Этюд на тему ДНК-генеалогия.

Мой блог посвящен преимущественно тематике аутосомной ДНК, однако время от времени я затрагиваю тему однородительских маркеров происхождения (Y-ДНК и митоДНК).  Начну заметку издалека.
Среди обывателей села Стахова бытует легенда, о том, что род Вереничей пришли на земли пинского Полесья из Югославии.К сожалению, как и в большинстве подобных легенд, cовершено невозможно разобраться в том, где правда, а где позднейшие выдумки. Так и в этом случае. Ни в одном из имеющихся e меня исторических документах нет даже и намека на балканское происхождение Вереничей. Даже в самых ранних документах (например, в «Ревизии пущ и переходов звериных в бывшем Великом княжестве Литовском с присовокуплением грамот и привилегий на входы в пущи и на земли, составленной старостою мстибоговским Григорием Богдановичем Воловичем в 1559 г. «, или в «Писцовой книге Пинского староства Лаврина Воина, 1561—66«) уже видно, что даже в то время род Вереничей на Полесье считался «издавним«.



Так в ревизии Воловича (1559 года) читаем, что

«Павел Веренич на дворище у Стохови жъ не покладалъ листовъ, только давность, и на другое дворище у Дубой».


Слово давность означает существование в течение долгого времени, издревле, искони. Происходящие от корня этого слова прилагательные и наречия попадаются в разных актах с конца XIII века. Как юридический термин существительное <давность> употреблялось уже весьма рано в западнорусском законодательстве; собственно же в России оно появляется в виде термина лишь с XVIII века. Выражение земская давность было юридическим термином в Литовском Статуте, из которого заимствовано русским законодательство.

 



В строго юридическом смысле срок давности владения определялся десятью годами. Впрочем, здесь давность может употребляться в другом значении. Так, в актовых материалах все той же «Ревизии пущ и переходов звериных в бывшем Великом княжестве Литовском с присовокуплением грамот и привилеев на входы в пущи и на земли, составленная старостою мстибогским Григорием Богдановичем Воловичем» в числе прочих землевладельцев Пинского повета упомянуты Грынь Веренич с братом Павлом «с имений своих стародавних [т.е. с незапамятных времен] военную службу служащих«. Судя по этому, Вереничи могли появится в Стахове уже в середине 15 века, если не раньше.
Когда, откуда, и при каких обстоятельствах — обо всем этом известные мне историко-юридические источники умалчивают. Более поздние документы не только не дают ответа на эти вопросы, а скорее еще больше запутывают ситуацию. Так например в «Выводе фамилии урожденных Стаховских придомка Веренич» (Год 1802 Месяца ноября двадцать второго дня на на сессии Депутации выводовой Губернии Минской) читаем следущее:

«Принесена была просьба от фамилии древней родовитой панской шляхты урождённых Вереничей Стаховских герба “Огончик” (пол-стрелы белой на половине перстня стоящей, в поле красном, над шлемом две женские руки вытянутые вверх) которая на наследственных землях и осадах в повете пинском лежащих от найяснейшых времён королевства Польского, прерогативами шляхетства пользовалась, и клейнотом родовитости неискаженно и непрерывно пользовались. [стр. 616] В потверждение указов найяснейшей воли – линия родословной своей вместе с документами перед депутацией выводовой губернии Минской составлена, потверждена доводами и внесена в дворянские книги Минской губернии в соответстии с законом.Родословие своего дома разделили на две линии. Дух родных братьев Семена и Дмитрия Вереничей Стаховских за родоначальников взяли, и от них до себя довели. И правдивость этого они через доказательства и документы следующим порядком довели. Семен и Дмитрий Вереничи Стаховские братья между собой родные. В повете Пинском осели и дали начало своему роду и фамилии. И в подтверждение своего первого поколения они предъявили привилегию от наияснейшего короля польского Сигизмунда Августа за год тысяча пятьсот шестьдесят шестой от июня двадцатого дня где, между другими для шляхты пинской пожалованиями за военную службу выше упомянутым Семену и Дмитрию Вереничам Стаховским земли в наследственное владение в повете Пинском лежащими дворища Веренича в Стахове и Дубой называющееся им и потомкам их пожаловал…»

Содержание начала текста весьма типично для подобных документов, но здесь нет сведений о точном времени появления Вереничей в Стахове, не говоря уже о явных хронологических несуразицах, которые я разбирал в другой заметке.

  1. Во-первых, под «привелем» 1566 года понимается общий «привилей» Сигизмунда-Августа, данные всей пинской шляхте в подтверждение их землевладельческих и шляхецких прав.
  2. Во-вторых, Семен и Дмитрий жили не в 1566 году, а как минимум на сто лет раньше — около 1456-1466 годов. В доказательство верности моих вычислений можно привести следующие аргументы. В решении судей Главного Трибунала ВКЛ от 1637 года упоминается о привелее кн. Марии Семеновны (+1501) ( в документе ошибочно указано Ярославовны) и ее сына кн. Василия Семеновича (+1495) от 6998 года индикта 8 (1490 года согласно современному летоисчислению), в котором подтверждается совместное владение Волошиным (sic!) Павлом и Ходором Вереничами даниной своей бабки в селе Тупчицы, Согласно родословной, Павел — сын Дмитрия и племянник Семена. В следующем по времени привилее кн. Федора Ивановича Ярославича от 26 апреля 1514 данном дочерям Антона (Андрей?) Дмитриевича Веренича потдверждается их вотчинное права на земли пожалованные их отцу в Стахове, Дубое и Тупчицах. Очевидно, Антон(или Андрей) — тоже сын Дмитрия, и более того, в 1514 году его дочери были уже совершеннолетними.
  3. В-третьих, в переписе войска литовского 1528 года упомянут пинский боярин Верениш (sic!), который служил «сам со своего имения». Далее, из судебного дела от 26 марта 1543 года по иску Пашки Павлова и его братьи Игнатия и Гаврила к Ваське Лозичу, который унаследовал по своей жене Ульяне Лукашевичевой Веренич часть имений Дубой и Стахово. мы узнаем, что в 1543 году внуки Дмитрия (Пашко Павлович и его двоюродные братья Гавриил и Игнат Васильевич) были уже взрослыми, так же как и покойная Ульяна Лукьяновна (дочь Лукьяна Семеновича, внучка Семена Веренича), после смерти которой третья часть дворища Веренич в Дубое и дворища Веренич в Стахово перешла к Ваське Лозичу.

