Вторая фаза нового проекта: африканская когорта

В одной из предыдущих записей я упомянул о том, что из 3 начальных когорт образцов «геномов» я провел импутацию азиатской и европейской когорты,  осталась получить результаты по последней — третьей когорты — африканской.

По состоянию на текущий момент,  закончена работа на 18 из 22 хросомом в выборке африканских популяции. Согласно моему прогнозу,  процесс импутации недостающих генотипов по 4 оставшимся хромосомам будет завершен в  самое ближайшее время.

А пока — т.н. «этноплот» или промежуточные результаты анализа главных компонент в пространстве генетического разнообразия африканских этнических групп.

Вторая фаза нового проекта

Две недели назад я сообщил об окончании первой фазы своего нового проекта (на первом этапе работы удалось собрать надежную выборку из более чем 5000 образцов более чем 250 различных этно-популяционных групп людей по всему миру.

Как я уже рапортовал ранее, самой сложной из запланированных на втором этапе задач являлась импутирование (импутация) отсутствующих генотипов.  Читатели моего блога помнят, что две предыдущие экспериментальные попытки импутирования больших выборок     — в 2013  и в 2015  — закончились неудачно (или, если говорить точнее, качество импутированных генотипов не оправдало моих завышенных ожиданий). В предыдущих опытах я задействовал мощную комбинацию программ ShapeIT и IMPUTE и  метод импутирования снипов за счет использования большой референсной панели аутосомных гаплотипов (из 1000 genomes),  гарантирующей более аккуратное определение генотипов.

На этот раз, я решил не повторять ошибок, и обратился к использованию других программ — в частности , к  Minimac3, хорошо зарекомендовавшую себя в работе с геномами 1000G.  К моему счастью, я набрел на недавно появившиеся публичные сервера, работающие с «облачным» сервисом импутирования Cloudgene. геномов.
Серверы импутирования геномов позволяют использовать полную референсную панель гаплотипов для точного определения недостающих генотипов в анализируемых данных. Пользователи подобных серверов могут загружать (предварительно фазированные или несфазированные) данные генотипов на сервер. Процедура импутирования  будет осуществляться на удаленном сервере, и по окончанию этого процесса рассчитанные данные доступны пользователю для скачивания. Наряду с импутированием, подобные сервисы позволяют провести процедуру контроля качества (QC) и фазировки данных в качестве предварительного этапа процесса импутирования генотипов.

Прототипы серверов импутирования уже доступны в институте Сангера и Мичиганского университета. В дополнение к вышеназванным серверам, можно упомянуть прототип сервера поэтапной полномасштабной  фазировки генотипов анализируемых образцов (прототип создан биоинформатиками Оксфордского университета). На мой взгляд, самое простое и доступное решение задачи импутирования на удаленном сервере было разработано сотрудниками   Мичиганского университета. Дополнительное преимущество этому решению дает грамотная документация по использованию сервиса.

Основная рабочая лошадка сервиса — это комбинация двух или трех программ — две програмы для фазирования диплоидных генотипов в гаплоидную фазу  ShapeIT и Hapi-UR , а в качестве основного ПО для самого процесса импутирования (определения) недостающих генотипов — вышеупомянутую программу Minimac3.

Описание эксперимента с импутированием генотипов на удаленном сервере

В самом начале,  я разбил свою выборку на пять когорт (т.к. референсные панели на сервере также разбиты на «этнографические группы»):

  1. европейцы (европейцы + кавказцы) — 1715 образцов -87169 снипа
  2. азиаты (+американские аборигены и аборигены островов Тихого Океана) — 2356 образцов — 87044 снипа
  3. африканцы — 1054 образца — 86754 снипов
  4. палеогеномы древних жителей Евразии, Африки и Америки -340 — 594500 снипов
  5. смешанные группы — преимущественно мозабиты, пуэрто-риканцы и др.
QC-Report
На рисунке показана корреляция между частотами аллелей в изучаемоей выборке (здесь: европейская когорта) и частотами аллелей в референсной панели

К моему вящему неудовльствию,  некоторые образцы в сводной выборке не прошли контроль качества — в первую очередь это касается образцов европейцев из базы данных POPRES, а также выборок статьи  Xing et al. (2010). Скорее всего, их нужно будет импутировать отдельно.

