических подвохов в использовании смоделированных искусственных индивидов для определения адмикса в реальной популяции, я все же скорее склонен согласиться с Понтикосом, которые считаeт полученных в ходе  аллельно-частотного моделирования «фиктивных индивидов» лучшей аппроксимацией древних генетических компонентов мирового народонаселения.Как бы то не было, моделирующий подход, предложенный Диенеком и Заком, сослужил свою хорошую службу, поскольку были мной были получены  значимые результаты в ходе создания нового калькулятора. Сначала я произвел unsupervised Admixture (при значении К = 22, т.е 22 кластера частот аллель или предковых компонентов). По выполнению анализа нами были получены оценки коэффициентов адмикса в каждой из этих 22 аллельных кластеров, а также частоты аллелей для всех SNP-ов в каждой из 22 родовых популяций.
Затем я использовал мнемонические обозначения для каждого компонента (имена для каждого из компонентов выведены в  порядке их появления). Нужно помнить, что обозначения этих компонентов носят скорее мнемонический условный характер:
Pygmy
West-Asian
North-European-Mesolithic
Tibetan
Mesomerican
Arctic-Amerind
South-America_Amerind
Indian
North-Siberean
Atlantic_Mediterranean_Neolithic
Samoedic
Proto-Indo-Iranian
East-Siberean
North-East-European
South-African
North-Amerind
Sub-Saharian
East-South-Asian
Near_East
Melanesian
Paleo-Siberean
Austronesian
Вышеупомянутые частоты аллель, вычисленные в ходе unsupervised (безнадзорного) анализа (Admixture K = 22) объединенного набора данных, были затем использованы для симуляции синтетических индивидов, по 10 индивидов на каждую из 22 предковых компонент.  Это симуляционное моделирование проводилось с помощью PLINK команды -simulate Когда моделирование было закончено, я сделал визуализацию расстояния между симулированными индивидами с использованием многомерного масштабирования.
На следущем этапе, я включил группу смоделированных индивидов (220 индивидов) в новую эталонную популяцию. После чего я запустил новый анализ А, на этот раз в полном «поднадзорном» режиме для K = 22, причем полученные в ходе симуляционного моделирования фиктивные популяции фиктивных индивидов использовались в качестве новых референсных эталонных групп.  На конвергенцию 22 априорно заданых предковых компонентов было затрачено  31 итераций (3 7773,1 сек) с окончательным loglikelihood: -188032005,430318 (ниже приведена таблица значений Fst  между расчетными ‘предковыми’ популяциями):
Приведенная выше матрица  Fst дистанций  была использована для определения наиболее вероятной топологии NJ-дерева всех 22 предковых компонентов ( примечание: в качестве outgroup-таксона использовался South-African component). Индивидуальные результаты ‘поднадзорного’ анализа этно-популяционных миксов (в формате Excel) для участников проекта были загружены на GoogleDrive.

MDLP World22 DIYcalculator

Выходные файлы «поднадзорного» анализа  Admixture K=22 (средние значения коэффициентов адмикса в референсных популяциях и значения Fst) были использованы для разработки новой версии DIYcalculator MDLP, который более известен под кодовым названием «World22» (онлайн версия доступна разделе Admixture-утилит на сервисе Gedmatch в рамках проекта MDLP). Как я уже упоминал выше, MDLP DIYcalculator работает на коде Dodecad DIY calculator (c) Dienekes Pontikos.
В свою очередь,  реализованная на сервисе  Gedmatch модификация DIYcalculator ‘World22’ комбинирована с  Oracle ‘World22’ MDLP, который также работает на коде Диенека и Зака Аджмала ​​(Хараппа/DodecadOracle). Программа «Oracle» работает в двух режимах. В режиме single population программа определяет ближайщие (к анализируемому геному) референсные популяции калькулятора Word22. В смешанном режиме, Oracle рассматривает все пары населения, и для каждой из пар вычисляет минимальное Fst-взвешенное расстояние между парой и анализируемым геномом, а также  коэффициенты сходства.
Предковые популяции (т.е. полученные в ходе симуляционное моделирования популяции — см. выше) обозначены в результатах Oracle суффиксом anc, в то время реальные современные и древние популяции обозначены суффиксом der.
Если у Вас возникли проблемы с пониманием/интерпретацией результатов Oracle и DIYcalculcator,  то я настоятельно рекомендую обратится к соответствующим темам в блогах  Dodecad и НаrappaWorld . Я полагаю, что не имеет особого практического смысла заново изобретать велосипед и слово в слово повторять то, что уже было написано более компетентными в этом вопросе людьми.

Что представляют собой компоненты MDLP World-22?