 



Далее, в 1554 году — за 12 лет до указанной в привелее даты — в материалах, собранных в ходе ревизии пущ и переходов лесных -упомянуются Грынь Веренич с (троюродным) братом Павлом с имений своих стародавных военную службу служащих. Как известно, Грынь — внук Семена, а Павел или Пашко — внук Дмитрия. О самих Семене и Дмитрии ни слова, хотя если бы они жили в это время, то скорее всего именно они или их сыновья были бы записаны как старшие в своем роду, но никак не их внуки.В 1559 году, по все той же ревизии Воловича, в числе земян Стаховских опять упоминается Павел Веренич, правда, уже без Гриня. В тексте четко сказано, что Павел не покладал листов (т.е. не предъявил привелея), только давность на дворище у Стахова и другое дворище у Дубоя. Поскольку большую часть книги Воловича составляют привелеи, выданные или подтвержденные королевой Боной, следовательно, от Боны Вереничи привлеев не получали, по крайней мере, на земли в Дубое и Стахове.Все вышесказанное означает, что уже задолго до 1566 года Вереничи владели своими дворищами и землями на основании вотчинного права, и что феодальные права Вереничей на эти земли восходят — как минимум -временам кн. Марии Семеновны и ее сына Василия (то есть к периду между 1475-1490 гг).


Реконструкция позволяет очертить интервал появления Вереничей в Стахове — но с обстоятельствами появления по-прежнему нет никакой ясности. Поскольку скудные исторические свидетельства обходят  этот вопрос сторонй, то можно обратиться к преданиями. Среди старожилов села Стахова якобы сохранилось следующее якобы древнее предание:


Когда-то, давным-давно, жил на Полесье князь Карачинский (sic!). В его владениях находился большой дремучий бор, около которого проходил торговый шлях. По прошествии времени, в этом бору поселилось 100 половцев, которые совершали нападения на проезжающих купцов и селян. Князь, прослышав о разбойниках, повелел своим «палявничим» (охотникам) узнать, где находится разбойничье логово. Один из охотников решил проследить путь до логово половцев и стал делать топором зарубки на деревьях. Услышав стук топора, войны князя отправились в сторону, где раздавалось эхо стука топора. Таким образом, они вышли прямиком на логово разбойников и истребили их. В награду за верную службу, князь наградил находчивого охотника землям, где находился стан половцев. Охотник постоянно носил с собой «Ксендз Лаврентий Янович, каноник венденский, в своей речи на погребении Элжбеты с Стаховских Каренжины, жены вилькомирского судьи, изданной в сборнике «Золотой улов на реках и водах смертности сего мира и т.д» (Вильно 1665 г.) размещает следущее предание, относящиеся к истории Стахова.: «Князь Карачевский, владелец обширных волостей, лежащих на Пинщине, крайне скудными силами 100 половцев положил трупами и на там же месте похоронил, как и по ныне свидетельсвтуют о том курганы того места. За это мужесто правящий князь ему отдал в удел это поле, а также столько земли, сколько мог объять звонкий звук трубы. Отсель то земельное надание стало называтся Стоховым, потому что там похоронено сто убитых врагов.» (веренька, вярэнька), и поэтому его прозвали Веренькой. Его потомки приняли прозвище родоначальника в качестве фамилии.


К сожалению, изучение этого предания показывает его недавнее происхождение. Скорее всего, оно выписано из 9-го тома «Полного географического описания нашего отечества» изданного в 1905 году В.П.Семеновым-Тян-Шанским , куда, в свою очередь перекочевало из известного издания «Słownik geograficzny Królestwa Polskiego» изданного в 1880–1902 гг., а именно из 11 тома, в котором на стр.171-172 была размещена довольно объемная статья Александра Ельского и Эдварда Руликовского о Стахове. Именно с подачи Руликовского в этой статье была размещена выписка из издания 17 века:

«Ксендз Лаврентий Янович, каноник венденский, в своей речи на погребении Элжбеты с Стаховских Каренжины, жены вилькомирского судьи, изданной в сборнике «Золотой улов на реках и водах смертности сего мира и т.д» (Вильно 1665 г.) размещает следущее предание, относящиеся к истории Стахова: «Князь Карачевский, владелец обширных волостей, лежащих на Пинщине, крайне скудными силами 100 половцев положил трупами и на там же месте похоронил, как и по ныне свидетельствуют о том курганы того места. За это мужесто правящий князь ему отдал в удел это поле, а также столько земли, сколько мог объять звонкий звук трубы. Отсель то земельное надание стало называтся Стоховым, потому что там похоронено сто убитых врагов.»

 


В приведенном отрывке приводится родословное предание рода Стаховских герба Огоньчик, (проживавшего в мстиславском, виленском, новогрудском и пр. воеводствах ВКЛ), генеалогическая связь которого с Вереничами пока никак не проясняется. Главным фигурантом здесь выступает князь Карачевский (которого, видимо, Cтаховские считали своим предком), а вовсе не «охотник с сумкой из бересты». Можно с уверенностью сказать, что «легенда старожилов» Стахова появилась самое ранее в начале 20 века в среде «грамотеев» села Стахове как результат переосмысления текста статьи их энциклопедического справочника,  а затем объединения легенды об основании Стахова с народной этимологии фамилии Веренич.



Итак, и этот источник не дал нам ничего ценного. Поскольку возможности документальной генеалогии на этом этапе практически исчерпываются (и открытие новых источников вряд ли предвидится), остается обратится к новой отрасли — ДНК-генеалогии.

Генетическая генеалогия использует ДНК-тесты совместно с традиционными генеалогическими методами исследования. Каждый человек несёт в себе своего рода «биологический документ», который не может быть утерян — это ДНК человека. Методы генетической генеалогии позволяют получить доступ к той части ДНК, которая передаётся неизменной от отца к сыну по прямой мужской линии — Y-хромосоме. ДНК-тест Y-хромосомы позволяет, например, двум мужчинам определить, разделяют ли они общего предка по мужской линии или нет. ДНК-тесты не просто помощь в генеалогических исследованиях — это современный передовой инструмент, который генеалоги могут использовать для того, чтобы установить или опровергнуть родственные связи между несколькими людьми.

Итак, в 2008 году узнал свою Y-хромосомную гаплогруппу (I2a). Немного терминологии для читателей, далеких от науки:

Гаплогруппа (в популяционной генетике человека — науке, изучающей генетическую историю человечества) — группа схожих гаплотипов, имеющих общего предка, у которого в обоих гаплотипах имела место одна и та же мутация — однонуклеотидный полиморфизм.

