Скрытые возможности клиентских данных 23andme в плане молекулярной диагностики.

Компания 23andme не нуждается в особом представлении читателям этого блога. Вплоть до конца прошлого года компанию занимало существенный сегмент рынка персональной геномики, ориентированного на предоставление  клиентам информации о генетических медицинских рисках (genetic risks) и генетической генеалогии (genetic origin). Информация о медико-генетических рисках содержалась в ряде сервисов портала компании, а также в доступном для скачивания отчета о генетических рисках и, разумеется, в первичных данных генетического отчета, в котором содержались значимые с точки зреемя медико-генетического диагностирования генетические полиморфизмы (SNP).

Всвязи с известными событиями и последующим за ними предписанием USA Food and Drug Administration (FDA) компании 23andme о запрете выпуска на рынок услуг персонального геномического диагностирования своего «медицинского девайза» (т.е интерпретации медико-генетических рисков развития заболеваний), компании пришлось сузить свою сферу деятельности до оказания генетико-генеалогических услуг.

Несмотря на это досадное обстоятельство, сказавшееся нелучшим образом на динамике увеличения клиентской базы компании,  нужно помнить, что все клиенты сохранили доступ к своим первичным данным тестирования (т.е списку снипов с генотипами). И при вдумчивом, творческом подходе любой человек может не только «вытащить» из этих «cырых данных» важную с точки зрения медицины информацию, но и заменить спомощью полученной информацией результаты более традиционных тестов.

Каковы могут быть варианты использования данных 23andmе не в привычных генеалогических целях, а скажем для получения сведений, который могут впоследствии пригодится для молекулярного диагностирования?

Я приведу пару примеров такого использования.

Определение HLA-фенотипа.

На мембране клеток организма присутствуют продукты генов всех локусов, размещенных на обеих нитях 6-й хромосомы.

 

bsl-hla1

 

Это означает, что HLA-гены наследуются по кодоминантному типу, т. е. одну хромосому ребенок наследует от матери, а другую – от отца. Как уже упоминалось, совокупность генов, расположенных на одной хромосоме, составляет гаплотип. Таким образом, у человека два гаплотипа и каждая клетка организма несет на себе диплоидный набор антигенов системы HLA, один из которых кодируется HLA-генами матери, а другой – отца. Исключение составляют половые клетки (яйцеклетка и сперматозоид), каждая из которых содержит в своем ядре только по одному гаплотипу.

Антигены гистосовместимости, выявляемые на клетках конкретного человека, составляют HLA-фенотип. Для его определения необходимо произвести фенотипирование клеток индивида. Как правило, “типируются” лимфоциты периферической крови. До настоящего времени в большинстве лабораторий HLA-A. В, С и DR-антигены определяют при помощи серологических методов, в частности, лимфоцитотоксического теста. тот тест основан на способности анти-НLА-антител в присутствии комплемента разрушать лимфоциты, несущие соответствующие антигенные детерминанты. Гибель клеток демонстрируется при помощи добавления трипанового синего. При этом мертвые поврежденные клетки окрашиваются, и под микроскопом учитывается их количество.

Эти тесты часто требуются в ходе стандартных медицинских процедур обследования во время начала беременности, или для изучения этологии аутоимунных заболеваний. Еще более важно определение гистосовеместимости в транплантологии, где типирование HLA-фенотипа  донора является обязательным условием.

Однако, с приходом новых микроматричных технологий опеределния нуклеотидов ДНК и биоинформатических методов рутинной обработки последовательности человеческих геномов , появился дешевая и относительно простая альтернатива классическим серологическим тестам (которые стоят в интервале от 100 до 500 долларов).

Я не буду останавливаться на принципиальном описании процедур, с помощью которых на основании данных 23andme можно с помощью метода «импутирования» определить HLA-фенотип, так как в прошлом году я уже разместил в этом блоге пошаговую инструкцию для выполнения этой задачи.