Один из наиболее частых вопросов, которые задают мне пользователи калькулятора, напрямую касается практической интерпретации референсных популяций и предковых компонентов в моих калькуляторах K = 12 и World-22 анализов в виду. Чуть выше по тексту я уже привел часть ответа на этот вопрос , но — как гласит старинная китайская пословица — одна картинка стоит десять тысяч слов. Вот почему я решил визуализировать компоненты на поверхности земного шара путем отображения коэффициентов адмикса. Избегая излишних премудростей, я воспользовался готовым рецептом Франсуа Оливье, который предложал  использовать графическую библиотеку статистического программного обеспечения R для отображения пространственной интерполяции  коэффициентов адмикса (Q матрица) в двух измерениях (где пространственные координаты записываются как географические долгота и широта).  Благодаря этому решению, мне удалось создать по 2 контурные карты на каждый из предковых компонентов.Pygmy (модальный компонент в  популяциях африканских пигмеев Biaka и Mbuti)

West-Asian (бимодальный компонет с пиком на Кавказе и юго-восточной части Ирана, приблизительно идентичен компонентам Caucasian/Gedrosia Диенека Понтикоса)
North-European-Mesolithic (локальный архаичный компонент с пиком в популяции древних европейских жителей Иберийского полуострова La_Brana и современной популяции саамов).
Tibetan (Indo-Burmese) component (Гималаи-Тибет)
Mesomerican (главный генетический компонент  у мезоамериканских америндов)

 

North-Amerind (нативный компонент северо-американских америндов)

South-Amerind (нативный компонент южно-американских индейцев)
  Atlantic-Mediterranean-Neolithic (доминируюший компонент  в западной и юго-западной Европе)

Контурные карты прочих компонентов можно скачать здесь.

Новые перспективы коммерческого экзомного тестирования/секвенирования

Поскольку слово «экзом» является совсем свежым заимствованием из английского языка. Наиболее простое определеие: экзом состоит из совокупности экзонов, а экзон — это участок гена (ДНК) эукариот, несущий генетическую информацию, кодирующую синтез продукта гена (белка).  Соответствующие экзонам участки ДНК, в отличие от интронов, полностью представлены в молекуле информационной РНК, кодирующей первичную структуру белка. По мнению некоторых исследователей  соответствуют доменам (структурно автономным областям) в белке и являются первичными генетическими единицами, рекомбинация которых приводит к возникновению в ходе эволюции новых генов и соответственно новых белков. Э. чередуются в структуре гена с другими фрагментами — интронами.
Иными словами, экзом — это совокупность всех участков ДНК, несущих информацию, определяющую экспрессию белка.

Здесь уместно вспомнить недавную видео-лекцию Павла Певзнера «Персональная медицина и ассемблирование геномов: паззл с миллиардом частей» (где-то на мордокніге я давал ссылку). Певзнер, в числе прочего, мимоходом упоминул про недавную работу одного из ведущих сотрудников института Сангера (ведущего центра персональной геномики, одним из исследовательских направлений как раз и является -The 500 Exome Project with collaborators from WTSI, GSK and Lausanne University ).
Речь идет о нашумевшей работе, в котором ученый описывает как на протяжении полугода он в рутинном режиме ежемесячно «проверял экзомы» на предмет анализа экспрессии белков. В ходе работы был не только выявлен целый ряд ранее неизвестных вариантов генов, ответственных за предрасположенность к диабету второго типа, но и произведен анализ динамики белковых изменений.Этот тщательный анализ позволил «излечить» пациентов от диабета.

После того как медиа взбудоражила общественное сознание этой новостью, целая группа коммерческих компаний обратилась к этому, ранее коммерчески неосвоенному типу генотипирования (хотя некоммерческіе исследования ведутся уже не менее десятка лет). Чутко следящая за коньюктурой геномного рынка компания Illumina сразу опустила планку цен на «экзомы» до 200 долларов. Чем не приминула воспользоваться компания 23andme, предлагающая (в качестве посредника, т.к. само типирование проводится в лабах Иллюмины) конечному потребителю продукт по цене 999 долларов.Легкая доступность экзомного тестирования будет иметь свои преимущества, поскольку позволит не только проводить анализ генетических маркеров, определяющие риски, но и анализировать экспрессию белков под воздействием определенных эпигенетических факторов (тип приминяемых медикаментов, питания и т.д.).

Сейчас врачи посылают пациентов на анализ крови, cлюны, мочи и прочих биологических субстанций.Лет этак через 10 врач будет писать в истории болезнии: «Пациенту назначено прохождение годового курса экзомного генотипирования и анализа»

Перед тем как перейти к конкретному примеру, немного сухой теории.

Принципы и платформы экзомного сивенирования

Авторы ряда недавних исследований пытались сравнить коммерческие технологии экзомного секвенирования. Предложенные в течение последних нескольких лет коммерческие платформы секвенирования следующего поколения секвенирования, разработаы с целью секвенирования кодирующей части генома — так называемого экзома. В недавнем исследовании лаборатории Майкла Снайдера (Стэнфорд), авторы сравнили три основных платформы экзомного секвенирования  созданные компаниями Agilent’s SureSelect Human All Exon (50 Mbp), Roche/Nimblegen’s SeqCap EZ v2.0, and Illumina’s TruSeq Exome Enrichment. Платформы сравнивались как между собой, так и с платформой полногеномного сиквенирования  (35x) на примере сиквенирования генома одного и того же человека.