 

 

Позднее протестировались еще 2 Веренича, и наши гаплогруппы совпали, что подтверждается достоверность официальной родословной. Казалось бы, после всех усилий, можно было бы легко определить ареал, откуда появились предки Вереничей (очевидно, что это ареал с наибольшей частотой или наибольшим разнообразием гаплогруппы I2a). На поверку же все оказалось гораздо сложнее. Географический ареал гаплогруппы I2a (вернее ее восточноевропейской, «динарской» ветви) характеризуется бимодальным распределением — в восточной Европе они приходятся на регион Полесье-Карпаты и на регион Балкан (с макисмальной частотой в Боснии-Герцеговине).

По иронии cудьбы, именно с этими двумя регионами связаны две наиболее вероятные версии происхождения Вереничей. Таким образом, знание одной лишь корневой гаплогруппы мне, по большому счету, не помогло ни подтвердить, ни опровергнуть одну из этих альтернативных версий.

Тупиковая ситуация изменилась лишь после того, как один из Вереничей сделал полный сиквенс Y-хромосомы (BigY в FTDNA). Благодаря ему удалось достаточно точно позиционировать расположение нашей ветви-кластера внутри общей структуры филогенетического дерева I2a.Благодаря присутствию Y-хромосомного сиквенса (YF03602) представителя рода Вереничей в базе данных yfull.com (спасибо за помощь Vladimir Semargl и Vadim Urasin) представляется возможным оценить возраст моего кластера. На настоящий момент в него входит еще один полный сиквенс Y-хромосомы (YF04188), о хозяине которого мне ничего неизвестно.

Возраст линии Вереничей оценивается в 1438 лет до настоящего времени, линии YF04188 — всего лишь в 546 лет.По расчету снип-мутаций возраст I-Y17665 (и возможно I-A7318) оценивается примерно в 1000 лет (т.е. временами Киевской Руси), а возраст родительской ветви A1328 в 1850 лет до настоящего времени (начало нашей эры). Возраст, определенный по снипам, указывает на время выделения ветви I-A1328, хотя возраст последнего общего предка (определенный по значениям других маркеров Y-хромосомы) чуть ниже -1400 лет (т. е примерно 5-6 века нашей эры). То есть ветвь моих прямых предков в это время прошла пресловутое бутылочное горлышко, сопровождаемое, как правило, падением числа представителей линии и уменьшением разнообразия.

Здесь начинается самое интересное.



Недавно, зайдя на сайт проекта I2a в FTDNA, я обнаружил результаты некоего Враньешевич из Черногории. Я бы не обратил на него внимание, если бы он не попал в тот же кластер, что и я (в этот кластер входит ветвь Вереничей, гаплогруппа (I2-A7318, т.е подветвь I-A1328)).Я решил рассчитать возраст I-A1328 с помощью калькулятора semargl.me и стандартных для набора 37 маркеров скорости мутации. К сожалению, в базе данных Semargl немного гаплотипов из конкретно моего кластера и ближайщих к нему братских кластеров. В общем возраст, по ASD методу получилось что возраст моего кластераI (Y17665) — 1050 лет, а при подключении (в качестве outgroup) гаплотипа из I-A1328* возраст кластера I-A1328* составил примерно 1850 лет. То есть, это верхний интервал временного промежутка, когда мог жить последний мой общий предок (MRCA) и Враньешевича.

I2a2 ‘Dinaric’ ..L621>CTS10228>S17250>Y4882>A1328>A7318 (I-A7318)

568 362501 Verenich Werenicz,Werenich,Verenich,Werenitz,Stachowski. Belarus I-A7318

I2a2 ‘Dinaric’ ..L621>CTS10228>S17250>Y4882>A1328 (I-A1328)
564 E13120 Vranjesevic Vranjesevic Milan-Mico, birth 1913, death 1992 Bosnia and Herzegovina I-A1328


Нижний интервал можно определить с помощью калькулятора McDonald. Для вычисления дистанции в годах я сравнил значения 67-маркерного гаплотипа одного из Вереничей с аналогичными маркерами гаплотипа Враньешевича. 10 маркеров имеют другое значения. Получается разница в 10 маркеров на 67 маркерных гаплотипах.

Generations Probability Cumulative
1 0.000000 0.000
2 0.000000 0.000
3 0.000000 0.000
4 0.000004 0.000
5 0.000022 0.000
6 0.000091 0.000
7 0.000279 0.000
8 0.000699 0.001
9 0.001495 0.003
10 0.002825 0.005
11 0.004827 0.010
12 0.007592 0.018
13 0.011137 0.029
14 0.015396 0.044
15 0.020223 0.065
16 0.025408 0.090
17 0.030697 0.121
18 0.035824 0.157
19 0.040537 0.197
20 0.044616 0.242
21 0.047893 0.290
22 0.050258 0.340
23 0.051662 0.391
24 0.052111 0.444
25 0.051660 0.495
26 0.050401 0.546
27 0.048451 0.594
28 0.045943 0.640
29 0.043014 0.683
30 0.039796 0.723
31 0.036412 0.759
32 0.032973 0.792
33 0.029568 0.822
34 0.026274 0.848
35 0.023146 0.871
36 0.020225 0.891
37 0.017537 0.909
38 0.015097 0.924
39 0.012906 0.937
40 0.010961 0.948
41 0.009252 0.957

 

14202591_10210357856572557_5019604267960638228_n-1 14199500_10210357943174722_1769976137139415870_n

Пик гистограммы приходится на интервал между 21-30 поколениями, начиная с 26 поколения кумулятивная вероятность родства достигает убедительных значений достигая 0.95 в 41 поколении. Т.е. нижняя граница приходится примерно интервал в 600-1025 лет до настоящего времени — другими словами между 15 и 10 веками нашей эры.

Разумеется, c генеалогической точки зрения, исследование нижнего интервала (с общим предков в 14-15 веках нашей веры) более перспективен, тем более что я проследил свою прямую мужскую линию до 19 поколения.

Но насколько возможен факт наличия общего прямого мужского предка белоруса и черногорца в 21-30 поколениях? Дает ли генеалогия Вереничей предпосылки для такого утверждения? Прямых предпосылок, разумеется, нет.