Впрочем, уже после того, как  я отписался на эту тему здесь,  в департаменте биостатистики Университета Вашингтона был разработан алгоритм HIBAG который принципиально мало чем отличается от алгоритма HLA*IMP (в обеих алгоритмах используется training model, позволяющая определять фенотип HLA по снипам 23andme).  Входные данные программного решения этого алгоритма (язык R) представляют собой формат Plink. А так как в последней версии Plink была включена нативная поддержка формата 23andme, то преобразовать данные 23andme в бинарный формат Plink не сооставит особого труда. Что касается обработки данных в HIBAG, то примерный порядок выполнения команд выглядит следующим образом:

# Load the published parameter estimates from European ancestry
model.list <- get(load(«European-HLA4.RData»))#########################################################################
# Import your PLINK BED file
#
yourgeno <- hlaBED2Geno(bed.fn=».bed», fam.fn=».fam», bim.fn=».bim»)
summary(yourgeno)

# HLA imputation at HLA-A
hla.id <- «A»
model <- hlaModelFromObj(model.list[[hla.id]])
summary(model)
# HLA allele frequencies
cbind(frequency = model$hla.freq)

# SNPs in the model
head(model$snp.id)
# «rs2523442» «rs9257863» «rs2107191» «rs4713226» «rs1362076» «rs7751705»
head(model$snp.position)
# 29525796 29533563 29542274 29542393 29549148 29549597

# best-guess genotypes and all posterior probabilities
pred.guess <- predict(model, yourgeno, type=»response+prob»)
summary(pred.guess)
pred.guess$value
pred.guess$postprob

 
 

Панель метилирования Яско

В последние 10 лет, крупные генетические исследования выявили сотни генных мутаций, которые возникают чаще у аутичных пациентов, чем в общей популяции. Тем не менее, каждый пациент имеет только одну или несколько из этих мутаций, что затрудняет разработку лекарств против болезни. В настоящее время, изучением генетических факторов аутизма занимается большое количество врачей-генетиков,  одним из них является доктор Эми Яско занимается исследованиями генных мутаций у аутистов. Как показали многочисленные молекулярно-генетические обследования и спектрометрия аминокислот, органических кислот и карнитинов, значительное количество аутистов страдает метаболическими нарушениями.  Есть виды аутизма, вызываемые именно этими генетическими нарушениями обмена вещест.

Доктор Эми Яско разработала тест на панель метиляции Яско — тест этот дорогой, стоит 500 долларов, в этой проверяют что-то около 30 генных полиморфизмов (снипов). Выбор снипов в этой панели мотивирован тем, что эти снипы связаны с  определенными генами на «молекулярно-биохимическом пути метиляции» (methyliation pathway),  т.е генами которые влияют на способность организма выполнять ряд ключевых биохимических функций. Наличие генетических дисбалансовт.е снипов в пути метиляции, будет ограничивать эффективность пути метиляции.

 

Yasko-Methylation-Pathway

 

К счастью клиентов 23andme, чипсет снипов этой компании включает в себя если не все, то большую часть снипов панели Яско.
Один из проектов, возникший всвязи с неудовлетворенной потребностью клиентов в более развернутой и детальной обработке данных 23andme
, Genetic Genie предлагает  условно-бесплатный сервис с помощью которого данные релевантных снипов можно привести к  традиционному виду таблицы с отчетом по панели Яско:

Gene & Variation rsID Alleles Result
COMT V158M rs4680 AA +/+
COMT H62H rs4633 TT +/+
COMT P199P rs769224 GG -/-
VDR Bsm rs1544410 CC -/-
VDR Taq rs731236 __ no call
MAO-A R297R rs6323 TT +/+
ACAT1-02 rs3741049 AG +/-
MTHFR C677T rs1801133 GG -/-
MTHFR 03 P39P rs2066470 AG +/-
MTHFR A1298C rs1801131 GG +/+
MTR A2756G rs1805087 AA -/-
MTRR A66G rs1801394 GG +/+
MTRR H595Y rs10380 CC -/-
MTRR K350A rs162036 AA -/-
MTRR R415T rs2287780 CC -/-
MTRR A664A rs1802059 AG +/-
BHMT-02 rs567754 CC -/-
BHMT-04 rs617219 AA -/-
BHMT-08 rs651852 __ no call
AHCY-01 rs819147 __ no call
AHCY-02 rs819134 __ no call
AHCY-19 rs819171 __ no call
CBS C699T rs234706 GG -/-
CBS A360A rs1801181 __ no call
CBS N212N rs2298758 __ no call
SHMT1 C1420T rs1979277 __ no call

Несмотря на то, что на выходе клиент получает  готовый частный отчет по тесту Яско, медико-биологическая интерпретация результатов не так уж и проста, и требует определенной интеллектуальной сноровки и общегенетической эрудиции в плане понимания того, какую функцию выполняет тот или иной ген. Строго говоря, при грамотной интерпретации этих результатов, можно самостоятельно составить себе диету из витаминов-пищевых добавок, которые позволяет компенсировать обусловленный генетическим дисбалансом дефицит тех или иных энзимов.Примерный образец интерпретации можно посмотреть здесь