Рис.1. Основные экзомные платформы (Clark и др., Nat Biotech, 2011 год.).

Различия платформ

Для  начала, следует отметить различия между платформами.

Фото: Кларк и др., Nat. Biotech. 2011

Большое количество базовых пар генома (29,45 Мбит), которое (предположительно) составляет «ядро» покрывается всеми  сравниваемыми платформами. В индивидуальном плане, каждая из платформ имеет от 4 до 28 Мбит уникального  «таргетного пространства покрытия». Платформа Agilent лучше подходит для транскриптов Ensembl, в то время как платформа NimbleGen имеет более широкий охват микроРНК.  На приведенной выше диаграмме Венна видно что пересчение множеств покрываемых платморфмами базовых пар генома («таргетное пространство») гораздо больше, чем пересечение каждой из платформ  с множеством таргентного пространства платформы Illumina. Это в первую очередь  объясняется тем, что Illumina в первую очередь нацелена  на секвенирование нетранслируемых областей генома (НТО). Трудно сказать,  является ли это преимуществом платформаы Illumina, или нет. С одной стороны, этот факт, конечно же, представляет определенный интерес исследователям, которые ищут  геномные варианты в регионах НТО. С другой стороны, эта характерная особенность экзомной платформы  Illumina приводит к неизбежному ухудшению качества покрытия генома.  И, действительно, как отмечают авторы отмечают, при секвенировании генома в режиме 50 миллионов 2 × 100 б.п. покрытие генома на платформе Illumina составляет 30x,  для сравнения 60x на платформе Agilent -60x и на платформе NimbleGen — 68x.

Определение таргетной эффективности платформы  и содержание GC

Авторы произвели определение и секвенирование экзома на одном образце — взятом у добровольца европейского происхождения — с использованием всех трех экзомных решений. Каждая экзомная библиотека  получила одну полосу  прочтения (2 × 100 б.п.)  на  Illumina HiSeq 2000 (11-18 Гигобаз в каждой библиотеке).  С помощью программы BWA 99%  полученных геномных «ридов» было отображено на референсную последовательность человеческого генома, примерно 10-15% геномных ридов оказались ПЦР-дубликатами. Затем была вычислена общая таргетная эффективность прочитки  ( при расчете исходили из того, что на каждый экзом приходится примерно 80 миллионов ридов,  и вычисляли процентные доли нуклеотидов покрытых при прочитке 10x, 20x, 30x ). Как пишут авторы исследования: «при всех аналогичных параметров покрытия и числа ридов, платформа NimbleGеn дала более высокий процент опеределения  своих «»таргетных» (целевых) баз, в сравнении с  другими платформами.» Авторы объясняют эффективность платформы использованием высокой плотности перекрывающихся биотинилированных олигов, используемых в платформе NimbleGen для «захвата» экзонов.

Неудивительно, что все платформы продемонстрировали заметное снижение охвата при  повышении и понижении GC целей. Однако, при низкой GC (40% до 20%),  платформа Agilent показал лишь небольшое cнижение глубины прочитки, что, возможно, связано с меньшим числом циклов ПЦР,  и большим числом биолитинированных пробов для захвата РНК, а также с использованием уникальных РНК-пробов.

Обнаружение единичных нуклеотидных вариантов (SNV-ов) и небольших инделов

Как известно, обнаружение небольших вариантов последовательности, особенно SNV-ов, является одной из основных целей секвенирования экзома. Используя нормированные  наборы геномных «ридов» размером в ~ 80 мегабаз, авторы  обнаружили в каждом наборе  экзома SNV-ы  (авторы использовали программное обеспечения GATK). Все три платформы показали высокую степень корреляции между «вызовами»  SNV-ов и высокой плотностью массива генотипов SNP-ов. Как показал эксперимент, референсный аллель имел небольшое преимущество (0.53-0.55) в позициях SNP-ов, и это дает повод утверждать о небольшом отклонении результатов в случае  с ридами, которые содержат геномные варианты. Вместе с тем, не было найденно никаких отклонений в отношении определенных типов субституций.   Как и следовало ожидать, на всех платформах  количество обнаруженных SNV-ов увеличивалось при увеличении охвата генома. Этот рост, однако,  не носил линейный характе; при прочитке 30 миллионов баз,  не было обнаружено более 95% SNV-ов. В общих регионах секвенированных экзомов, платформа NimbleGen  обнаружила большинство SNVs при наименьшем количестве прочтений.

Кроме того, платформа NimbleGen (за счет более эффективного захвата и, следовательно, более глубокого охвата генома) обнаружила большинство инделов  — как в общих регионах экзомов, так и в регионах рефересной последовательности генома. При более низком уровне прочитке, платформа Agilent обнаружила больше инделов в общих регионах экзомов, но при  50 миллионах прочтений, платформа Illumina превзошла Agilent (и, что неудивительно, обнаружила еще много инделов в нетранслируемых регионах). Размер большинства инделов был равне 1 базовой паре, хотя авторы отметили небольшое увеличение размера инделов  до 4-8 базовых пар (что подтверждается путем сравнения генома человека с геномом приматов), а также увеличение за счет отбора против  сдвига рамки мутаций.