Зато есть соображение ономастического характера. Один из сыновей второго родоночальника — Дмитра — Василь носил прозвище Волошин — так обычно в русских землях называли валахов, хотя часто прозвище Волошин не имело этнической коннотации и могло выступать в качестве отыменного прозвища: например, Володшин cын -> Волошин или Власий -> Волос -> Волошин. Наконец, составитель документа или переписчик мог сделать обычную описку. Впрочем, последнее опровергает существование 2 топонимов в окрестностях Стахова — урочища и острова Волошиново — причем именно там находились в 16-17 веках владения потомков Дмитра Веренича (старшим сыном которого являлся Василь Волошин). Кстати, любопытно отметить, что иногда в документах 16 века фамилия Веренич записывается не с окончанием —ч, а с более традиционным для южных славян окончанием — ш (Верениш)

А как же тогда быть с Вранешьевичем? Какое отношение он может иметь к валахам?

Лет 8 тому назад я порылся в исторических документах и обнаружил, что похожая фамилия Вранчич (в хорватском произношении Веранчич) действительно существовала на территории так называемого царства Сербия. После фактического распада Сербского царства (около 1366-1371 года), часть Вранчичей переселилось в Южную Сербию и Черногорию (где потомок Вранчичей воевода Радич Црноевич основал династию Црноевичей, которая в 15 веке праваила Зетой и Черногорией), другая перешла на службу к усилившемуся после падения «црства Српскаго» боснийскому королю Стефану Твртко I, который в 1370 и 1389 годах принял титул короля сербов, Боснии (1379) , Далмации и Хорватии (1389). Эти боснийские Вранчичи после падения Боснии (1463 год) под ударами турков частью переселились в Далмацию (г.Шибеник), которая с1420 была под венецианским владычеством, другая переселилась на границу Герцеговины и Черногории, где владели под турками «хематом» Вранеш, названого так в честь «валашского» князя Херака Вранеша (Вранеш — это герцеговинское диалектное видоизменение имени Вранчич).»Из возможных потомков Вранчичей, оставшихся в восточной Боснии и Герцеговине, особого внимания заслуживает «влашский» (sic!) кнез Херак (Владиславич?) Враньеш.

Казалось бы, вышеприведенные рассуждения выглядят убедительно. На самом же деле, остается главная проблема — дело в том, что фактически на протяжении 14-17 веков неизвестно никаких миграций жителей Балкан и влахов на территорию Полесья. Да, действительно была т.н. валашская колонизация, но она затрагивала главным образом территорию юго-западной Украины (прежде всего «червонной Руси» и «любельской земли», т.е. земли вокруг Львова, Звенигорода, Галича, Теребовля, Санока, Кросно, Белза, Замосця, Холма (Хелма). Причем интенсивность расселения «валахов» даже в этих регионах резко уменьшалось по мере продвижения на север (см. приложенную ниже карту).

14212036_10210384176630542_5840107323456791924_n

Например, на ближайшей к Полесью Волыни встречаются лишь фрагментарные упоминания бояр «Волошинов» в документах Метрики Литовской начала 16 века — они касаются пожалования земель в кременецком повете, т.е на рубеже ВКЛ и русского воеводства короны Польской (причем многие из этих «волошинов» носят чисто румынские имена Негое, Урсул и так далее). Такой же фрагментарный характер носят и земельные пожалования «волошинам» и на Подолье. И уж совсем единичные упоминания Волошинов мы находим в документах Метрики Литовской, касающихся земель современной Беларуси. Правда, на Брестчине одна семья «волошинов» — Ходько, Зань и Васько — получила в начале 16 века привелей на имение Чернско (от них происходит род Черских в брестском воеводстве, который вымер в 17 веке).

Реклама

Размышления над эффективностью алгоритма SPA

Перед тем,  как закрыть тему SPA, я решил поразмышлять о причинах неточности определения географического ареала происхождения с помощью генома. Те, кто воспользовался моей моделью для программы SPA (последняя версия — сентябрь 2016 года), могли убедится в том, что даже при наличии большого количества маркеров, модель не во всех случаях точно определяет ареал происхождения (даже с поправкой на погрешность радиусом в 500 км).
В основу алгоритма SPA положены примерно те же самые предпосылки, что и в случае с классическим анализом главных компонент (PCA)

  • Первая предпосылка  подхода SPA состоит в том, что частота аллели каждого SNP в популяции может быть смоделирована в виде непрерывной двумерной функции на карте. Другими словами, при выборе хромосомы индивидуума из локации с позицией (х, у) на карте, вероятность наблюдения минорного аллеля в SNP j на хромосоме может быть сформулирована в виде функции F (х, у), где Fj является непрерывной функцией, описывающей поведение частоты аллеля в зависимости от географического положения
  • Затем на основании сказанного делается упрощающее предположение, что эта функция является экземпляром логистической функции

 

где х представляет собой вектор переменных, указывающих географическое местоположение и а и Ь коэффициенты функции. Авторы понимают каждую из этих функций, как функцию FJ функции наклона градиента частота в SNP J. Эта функция кодирует крутизну склона по норме а, при этом предпологается что смещение параметра b фиксировано. Кроме того, направленность наклона  кодируется в значении вектора а.  Более подробно, θj = арктангенс (aj(1) / aj(2)) могут быть приняты в знчения угла для SNP j, где aj(1)  и aj(2)  являются первым и вторым элементами вектора а.

Поскольку SPA имеет явные географические координаты, подход может быть расширен для систем за пределами обычной картезианской двумерной плоскости координат. В качестве демонстрации этого, авторы программы SPA использовали алгоритм для анализа пространственной структуры населения земного шара, в которой двухмерное отображение на двухмерной плоскости не может точно фиксировать структуру популяции. Таким образом, каждый индивид проецируется на точку земного шара в трехмерном пространстве. Соответственно, авторы использовали трехмерный вектор х (с ограничением || х || равным определенной константе), чтобы представить индивидуальную позицию.

Используя данные (генотипы индивидов из различных популяций из  HGDP), авторы обнаружили что пространственная топология расположения индивидов в пространстве SPA мы наблюдали, что сильно напоминала топологию географической карту мира. В частности, люди из того же континента были сгруппированы вместе, а континенты были разделены примерно так, как это следовало бы ожидать из пространственного расположения.

ng-2285-f3

 

Главная проблема метода состояла в другом. Несмотря на точность топологии взаимного расположения индивидов,  на карте SPA сильно искажены расстояния между континентами.

Например, продольный размер континента Евразии составил 92 градусов в  SPA-пространстве земного шара, в то время как в пространстве реального земного шара — 150 градусов. Продольное расстояние между Европой и Северной Америкой составило 167 градусов на SPA карте земного шара, в то время как на самом деле оно составляет 90 градусов.  Любопытно отметить, что мой опыт работы с этой программы показал, что наибольшую проблему составляют географические координаты долготы, в то время как широты предсказываются довольно точно. То есть по какой-то причине (несимметричность генетических градиентов в направлении север-юг и направлении восток-запад?) пространство SPA очень сильно искажается в продольном измерении (т.е в долготу).
По этой причине, вычисленные географические точки происхождения для европейцев часто оказываются в Атлантическом океана и так далее.

