Прошедшие две недели я посветил отработке новой методики увеличения аккуратности определения вариантов снипов в геномах древних образцов. Я решил отказаться от предыдущих способов, когда с помощью samtools и GATK сначала генерировались файлы пайлапа, а потом из этой кучи возможных вариантов случайным образом выбирался аллелель и дублировался (т.е образец получал гомозиготные варианты). Проблема этого подхода выяснилась во время импутирования геномов, искусственная псевдогаплоидность древних геномов приводила к громадному искажению в сторону референсных геномов. Я решил упростить сложности и теперь вместо приведения генотипов к псевдогаплоидности, я определяю в GATK UnifiedGenotyper 38 миллионов известных снипов с таким условием, что алгоритм сам отбирает только те аллели, которые заданы в dbsnp как референсный и альтернативный аллель снипа.
В принципе, после долгих головоломок, удалось получить приемлимый алгоритм действий.
Я апробировал его на 55 опубликованных палеогеномах из балтийского региона (Литва, Латвия и Эстония) времен мезолита, раннего, среднего и позднего неолита, а также бронзового времени.
Для большой точности я ограничился только теми образцами, для которых удалось определить генотипы как минимум половины из 38 миллионов снипов dbsnp.

Sample Culture
Donkalnis6 Baltic_EMN
Gyvakarai1 Baltic_LN
Kivutkalns19 Baltic_BA
Kivutkalns207 Baltic_BA
Kivutkalns209 Baltic_BA
Kivutkalns215 Baltic_BA
Kivutkalns222 Baltic_BA
Kivutkalns25 Baltic_BA
Kivutkalns42 Baltic_BA
Kretuonas2 Baltic_EMN
Kretuonas4 Baltic_EMN
MA969 Baltic_BN
MA973 Baltic_LN
Plinkaigalis242 Baltic_LN
Spiginas1 Baltic_EMN
Spiginas2 Baltic_LN
Spiginas4 Baltic_Mesolithic
ZVEJ25 Baltic_Mesolithic
ZVEJ27 Baltic_Mesolithic
ZVEJ31 Baltic_EMN
ZVEJ32 Baltic_Mesolithic

Перед тем как использовать полученный набор в downstream aнализе, я решил посмотреть насколько точно определилось структурное разделение генофонда этих древних геномов.
Я использовал программы peddy, ATK, а также разбиение на фракции компонентов происхождения в программах iAdmix и fastNGSadmix.
На графиках видно, что в принципе основная масса этих геномов проецируется на то место в пространстве генетического разнообразия современных популяций людей, где оно и должно находится c точки зрения здрового смысла.

#family_id sample_id paternal_id maternal_id sex phenotype het_call_rate het_ratio het_mean_depth het_idr_baf ancestry-prediction PC1 PC2 PC3
Donkalnis6 Donkalnis6_Donkalnis6 0 0 0 -9 0.996 0.3029 -2 0 EUR -0.4471 -1.312 0.4822
Gyvakarai1 Gyvakarai1_Gyvakarai1 0 0 0 -9 0.9214 0.2377 -2 0 AMR -0.09174 -1.431 0.4644
Kivutkalns19 Kivutkalns19_Kivutkalns19 0 0 0 -9 0.9923 0.3483 -2 0 EUR -0.5558 -1.044 0.803
Kivutkalns207 Kivutkalns207_Kivutkalns207 0 0 0 -9 0.997 0.3443 -2 0 EUR -0.4681 -1.071 0.5988
Kivutkalns209 Kivutkalns209_Kivutkalns209 0 0 0 -9 0.9596 0.2518 -2 0 EUR -0.4277 -1.495 0.4507
Kivutkalns215 Kivutkalns215_Kivutkalns215 0 0 0 -9 0.973 0.2798 -2 0 EUR -0.2305 -1.201 0.901
Kivutkalns222 Kivutkalns222_Kivutkalns222 0 0 0 -9 0.8608 0.1615 -2 0 AMR -0.4777 -1.456 0.3636
Kivutkalns25 Kivutkalns25_Kivutkalns25 0 0 0 -9 0.8956 0.1933 -2 0 AMR -0.5087 -1.067 0.5996
Kivutkalns42 Kivutkalns42_Kivutkalns42 0 0 0 -9 0.8412 0.1575 -2 0 AMR -0.1253 -1.393 0.4066
Kreutonas2 Kreutonas2_Kreutonas2 0 0 0 -9 0.8462 0.1364 -2 0 EUR -0.4288 -1.337 0.6583
Kreutonas4 Kreutonas4_Kreutonas4 0 0 0 -9 0.9985 0.3136 -2 0 EUR -0.3243 -1.217 0.7842
MA969 MA969_MA969 0 0 0 -9 0.8092 0.1161 -2 0 AMR -0.2649 -1.263 -0.2799
MA973 MA973_MA973 0 0 0 -9 0.9482 0.2736 -2 0 EUR -0.3808 -1.319 -0.2429
Plinkgailis242 Plinkgailis242_Plinkgailis242 0 0 0 -9 0.9777 0.2811 -2 0 EUR -0.5622 -1.108 0.341
Spiginas1 Spiginas1_Spiginas1 0 0 0 -9 0.9943 0.3158 -2 0 EUR -0.4762 -1.402 0.7969
Spiginas2 Spiginas2_Spiginas2 0 0 0 -9 0.974 0.2945 -2 0 EUR -0.5128 -1.521 0.3943
Spiginas4 Spiginas4_Spiginas4 0 0 0 -9 0.8427 0.1399 -2 0 AMR -0.3 -1.208 0.6467
ZVEJ25 ZVEJ25_ZVEJ25 0 0 0 -9 0.969 0.2344 -2 0 EUR -0.2371 -1.254 1.072
ZVEJ27 ZVEJ27_ZVEJ27 0 0 0 -9 0.5763 0.0387 -2 0 UNKNOWN -0.2384 -1.622 -0.7302
ZVEJ31 ZVEJ31_ZVEJ31 0 0 0 -9 0.6926 0.06053 -2 0 UNKNOWN 0.04159 -1.332 -0.1725
ZVEJ32 ZVEJ32_ZVEJ32 0 0 0 -9 0.7095 0.06971 -2 0 UNKNOWN -0.06001 -1.699 -0.3068

Подробное разложени образцов по компонентамм можно посмотреть в этой таблице

Реклама

Добавить комментарий

Please log in using one of these methods to post your comment:

Логотип WordPress.com

Для комментария используется ваша учётная запись WordPress.com. Выход /  Изменить )

Google photo

Для комментария используется ваша учётная запись Google. Выход /  Изменить )

Фотография Twitter

Для комментария используется ваша учётная запись Twitter. Выход /  Изменить )

Фотография Facebook

Для комментария используется ваша учётная запись Facebook. Выход /  Изменить )

Connecting to %s