Сравнение  результатом экзомного секвенирования с результатами полногеномного секвенирования

Основным достоинством данного исследования можно считать то, что авторы  произвели и  полногеномное секвенирование образца при средней величине покрытия 35х.  Корреляция по гетерозиготным позициям SNP-ов между результатами экзомного секвенирования и полногенмного секвенирования составила 98,5%. Для имитации мультиплексного секвенирования 3 или 6  экзомных библиотек на одну полосу (GAIIx или HiSeq, соответственно), авторы нормировали экзомные продукту  до 50 миллионов  ридов на каждой из платформ. В каждом попарном сравнении продуктов  полногеномного и экзомного секвкенирования, набор данных полногеномного секвенирования был ограничен теми же таргетными регионами, что и сравниваемый экзомный продукт.  Хотя этот шаг  и представляется необходимым для сравнения по методу «подобное к подобному», нужно отметить, что он сводит к минимуму мощь полногеномного секвенирование, которое обеспечивает относительно объективное освещение всех кодирующих областей. Другими словами, это ограничение дает определенное преимущество экзомным продуктам,  поскольку сравниваются только те таргетные регионы, под которые заточена платформа экзомного продукта.

Перекрытие SNV-ов в экзомных продуктах и полно-геномном продукте (Clark и др., Nat Biotech 2011 года.)

Подавляющее большинство SNV-ов в таргетных  регионах было обнаружено как в экзомных, так и в полногеномных регионах, с небольшими различиями. Примечательно, что при попарном сравнении специфические SNV в  экзомных и полногеномных продуктах, ка правило, имеют (1) низкий  доверительный порог, (2) более высокую долю новельных (по отношению к dbSNP) вариантов, и (3) лучшее покрытие в детектирующей платформе. Специфические для полногеномного продукта SNV-ы часто  имеют нулевые риды в экзомных продуктах (вероятно, из-за проблемы с гибридизацией). Напротив, большинство SNV-ов, специфических для экзомных продуктов, было покрыто в полногеномном продукте, хотя их общее число в полногеномном продукте все равно остается ниже, чем в экзомном продукте.

Как становится ясно из вышеприведенного рисунка, число SNV-ов, обнаруженых в экзомных продуктах и полногеномном продукте отлично коррелирует с «»потолком» каждой экзомной платформы. Illumina, которая имеет наибольшее таргетное пространство (особенно в нетранслируемых регионах), имеет наибольшее количество общих SNV-оd.  Число общих SNV-ов в Agilent больше, чем NimbleGen, однако чувствительность NimbleGen в определении истинно-положительных результатов в целевых регионах  гораздо выше, чем на двух других платформах.

Как выбрать экзомную платформу

Авторы приходят к выводу, что все три платформы экзомного секвенирования по-своему  хороши. Выбор платформы, вероятно, зависит от целей, приоритетов и бюджета исследователя. Для малобюджетных проектов, NimbleGen предлагает наиболее эффективное обогащение экзонов (а также микро-РНК). Agilent подходит для охоты за вариантами генома, поскольку обеспечивает более широкий охват, но требует больше  секвенированных данных. Illumina наиболее требовательна в плане секвенированных даннных, но зато обследует нетранслируемые области, могут заинтересовать некоторых исследователей.

Мои собственные практические выводы на основе анализа данных

Летом я освоил навыки анализоа результатов экзомного генотипирования, любезно представленные одним из немногих россиян, участвовавших в пилотном проекте экзомного генотипирования в компании 23andme.

Поскольку слово «экзом» является совсем свежым заимствованием из английского языка. Наиболее простое определеие: экзом состоит из совокупности экзонов, а экзон — это участок гена (ДНК) эукариот, несущий генетическую информацию, кодирующую синтез продукта гена (белка).  Соответствующие экзонам участки ДНК, в отличие от интронов, полностью представлены в молекуле информационной РНК, кодирующей первичную структуру белка. По мнению некоторых исследователей Э. соответствуют доменам (структурно автономным областям) в белке и являются первичными генетическими единицами, рекомбинация которых приводит к возникновению в ходе эволюции новых генов и соответственно новых белков. Э. чередуются в структуре гена с другими фрагментами — интронами.
Иными словами, экзом — это совокупность всех участков ДНК, несущих информацию, определяющую экспрессию белка.