Я решил использовать данные импутированных генотипов для европейских популяций (я занимался их импутацией на протяжении последнего полгода). На этот раз я ограничился только европейскими популяциями. Я  сделал два разных набора с разным числом снипов — один с 1 062 376 снипами, которые содержатся в платформах генотиприрования клиентов 23andme и FTDNA, другой — примерно 590 395 снипов.  Обе модели можно скачать с Google Drive  (здесь и здесь).

Несмотря на тщательный подбор снипов, обе модели продолжают страдать характерным сдвигом географических долгот, а это означает, что данная проблема обусловлена не выборкой генотипов, а самим алгоритмом программы (т.е. улучшение качества выборки или увеличение количества снипов не приводит к повышению точности даже в том случае, если мы используем для тренировки программы на обучающей выборке  индивидов с известной географической локацией).

Это хорошо видно на полученных в ходе анализа моих собственных данных географических координатах 2 точек происхождения (одна из них в Гренландии,  другая в Средиземном море)

untitled

Разумеется, вряд ли можно говорить о точности подобных вычислений. В ходе размышлений над способом решения проблемы я вспомнил о существовании ортогонального прокрустового анализа.

Я взял две матрицы — одну с географическими координатами (фактически центроиды — географические центры стран) и  вторую с предсказанными  (в модели 1M cнипов) величинами географических координат тех же самых образцов (с усредненными значениями по этносам), а затем совершил прокрустово преобразование в программе R, получив новую матрицу с преобразованными значениями координат. Ниже виден результат операции (преобразованные усредненные координаты образцов спроецированы вместе с центроидами на карту Европы). И хотя координаты по-прежнему немного сдвинуты относительно истинных, в целом результат уже гораздо лучше (правдоподобнее).rplot14При проведении прокрустова анализа, кроме Xnew (трансформированной матрицы),  мы получили значения матрицы вращения R, s- коэффициент масштабирования и tt — вектор трансляции координат, минимизирующие дистанцию между матрицей предсказанных координат и матрицей географических координат.

Эти значения можно использовать для коррекции значений географических координат, рассчитанных в SPA. Я снова использую свои данные (2 предсказанные точки географического происхождения Xp):


Xt=sRXp + 1tt


При подстановке Xp получаем следующие значения

точка A:  60.245448+-11.059673 северной широты;  21.394898 +- -5.979712  восточной долготы (северо-западная Балтика и Скандинавия)

точка B: 43.000748+-8.801889 северной широты;  20.725216+-52.159598 восточной долготы (юго-восточная Европа, Балканы и Греция).

 

 

 

 

 

Геномика датской популяции

В середине августа в журнале Genetics опубликовали статью о генофонде современной датской популяции Athanasiadis et al., Nationwide Genomic Study in Denmark Reveals Remarkable Population Homogeneity, Genetics Early online August 17, 2016; DOI: 10.1534/genetics.116.189241

Методологически исследование напоминает известную статью о генофонде Великобритании.

Аннотация: Дания играет существенную роль в истории Северной Европы. В рамках общенациональной научной просветительской инициативы, мы собрали генетические и антропометрические данные примерно 800 датчан — учащихся средней школы и использовали их, чтобы выяснить генетический состав населения Дании, а также для оценки методики полигенного предсказания фенотипических признаков у подростков. Мы обнаружили замечательную однородность датского генофонда в разных географических регионах, хотя  исследование и  обнаружило слабые сигналы генетической структуры, отражающие историю страны. Датский генофонд характеризуется геномной близостью с соседними странами, особенно общим сходством по генетическим маркерам снижения веса из Великобритании, Швеции, Норвегии, Германии и Франции. Геномный сигнал обмена генами с польской популяцией был обнаружен в регионах Зеландия и Фюна , причем наша датировка даты «смешения» совпала с историческими свидетельствами о переселении славян-вендов на юге Дании. Мы также обнаружили  значительное различие в демографической истории скандинавских стран. Дания имеет наименьший текущий эффективный размер популяции по сравнению с Норвегией и Швецией. И, наконец, мы обнаружили, что полигенное предсказание самооценки роста у подростков  в датской популяции был удивительно точным (коэффициент корреляции R2 = 0,639 ± 0,015). Высокая однородность генофонда населения Дании позволят пренебречь изучением этнической структуры генофонда  в ходе предстоящих крупномасштабных исследований по картированию генов (GWAS) в  стране.

DK_clusters_&_admix

SNPweights: использование модели калькулятора K16 для анализа главных компонентов происхождения

Ранее я уже отрапортовал о создании двух новых моделей для стандартного этно-популяционного калькулятора, в разработке которых использовались геномы людей, cамостоятельно указавшими свое происхождение (self-reported ancestry).
К сожалению, очень часто субъективная оценка собственного происхождения (указываемого респондентами в опросниках) недостаточно надежна для статистических методов анализа происхождения, поскольку некоторые люди либо сообщают ложные сведения о своей родословной или же просто не знают о своем истинном происхождении. Что еще хуже, — во многих публичных популяционных выборках мы не находим никаких  сведений о точном этническом составе людей в выборке . Как многие из вас знают,  существует множество способов достаточно точной оценки происхождения индивида на основе данных SNP генотипирования.

Самый простой способ сводится к следующему: сначала исследователь объединяет генотипы из своего исследования с генотипами образцов в референсной панели (например: HapMap или 1000 геномов),  затем находит пересечение SNP-ов в каждом наборе данных, а затем запускает программу кластеризации, чтобы увидеть, каким образом образцы исследования группируются с популяциями референсных панелей.  В принципе,  сам процесс несложный, но требует немало времени

К счастью, в 2014 году лабораторией Alkes была предложена программа которая, по сути, значительно облегчает процесс, выполняя большую часть работу за вас. Программа называется SNPWEIGHTS и можно скачать здесь.  Говоря простым языком, программа принимает  в качестве входных данных генотипы SNP-ов, самостоятельно находит пересечение генотипов SNP с генотипами в эталонной выборке , рассчитывает веса SNP-ов на основе предварительно настроенных параметров, чтобы построить первую пару главных компонентов (иначе говоря,  cобственных векторов), а затем вычисляет процентное значение происхождения индивидуума из каждой предковой популяции (кластера).

Для того, чтобы запустить программу, необходимо убедится в том, что в вашей системе установлен Python, и что ваши данные генотипирования приведены в формате EIGENSTRAT. Краткую инструкции по преобразованию в формат EIGENSTRAT с помощью инструмента convertf можно почитать здесь.  Данные аутосомного генотипирования FTDNA или 23andme можно напрямую преобразовать в формат EIGENSTRAT с помощью утилиты aconv от Феликса Чандракумара (либо любого самописного софта).

Затем необходимо загрузить сам пакет SNPWEIGHTS и референтную панель с весами снипов.

  • Панель весов SNP для популяций Европы и Западной Африки можно скачать здесь.
  • SNP веса для населения Европы, Западной Африки и  Восточной Азии можно скачать здесь.
  • SNP веса для населения Европы, Западной Африки, Восточной Азии и популяций американских индейцев можно скачать здесь.
  • SNP веса для популяций северо-западной, юго-восточной части Европы, ашкеназских евреев и можно скачать здесь.

Затем необходимо создать файл параметров par.SNPWEIGHTS с названиями входных файлов EIGENSTRAT, референтной панели, и файл c результатами. Например:

input_geno: data.geno
input_snp: data.snp
input_ind: data.ind
input_pop: CO
output: ancestry.txt

И, наконец, нужно запустиь программу с помощью команды inferancestry.py —par par.SNPWEIGHTS. Для того чтобы программа работала, убедитесь, что inferancestry.info и  файл референтной панели  находятся в том же каталоге, что и файл inferancestry.py.

Полученные результаты можно использовать для разных целей. Например,  можно сгенерировать два информативные графика.

Первый график — обычный график PCA c двумя первыми компонентами (собственными векторами) и наложенный на график процентный расклад компонентов происхождения:

Второй треугольный график, на каждом отрезке которого , представлен процентный вклад одной из трех исконных групп популяции (например: Европы, Африки и Азии, в случае с нашими данными этот пример можно заменить на европейских охотников-собирателей, земледельцев неолита и степных скотоводов эпохи бронзы).

Вот простой код генерирования этих графиков в R. В программе R нет базовых пакетов для построения триангулярных графиков, поэтому  нужно будет сначала установить пакет plotrix. Ancestry.txt  — это файл полученный на выходе из SNPWEIGHTS:

# EV Plot with Percent Ancestry Overlay
data=read.table("ancestry.txt", as.is=T, header=F)
names(data)
plot(data$EV1, data$EV2, pch=20, col="gray", xlab="EV1", ylab="EV2")
text(data$EV1, data$EV2,labels=round(data$EUR,2)100, cex=0.4, offset=0.1, pos=3)
text(data$EV1, data$EV2,labels=round(data$AFR,2)
100, cex=0.4, offset=0.1, pos=2)
text(data$EV1, data$EV2,labels=round(data$ASN,2)*100, cex=0.4, offset=0.1, pos=1)
#Triangle Plot
data$total=data$EUR+data$AFR+data$ASN # Need to account
data$European=data$EUR/data$total # for slight rounding
data$African=data$AFR/data$total # in the ancestry
data$Asian=data$ASN/data$total # estimation file for
data_p=data[c("European","Asian","African")] # triax.plot to work
library(plotrix)
triax.plot(data_p, pch=20, cc.axes=T, show.grid=T)

 

Разумеется, размещенные на сайте разработчика референтные панели носят ограниченный характер. Поэтому я решил заполнить пробелы, преобразовав аллельные частоты SNP-ов в 16 предковых компонентах в 16 синтетических «чистых» предковых популяций, каждая из которых состояла из 200 синтетических индивидов («симулянтов») состоящих на 100 процентов из одного компонента происхождения в модели K16). Файл с генотипами 3200 «симулянтов» я использовал для вычисления весов снипов в каждом компоненте. Продвинутые пользователи, желающие протестировать модель K16 до ее публичного релизма, могут скачать полученный файл с весами снипов  здесь, а затем, cледуя приведенным выше инструкциям, использовать его в качестве референтной панели (а затем сравнить свои результаты с усредненными результатами разных этнических популяций).

Я протестировал веса снипов в модели K16 (выражаю признательность автору программу Чену за помощь), и обнаружил, что между данными калькулятора и данными SNPWEIGHTS расхождения носят незначительный характер, хотя похоже, что SNPWEIGHTS не так сглаживает минорные компоненты происхождения (что позволяет легче выделить в пространстве главных компонент кластеры):

test (1)

Окончание процесса фазирования и импутирования геномов

К середине мая этого года я закончил трудоемкий процесс импутации сборной солянки из 9000 публично доступных образцовых представителей  700 различных человеческих популяций, генотипированных в разное время на разных снип-платформах (главным образом — Illumina и Affymetrix)
Строго говоря, я планировал завершить этот этап работы намного раньше, но в ходе выполнения работ возник ряд обстоятельств, помешавших завершить этот этап в срок. Главным из них является смена сервера где я выполнял импутирование геномов. Я начал работать на сервере Мичиганского университета, однако в ходе процесса перешел на аналогичный сервис Института Сэнгера (имени того самого нобелевского лауреата, предложившего первый метод полного сиквенирования генома).
Это решение было продиктовано необходимостью использовать новейшую референсную панель аутосомных гаплотипов — Haplotype Reference Consortium (в нее входит примерно 30 тысяч, а после предстоящего этим летом обновления — свыше 50 тысяч — аутосомных геномов, т.е свыше 60 тыс. гаплотипов). Надо сказать, этнический состав выборки референсных геномов впечатляет, хотя и там по-прежнему наблюдается перекос в сторону европейских популяций. К сожалению, и эта новейшая выборка представлена преимущественно европейцами (поэтому вероятность  импутированных генотипов для европейских популяций оказались лучше аналогичных результатов в африканской и азиатской когортах), однако даже с учетом этого обстоятельства ее надежность в определении негенотипированных аллелей снипов выше 1000 Genomes (не говоря уже о HapMap):

1 UK10K 3715 3781 6.5x
2 Sardinia 3445 3514 4x
3 IBD 4478 4478 4x + 2x
4 GoT2D 2710 2974 4x/Exome
5 BRIDGES 2487 4000 6-8x (12x)
6 1000 Genomes 2495 2535 4x/Exome
7 GoNL 748 748 12x
8 AMD 3305 3305 4x
9 HUNT 1023 1254 4x
10 SiSu + Kuusamo 1918 1918 4x
11 INGI-FVG 250 250 4-10x
12 INGI-Val Borbera 225 225 6x
13 MCTFR 1325 1339 10x
14 HELIC 247 2000 4x (1x)
15 ORCADES 398 399 4x
16 inCHIANTI 676 680 7x
17 GECCO 1131 3000 4-6x
18 GPC 697 768 30x
19 Project MinE — NL 935 1250 45x
20 NEPTUNE 403 403 4x
Totals 32611 38821
22 French-Canadian 2000 5-6X End 2014
23 Converge 12000 1x Now
24 UG2G Uganda 2000 4x 2015
25 Arab Genomes 100 30x
26 Ashkenazi 128 CG Now
27 INGI-Carlantino 94 4x Now
28 CPROBE 80 80 4x