Здесь уместно вспомнить недавную видео-лекцию Павла Певзнера «Персональная медицина и ассемблирование геномов: паззл с миллиардом частей» (где-то на мордокніге я давал ссылку). Певзнер, в числе прочего, мимоходом упоминул про недавную работу одного из ведущих сотрудников института Сангера (ведущего центра персональной геномики, одним из исследовательских направлений как раз и является -The 500 Exome Project with collaborators from WTSI, GSK and Lausanne University ).
Речь идет о нашумевшей работе, в котором ученый описывает как на протяжении полугода он в рутинном режиме ежемесячно «проверял экзомы» на предмет анализа экспрессии белков. В ходе работы был не только выявлен целый ряд ранее неизвестных вариантов генов, ответственных за предрасположенность к диабету второго типа, но и произведен анализ динамики белковых изменений.
Этот тщательный анализ позволил «излечить» пациентов от диабета.
После того как медиа взбудоражила общественное сознание этой новостью, целая группа коммерческих компаний обратилась к этому, ранее коммерчески неосвоенному типу генотипирования (хотя некоммерческіе исследования ведутся уже не менее десятка лет). Чутко следящая за коньюктурой геномного рынка компания Illumina сразу опустила планку цен на «экзомы» до 200 долларов. Чем не приминула воспользоваться компания 23andme, предлагающая (в качестве посредника, т.к. само типирование проводится в лабах Иллюмины) конечному потребителю продукт по цене 999 долларов.

Легкая доступность экзомного тестирования будет иметь свои преимущества, поскольку позволит не только проводить анализ генетических маркеров, определяющие риски, но и анализировать экспрессию белков под воздействием определенных эпигенетических факторов (тип приминяемых медикаментов, питания и т.д.).

Сейчас врачи посылают пациентов на анализ крови, cлюны, мочи и прочих биологических субстанций.
Лет этак через 10 врач будет писать в истории болезнии: «Пациенту назначено прохождение годового курса экзомного генотипирования и анализа»

Как выглядит конечный продукт экзомного тестирования предлагаемый 23andme за 999 зеленых американских рублей?

Это набор из четырех файлов:
1) x.bam
2) x.bai
3) x.pdf
4) x.vcf.

X -это кодовый номер участника. BAM файл являющийся бинарной версией формата SAM (формата множественного выравнивания ДНК по референсному сиквенсу), BAI — индекс контигов в BAM файле. Наконец, VCF — это файл содержащий все «задетектированные» в BAM файле варианты (прежде всего SNPs и INDELs)

Но вернемся к экзомному тестированию.
Cуществует определенная группа лиц, которых больше интересуют вопросы происхождения и генеалогии. Медицинские аспекты, как правило, им неинтересны.

Что интересного могут излечь из экзомных данных ДНК-генеалогии? Не трудно ответить. Большинство ДНК-генеалогов знает принципы наследования ДНК, в первую очередь Y-хромосомы и митохондриального генома (которые наследуются соответственно строго по мужской и женской линии).

После предварительного знакомства со структурой экзомных данных, я должен выделить две основные проблемы, возникающие при работе с указанными выше «однородительскими маркерами».

Первая и основная проблема — это характер экзомного типировния. При экзомном типировании определяются только те снипы и инделы, которые находятся в экзонах. С митохондрионом здесь проблем особых нет — в [человеческом] митогеноме практически все вариативные позиции, являются экзомными, т.е несут генетическую информацию («код» синтеза белка). Поэтому фактически данные экзомного тестирования уже содержат полный сиквенс генома (аналог FGS от FTDNA). Остается только их извлечь. И вот тут появляется другая проблема. Для определения генетических вариантов (т.е различий нуклеотидов в локусах) необходмо провести «выравнивание» анализируемого по референсному сиквенсу. Как известно, в митохондрионе для этих целей используется «классический» сиквенс rCRS (Cambridge Reference Sequence, GenBank:NC_012920.1). Однако в геномных билдах-ассамблеях hg18 и hg19_Chr37, этот референс заменен другим. Поэтому результаты выравнивания митогенома по дефольтным вариантам вышеуказанных билдов дают результаты, сильно отличающиеся от привычного формата.

После замены дефолтного сиквенса на rCRS все получилось. Вот фрагмент из VCF файла, содержащий интересующие нас отличия от rCRS:
#CHROM POS REF ALT
MT 73 A G
MT 195 T C
MT 263 A G
MT 709 G A
MT 750 A G
MT 1438 A G
MT 1888 G A
MT 2141 T C
MT 2706 A G
MT 3106 CN C
MT 4216 T C
MT 4917 A G
MT 5894 A G
MT 7028 C T
MT 8697 G A
MT 8860 A G
MT 9117 T C
MT 10463 T C
MT 11191 C T
MT 11251 A G
MT 11719 G A
MT 11812 A G
MT 12741 C T
MT 13260 T C
MT 13368 G A
MT 13965 T C
MT 13966 A G
MT 14233 A G
MT 14687 A G
MT 14766 C T
MT 14905 G A
MT 15326 A G
MT 15452 C A
MT 15607 A G
MT 15928 G A
MT 16126 T C
MT 16294 C T
MT 16296 C T
MT 16324 T C
MT 16519 T C