 

Cледуя рекомендациям, я получил набор из 9000 образцов, каждый из которых включает в себя набор из 20-30 миллионов снипов. К сожалению, из-за субоптимальности результатов в некоторых выборках (Xing et al, Henn et al. и ряде других), их придется исключить из тех видов анализа, которые требует максимальной точности исходных данных. Импутированные генотипы (выраженные через оцененные вероятности) были трансформированы с помощью программы Plink 1.9 в генотипы, причем выбирались варианты полиморфизмов с вероятностью 0.8 (—hardcallthreshold 0.8)

Для оценки полезности импутированных генотипов для популяционного анализа я использовал метрику nearest в программе Plink (матрица с дистанцией между ближайшими геномами) и кластерограммы IBS (идентичности по генотипам).

Таблица метрики nearest (Z-статистика)

А это кластерограмма с хорошо видно географической локализацией кластеров. Я использовал для кластеризации матрицы IBS несколько разных алгоритмов — наиболее убедительный вариант был получен с помощью алгоритма Ward

Другие варианты топологии кластерограмм в формате NEWICK и TRE можно посмотреть здесь (их можно открыть в любой программе для визуализации филогенетических деревьев).

Таким образом, для некоторых типов анализа в популяционной генетике использование импутированных снипов может сослужить хорошую службу, смягчая (или, наоборот, увеличивая) градиент частот аллелей).

Дополнительные анализы — fastIBD, IBS, анализ главных компонентов — образцов в выборке, только подтверждает это наблюдение:


Но самое лучшее подтверждение надежности импутированных снипов для анализа компонентов происхождения  было получено с помощью p-теста Z-статистики во время оценки правильности определенной топологии дерева компонентов (с допущением фактора смешивания предковых компонентов). Для этой цели я использовал стандартный инструмент — программу TreeMix. Я использовал только те снипы, которые встречаются в моей контрольной выборке (референсов каждого из компонента) с частотой выше 99 процентов. Как видно из нижеприведенного графика, компоненты выбраны правильно, а топология определяется практически безошибочно, несмотря даже на малое количество снипов (6 тысяч). Правильно определились и направления потоков генов, дрейфов генов (указаны стрелками). Тут в принципе мало нового — большинство этих эпизодов уже были описаны в отдельных работах генетиков. Так, виден поток генов от «денисовского» человека к усть-ишимцу, от которого в свою очередь идет поток генов к австралоидным популяциями. То есть денисовская примесь у папуасов могла достаться от сибирских популяциях близких к «усть-ишимцу». Виден также вклад ANE/EHG в геном североамериканцев -в интервале 10-15 процентов.

Принципально новым является лишь определенный программой дрейф генов в направлении от африканцев Khoisan к североафриканцами (в качестве референса которых взяты египтяне, бедуины и алжирцы). Скорее всего, это и есть тот самый пресловутый сигнал «египтского выхода» человечества из Африки, о котором недавно писалось в новейшей статье, а сам компонент -идентичен пресловутому Basal-Eurasian component


В начале июля  в связи с публикацией препринта о генофонде древних ближневосточных земледельцев решился все таки подписать заявление на имя Давида Рейха и Иосифа Лазаридис с ходатайством о доступе к полной версии их выборки (она включает много новых интересных для меня популяций — например, около сотни новых образцов шотландцев, шетландцев, ирландцев из разных областей Ирландии, немцев, сорбов и поляков из восточной и западной Польши).

Г-н Лазаридис был весьма любезен и буквально на следующий день после получения подписанного заявления предоставил мне доступ к этим данным. Я займусь их плотным изучением чуть позже. А пока любопытно посмотреть результаты пилотного Admixture анализа 5900 публичных доступных образцов. В качестве проверки надежности своего нового метода изучения древних и современных популяций людей, я провел 4 параллельных анализа Admixture c разным дефолтным значением предковых популяций (K).

Разумеется, в нашем случае число компонентов K заведомо больше 3, авторы статьи эмпирически показали что меньший разброс значений был получен при K=11. Поэтому я исходил из этой цифры, назначив три разных значения K — 10,11,13.
В первом варианте я использовал т.н unsupervised режим Admixture, т.е. программа должна была сама угадать и реконструировать частоты аллелей снипов в 10 реконструируемых предковых «компонентах» популяций.

Как и ожидалась, таковыми оказались африканский (пик у пигмеев и бушменов), америндский (пик у эксимосов и американских индейцев), сибирский (пиковые значение у нганасанов), южно-индийский компонент (пик в народностях Paniya и Mala), австрало-меланизийский, южно-восточноазиатский, три западно-евразийских компонента — 2 компонента западноевроп ейских и кавказских охотников-собирателей и неолитический; и наконец ближневосточный.

Разумеется, за исключением трех компонентов с пиками в древних геномах, данное распределение отражает cовременное распределение предковых компонентов.

Пришлось вручную выделять из ближневосточного компонента популяцию базальных европейцев (в качестве основы я взял геномы натуфийцев, т.е ближневосточный компонент — Levant_N — может быть разложен на два отдельных предковых компонента — неолитический и мезолитический «натуфийский»), а затем сгенерировать гипотетическую популяцию из 20 образцов состоящих на 100 процентов из натуфийского компонента. Именно этот компонент был включен в модель K11 под названием Levant_Mesolithic ( или Natufian). Этот компонент не стоит путать с компонентом Basal-Eurasian в калькуляторе Eurogenes K7 Basal-rich, так в в моей модели K11 основная часть базального компонента ушла в неолитические компоненты (т.е Natufian=Basal-Rich — Neolithic)

Гораздо сложнее ситуация обстояла с разделением компонента кавказских охотников-собирателей, которые наряду с американскими аборигенами несут в своем геноме значительные доли компонента древних северо-евразийцев. По этому причине очень сложно, например, разделить восточных охотников-собирателей (из мезолитических культур Карелии и Самары) и синхронным им кавказских охотников-собирателей.
Из-за присутствия компонента древних северо-евразийцев в их геноме, в Admixture компонент древних кавказцев увеличивается только за счет компонент восточных охотников-собирателей — и наоборот. Правда, можно попытаться выделить отдельный мезолитический компонент населения горного Загроса (Иран).