Теперь о Y-хромосоме. В отличии от митохондриона, где практически все снипы локализуются в экзонах, больша часть снипов мужской Y-хромосомы лежит в «информационно бесполезных» интроных зонах. Поскольку экзомное тестирование не покрывает интроны, то большинство из известных Y-снипов просто выйдет за рамки теста

Убедился и я в этом на примере реальных данных (это представитель Y хромосомной гаплогруппы R1a1).
samtools view -h x.bam Y > Y.sam
samtools view -h -b -S Y.sam > Y.bam
samtools/samtools mpileup -C 50 -ugf chrY.fa Y.bam | /samtools/bcftools/bcftools view -vcg — > Y.raw.vcf

Данный подход позволил обнаружить у тестанта около сотни генетических полиморфизмов (координаты данные по билду hg19):
Y 4058546 0 A C
Y 4058566 0 ta t
Y 4457069 0 tctctcct tct
Y 6028350 0 A T
Y 8149348 0 G A
Y 8566853 0 GCCC GCCCC
Y 8783761 0 C T
Y 8881927 0 GGTGT GGTGTGT
Y 9198243 0 T A
Y 9304866 0 G A
Y 9368340 0 tg tGNg
Y 9384631 0 A C
Y 9385720 0 CGG CG
Y 9909058 0 T A
Y 9930114 0 C A
Y 9931330 0 T A
Y 9938790 0 C A
Y 9938851 0 A T
Y 9938982 0 T C
Y 9939117 0 T A
Y 9952497 0 A G
Y 9982892 0 G A
Y 9982917 0 C A
Y 10007709 0 C A
Y 10007727 0 G A
Y 10007741 0 G A
Y 10011344 0 A G
Y 10011487 0 A G
Y 10011498 0 G C
Y 10011502 0 A G
Y 10011545 0 T G
Y 10011604 0 C CTT
Y 10011648 0 T G
Y 10011673 0 G A
Y 10011677 0 G A
Y 10011698 0 A G
Y 10011878 0 G A
Y 10011935 0 C CT
Y 10011960 0 T C
Y 10011966 0 ATT AT
Y 10012012 0 T A
Y 10013318 0 A G
Y 10028123 0 C T
Y 10028180 0 A G
Y 10029163 0 A G
Y 10029228 0 G A
Y 10029308 0 A T
Y 10029322 0 T C
Y 10029340 0 T C
Y 10029485 0 G C
Y 10029487 0 T A
Y 10029513 0 A G
Y 10029610 0 G A
Y 10029616 0 G T
Y 10029623 0 C T
Y 10029629 0 A G
Y 10029649 0 C G
Y 10029711 0 A C
Y 10043269 0 C T
Y 13241432 0 G T
Y 13241656 0 G A
Y 13243050 0 C G
Y 13243352 0 G A
Y 13244666 0 C T
Y 13244690 0 A G
Y 13254228 0 C T
Y 13262943 0 ACCC ACC
Y 13263091 0 G A
Y 13263304 0 C T
Y 13263364 0 A G
Y 13263374 0 C G
Y 13266266 0 G A
Y 13266286 0 C T
Y 13266301 0 A G
Y 13266368 0 T G
Y 13266377 0 G C
Y 13266499 0 A G
Y 13266520 0 G T
Y 13266556 0 T G
Y 13266560 0 C T
Y 13266587 0 C G
Y 13268187 0 T C
Y 13268361 0 T C
Y 13268377 0 A G
Y 13268521 0 C T
Y 13307425 0 G T
Y 13307562 0 G A
Y 13309174 0 A T
Y 13309226 0 A C
Y 13309239 0 G C
Y 13309262 0 T C
Y 13309348 0 C T
Y 13311223 0 T A
Y 13311491 0 C T
Y 13311501 0 G A
Y 13312579 0 G A
Y 13312666 0 G C
Y 13312729 0 C T
Y 13312756 0 A G
Y 13312789 0 A G
Y 13332277 0 C T
Y 13357224 0 C T
Y 13370991 0 C A
Y 13445929 0 G C
Y 13445957 0 C G
Y 13463779 0 A C
Y 13463831 0 T A
Y 13463837 0 G A
Y 13463860 0 C G
Y 13465055 0 A G
Y 13470805 0 G A
Y 13470834 0 T C
Y 13470855 0 T G
Y 13470880 0 G A
Y 13470897 0 G A
Y 13475849 0 C T
Y 13476553 0 T C
Y 13478387 0 A T
Y 13478445 0 G C,A
Y 13478569 0 T G
Y 13478583 0 T G
Y 13478613 0 A G
Y 13485671 0 T G
Y 13488312 0 C A
Y 13488330 0 A G
Y 13488337 0 C T
Y 13488370 0 G A
Y 13488395 0 A G
Y 13488410 0 A T
Y 13488429 0 A G
Y 13488601 0 A C
Y 13488621 0 A G
Y 13488946 0 A C
Y 13488952 0 T C
Y 13488972 0 C G,T,A
Y 13488988 0 A G
Y 13488992 0 T C
Y 13489043 0 G A
Y 13489069 0 A C,G
Y 13489077 0 T C
Y 13489206 0 C G
Y 13489220 0 T C
Y 13489234 0 T C
Y 13489255 0 A G
Y 13489292 0 A G
Y 13489300 0 A G
Y 13492264 0 C A
Y 13500410 0 T G
Y 13500424 0 T C
Y 13500443 0 T C
Y 13502048 0 C T
Y 13524378 0 T C
Y 13524752 0 G T
Y 13524761 0 C T
Y 13524873 0 T C
Y 13537129 0 G A
Y 13537569 0 A T
Y 13537581 0 C T
Y 13541022 0 C A
Y 13541053 0 CA CATA
Y 13541068 0 T C
Y 13541199 0 A G
Y 13541232 0 A T
Y 13541288 0 G A
Y 13541293 0 ATTT ATT
Y 13541420 0 A C
Y 13541454 0 T C
Y 13541478 0 G T
Y 13541520 0 C T
Y 13541556 0 A C
Y 13541561 0 T G
Y 13541584 0 C G
Y 13572922 0 A C
Y 13572932 0 T C
Y 13572999 0 A G
Y 13573033 0 A C
Y 13573108 0 G C
Y 13573152 0 C A
Y 13573216 0 G A
Y 13573240 0 C T
Y 13573271 0 G T
Y 13595280 0 T C
Y 13687807 0 T G
Y 13688825 0 C G
Y 13689634 0 T C
Y 13689668 0 C G
Y 13689755 0 G C
Y 13690562 0 C T
Y 13694899 0 G A
Y 13694929 0 G A
Y 13694956 0 C G
Y 13694983 0 T A
Y 13695051 0 T G
Y 13726074 0 T A
Y 13726129 0 C G
Y 13842718 0 G C
Y 14482235 0 C A
Y 14485120 0 G A
Y 14498990 0 C T
Y 14771478 0 A T
Y 14898094 0 A G
Y 14958218 0 C T
Y 15026424 0 A C
Y 15027529 0 T G
Y 15930958 0 ccttcttcctc cCTTCTTCCTCCTcttcttcctc
Y 16751825 0 A G
Y 16832517 0 T C
Y 17231616 0 A G
Y 21154004 0 A C
Y 21154323 0 G A
Y 21154426 0 G A
Y 21154466 0 T A
Y 21208056 0 A G
Y 21208066 0 C G
Y 22260237 0 C T
Y 22510104 0 G A
Y 22510163 0 T A
Y 23473201 0 T A
Y 23800360 0 T G
Y 23805478 0 C A
Y 24008079 0 T A
Y 28582510 0 G C
Y 28582566 0 C G
Y 28582605 0 T C
Y 28582622 0 G A
Y 28582676 0 G A
Y 28582685 0 C A
Y 28582863 0 A G
Y 28582865 0 A G
Y 28582921 0 A G
Y 28582932 0 G A
Y 28583310 0 C T
Y 28583314 0 A G
Y 28583382 0 G C
Y 28583394 0 T C
Y 28583410 0 C G
Y 28583415 0 T C
Y 28583431 0 A T
Y 28583432 0 A G
Y 28583590 0 A C
Y 28586782 0 G A
Y 28586959 0 T C
Y 28587232 0 T C
Y 28689055 0 G T
Y 28709343 0 A G
Y 28780767 0 A C
Y 28780823 0 T A
Y 28780883 0 G A
Y 28815270 0 C A
Y 28815656 0 T C
Y 28816806 0 T C
Y 28816831 0 C T
Y 28816870 0 T G
Y 28816948 0 C G
Y 28817276 0 T G
Y 28817286 0 T G
Y 28817559 0 T G
Y 28817636 0 G A
Y 58856145 0 G C
Y 58883603 0 A T,C
Y 58883784 0 T A
Y 58883834 0 A T
Y 58893627 0 A T
Y 58968939 0 G A
Y 58975896 0 T C
Y 58981639 0 cctccactcca cCTCCActccactcca
Y 58982160 0 G T
Y 58982559 0 A C
Y 58982671 0 tcttccttc tcttc
Y 58985524 0 T G
Y 58996230 0 G A
Y 58996257 0 G T
Y 58999765 0 C T
Y 58999773 0 G A
Y 59001429 0 G A
Y 59001608 0 C T
Y 59001620 0 A C
Y 59001647 0 G A
Y 59001685 0 G C
Y 59001722 0 G A
Y 59001753 0 T C
Y 59001773 0 A C
Y 59001782 0 C A
Y 59001792 0 T C
Y 59001960 0 T A
Y 59002047 0 C G
Y 59002139 0 G T,A
Y 59005179 0 C A
Y 59010280 0 A G
Y 59015256 0 T A
Y 59017005 0 A G
Y 59017181 0 T A
Y 59017206 0 A G
Y 59017378 0 T G
Y 59017384 0 ag aGg
Y 59018341 0 C G
Y 59020728 0 A G
Y 59022718 0 A G
Y 59022723 0 C T
Y 59022734 0 C T
Y 59022768 0 A G
Y 59027525 0 A G
Y 59027700 0 A C
Y 59027882 0 T G
Y 59029728 0 C T