В случае успеха древние геномы жителей мезолитической Грузии можно будет представить как 20% компонента степных охотников-собирателей + 80% местного мезолитического субстрата.

Программное обеспечение для работы с деградировавшей ДНК

Как известно, в последних работах опубликованных в 2015 году и посвященных анализу палеогеномов (древних геномов ископаемых останков) человека, авторы представили новую программу mapDamage2, созданную исследовательской группой Орландо в лаборатории Датского Института Геогенетики (Копенгаген).

Что это за программа и чем оправдано использование этой программы в лучших практиках (best practices) анализа палеогеномов?

mapDamage 2 представляет собой вычислительный фреймворк написанный на языках Python и R. Этот фреймворк позволяет отслеживать и измерять степень посмертного повреждения ДНК в сиквенсах древних ДНК в ридах, полученных на платформах секвенирования нового поколения. Как общеизвестно, обычно после смерти организма ДНК расщепляется эндогенными нуклеазами. Этого не происходит, если нуклеазы оказываются быстро разрушены или инактивированы, например, вследствие обезвоживания останков, низких температур или большой концентрации соли. Даже в этом случае ДНК со временем повреждается в результате случайного гидролиза или окисления. К гидролитическим повреждениям относятся разрушение фосфатного остова цепи, депуринизация (соответствующая позиция остается без азотистого основания) и дезаминирование.
Чаще всего происходит дезаминирование цитозина в урацил, метилированный цитозин (5-метил-цитозин) дезаминируется в тимин; реже аденин превращается в гипоксантин, который комплементарен цитозину, а не тимину, что ведет к неправильному прочтению при секвенировании. То есть в наших ридах за счет подобных «ложно-позитивных» срабатываний, в нормальном распределении снип-мутаций изменится отношение транзиций C>T и G>A к трансверсиям. Транзиция — одно пуриновое основание замещается на другое (аденин на гуанин или наоборот), либо происходит аналогичная замена пиримидиновых оснований (тимин с цитозином).

Таким образом, предполагаемые дезаминированные позиции легко определить с помощью относительного простого алгоритма вычисления байесовских апостериорных вероятностей.

Сразу возникает вопрос: существуют ли методы уменьшения количества ложно-позитивных ридов, и таким образом повысить степень достоверности определения настоящих нуклеотидов в каждой из рассматриваемых базовых пар генома. В пакете mapDamage эта задача решается путем рекалибровки (снижения) значения так называемого PHRED score — меры «качества» прочитанной последовательности — в предполагаемых дезаминированных ридах.

Я решил проверить работоспособность программы на новых ирландских палеогеномах, — но к сожалению, возник ряд технических проблем (The Bayesian statistics program failed to finish), которые будет необходимо решить. В первом приближении кажется, что проблема вызвана несовместимостью пакетa ggplot2 и новой версии R, но я не уверен в этом.

Started with the command: mapDamage -i RSK2-A2.realign.bam -r ../hg19_new.fa —rescale
additional results_RSK2-A2.realign/Length_plot.pdf generated
Performing Bayesian estimates
Starting grid search, starting from random values
Adjusting the proposal variance iteration 1
Adjusting the proposal variance iteration 2
Adjusting the proposal variance iteration 3
Adjusting the proposal variance iteration 4
Adjusting the proposal variance iteration 5
Adjusting the proposal variance iteration 6
Adjusting the proposal variance iteration 7
Adjusting the proposal variance iteration 8
Adjusting the proposal variance iteration 9
Adjusting the proposal variance iteration 10
Done burning, starting the iterations
Done with the iterations, finishing up
Writing and plotting to files
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
The following from values were not present in x: col, color, pch, cex, lty, lwd, srt, adj, bg, fg, min, max
Error in postPredCheck(dat, mcmcOut) : could not find function «ggtitle»
Calls: source -> withVisible -> eval -> eval -> postPredCheck
5: postPredCheck(dat, mcmcOut)
4: eval(expr, envir, enclos)
3: eval(ei, envir)
2: withVisible(eval(ei, envir))
1: source(paste(path_to_mapDamage_stats, «main.R», sep = «»))
The Bayesian statistics program failed to finish

Результаты проекта MDLP 2011-2012

Прошел почти два года с момента старта биогеногеографического проекта MDLP.
Через полтора гоад упорного труда, я наконец-то свел в единое целое предварительные данные по чистотам аллелей 150 000 снипов в 40 евразийских популяций. Аллельные компоненты (начиная с K=5 до K=15) были выявлены с помощью квазиньютоновского метода ускорения конверценции итеративных алгоритмов, имплементаированных в программе ADMIXTURE.
Затем файл со значениям частот аллелей был адаптирован для работы с этнопопуляционным калькулятором Диенека Понтикоса (в DOS shell и программной средой R). Каждый из компонентов получил название, более или менее соответствующее популяции или группы популяций, в которых частоты аллелей принимали максимальное значение,
Поскольку все калькуляторы заточены под евразийские популяции, то и названия компонентов привязаны к регионам Евразии.

И хотя на этом можно было бы остановится, однако к моему удивлению, многие из пользователей калькулятора Понтика так и не смогли овладеть требуемыми навыками.

Поэтому-то я и решил попросить глубокоуважаемого Джона Олсона и его помощиников имплементировать мои модификации калькулятора DIYDodecad в виде веб-сервисов.
Теперь от конечных пользователей продукта требуется только загрузить данные со своими генотипами в формате FTDNA или 23andme и выбрать в выпадающем меню один из K-анализов (где K-число генетических кластеров или компонентов)

Прошу любить и жаловать

http://www.gedmatch.com/

Magnus Ducatus Lituaniae Project (MDLP) K5-K12
Admixture Proportions
Admixture Proportions by Chromosome
Admixture Chromosome Painting
Admixture Chromosome Painting
Admixture Chromosome Painting — Compare a single chromosome between 2 kits

http://ww2.gedmatch.com:8006/autosomal/ap_mix1_mdlp.php
http://ww2.gedmatch.com:8006/autosomal/ap_mix1w_euro.php
http://ww2.gedmatch.com:8006/autosomal/ap_mix1z_euro.php
http://ww2.gedmatch.com:8006/autosomal/ap_mix1zzz_euro.php
http://ww2.gedmatch.com:8006/autosomal/ap_mix1zz_euro.php