В продолжение о Y-хромосоме. Совершенно ясно, что большинство из снипов, обнаруженных у протестированного ранее не были известны, и поэтому отсутсвуют в официальном списке ISOGG.
C помощью незамысловатой комманды grep -f snps ISOGGsnps я нашел лист известных ISOGG-снипов, которые также присутствуют и в данных тестанта>

L146 R1a M420 rs17250535 21882589 23473201 T->A
L265 R1b1a2 rs9786882 8209348 8149348 A->G
L269 G 13467612 14958218 T->C
M173 R1 P241; Page29 rs2032624 13535818 15026424 A->C
M201 G rs2032636 13536923 15027529 G->T
M379 I2a2a2 rs2032636 13536923..13536924 15027529..15027530 GT->del
M420 R1a L146 rs17250535 21882589 23473201 T->A
P241 R1 M173; Page29 rs2032624 13535818 15026424 A->C
Page7 R1a1a1 rs34297606 13008998 14498990 C->T
Page29 R1 M173; P241 rs2032624 13535818 15026424 A->C
Page83 P rs35361051 13407488 14898094 A->G

Исходя из вышеприведенной таблицы, Y-хромосомная сигнатура тестируемого в классическом ФТДНА-шном виде будет выглядеть следущим образом:

L269-:M201-:M379-:Page83+:L265-:Page29(M173+,P241+):M420+:Page7+.

Из чего еrgo (следует), что тестант принадлежит к группе R1a1a1

О проекте 1000 геномов

Осенью этого года после публикации данных третьей фазы проекта 1000Genomes, средства массовой информации разместили в таблоидах весьма оптимистические отчеты касающиеся результатов этого примечательного проекта:

Международный консорциум исследователей опубликовал результаты первого этапа работы над проектом «1000 геномов» (1000 Genomes), которые описывают профили редких и распространенных генетических вариаций 1092 человек, относящихся к 14 популяциям в Европе, Африке, Восточной Азии, Северной и Южной Америках, сообщает Genetic Engineering News со ссылкой на Nature.

«Влияние ‘1000 геномов ‘ будет огромным», говорит один из участников проекта Фули Ю (Fuli Yu) из Центра секвенирования человеческих геномов Бейлорского медицинского колледжа в Хьюстоне. «Получена информация почти от 1100 человек, которую составляют, в том числе, сведения о редких и распространенных однонуклеотидных полиморфизмах (SNPs) вместе с инсерциями (вставками) и делециями генетического материала, а также крупными структурными перестановками в самой ДНК», говорит ученый. В настоящее время в рамках проекта картировано 38 миллионов единичных нуклеотидных замен, 1,4 миллиона инсерций/делеций (их называют инделами от английского indels, Insertions/Deletions) и свыше 14 тысяч крупных делеций.

Это вносит изменения в эталонный геном человека.

Проектом 1000 геномов установлено около 98 процентов последовательностей редких генных вариантов, присутствующих у одного процента популяции. Предполагается, что тайна генетического вклада в распространенные сложные заболевания, такие как рак, болезни сердца и диабет, кроется в этих редких вариантах.

Если не обращать внимания на чрезмерно оптимистичный характер отзывов в масс-медиа, то все-таки признать огромную важность это проекта и главным образом — открытость геномных данных для стороннего анализа. Именно благодаря этому немало важному обстоятельству профессиональными генетиками и попгенетиками были обнаружены множество вариантов — CNV, SNP, indel-ов в аутосомальных хромосомах и половых хромосомах Y/X. Пожалуй, именно обнаруженные любителями новые снипы Y практически сразу же получили практическое коммерческое применение после включения в набор тестируемых снип-сетов компании  FTDNA и Geno2.0 от National Geographic.

Исходные данные проекта  доступны на двух FTP-серверах проекта и включают  в себя данные совершенного разного типа. Находящиеся в директориях pilot_data и release файлы с обнаруженными геномными вариантами (variant calls), информацию о сэмплах и техническими данными процедуры сиквенирования. В отдельной рабочей директории сервера содержатся как основные данные — сырая информация полученная в ходе последовательного мультисиквенирования одних и тех же геномов на разных машинах и с разной степенью разрешения (sanger_low_coverage, qc_low_coverage, illumina_genotyping, cg_genotyping, exome_genotyping), выравненные по референсному геному анализируемые геномы, плюс  огромное количество статистических и аналитических данных.
Именно то обстоятельство, что одни и те же геномы всесторонне сиквенировались разными методами и на разных платформах и позволило выявить столь значительное число геномных вариаций.

В принципе структура проекта достаточно сложна, поэтому пред началом работы с данными желательно ознакомится с туториалами (в соответствующей директории сервера).
Что касается меня, то  я использовал отдельные генотипированные на платформе Illumina_Omni выборки проекта 1000genomes по регионам Великобритании в своем проекте MDLP.