Несмотря на значительную скорость обработки генотипов на удаленном сервере, к настоящему времени эксперимент еще не доведен до конца.  Пока я планирую ограничиться импутированием генотипов в 3 первых когортах (т.к. импутирование палеогеномов с помощью современных референсных панелей гаплотипов вероятнее всего приведет к искажению истинного разнообразия палеогеномов за счет проекции на современные группы населения, хотя авторы статьи Gamba et al. 2014 в сопроводительном материале к своей статье утверждают обратное).

После окончания фазирования и последующей обработки генотипов европейской когорты в программе Plink (были отсеяны все варианты с вероятностью ниже 0.9) ,  я получил выборку из 1715 европейцев с 25 215 169 снипами против изначальных 87169, т.е число снипов в выборке увеличилось в 290 раз!
В азиатской когорте соотношение импутированных генотипов к исходным составило чуть меньшую величину 19 048 308 / 87044 = 219.

Проверка результатов

Разумеется, все полученные результаты нуждались в дополнительной проверке качества генотипирования.
Cначала я объединил импутированную европейскую когорту с когортой палеогеномов (которая не была импутирована) и рассчитал в программе PLINK 1.9 матрицу IBS (т.е. сходства образцов в выборке между собой, эта метрика отдаленно напоминает Global Similarity в клиентских отчетах 23andme), а затем усреднил данные по популяциям и произвел по усредненным значениям иерархическую кластеризацию по признакам сходства (IBS, identity by state). Результат превзошел все мои пессимистические ожидания

 

 

Как становится очевидно из приведенной выше кластерограммы,  в целом взаимное расположение популяций в кластерах соответствует (в общих чертах) взаимному географическому положению. Присутствуют, правда, и некоторые огрехи. Так, например, венгры очутились в одном кластере с русскими из Курска,  норвежцы — с русскими из Смоленска, а усредненные «русские» — с американцами европейского происхождения из штата Юта и французами. Трудно сказать, в чем здесь причина, тем более что матрица была составлена по значениям IBS (идентичности по состоянию), а не IBD (идентичности по происхождению).  Более подробные данные о попарных значениях IBS между популяциями выборки можно посмотреть в этой таблице

Импутированная азиатская когорта (несмотря на расширение географии за счет включения образцов коренного населения Америки и аборигенов бассейна Тихого океана)  тоже  оказалась на удивление надежной. Я пока не буду останавливаться на подробностях изучения этой когорты, вместо этого я размещаю здесь результаты MDS- мультдименсионального шкалирования образцов выборки, образованной в ходе слияния 2 импутированных когорт (европейской и азиатской) с 1 неимпутированной (палеогеномы). Цветовое обозначение точек соответствует определенным кластерам, выявленных в выборке с помощью алгоритма MCLUST (cледуя рекомендациям Диенека Понтикоса). Всего этих кластеров 15 и они обозначены последовательностью чисел от 1 до 15, и каждый из этих кластеров имеет свою четкую географическую привязку:

  • 1 — кластер популяций ближнего Востока и  Анатолии
  • 2 — кластер популяций северного Кавказа
  • 3 — «индоевропейский» кластер древних популяций Синташта, шнуровой культуры, Ямной культуры и т.д.
  •  4 — кластер аборигенных жителей Америки (эскимосов и индейцев)
  • 5 — суперкластер популяций средиземноморского и восточноевропейского региона
  • 6 — сибирский кластер алтайских и самодийских популяций
  • 7 — кластер популяций западной и северной Европы
  • 8 — кластер палеосибирских популяций (таких как чукчи, ительмены и коряки)
  • 9 — кластер аборигенных (австронезийских и тай-кадайских) популяций юго-восточной Азии (даи, атаяла и ами)
  • 10 — кластер неолитических популяций
  • 11 — еще один ближневосточно-средиземноморский кластер (ашкеназим, сардинцы и так далее)
  • 12 — кластер североиндийских популяций
  • 13 — кластер центральноазиатских популяций
  • 14 — поволжские популяции
  • 15 — разные групп индусов

 

Скрытые возможности клиентских данных 23andme в плане молекулярной диагностики.

Компания 23andme не нуждается в особом представлении читателям этого блога. Вплоть до конца прошлого года компанию занимало существенный сегмент рынка персональной геномики, ориентированного на предоставление  клиентам информации о генетических медицинских рисках (genetic risks) и генетической генеалогии (genetic origin). Информация о медико-генетических рисках содержалась в ряде сервисов портала компании, а также в доступном для скачивания отчета о генетических рисках и, разумеется, в первичных данных генетического отчета, в котором содержались значимые с точки зреемя медико-генетического диагностирования генетические полиморфизмы (SNP).

Всвязи с известными событиями и последующим за ними предписанием USA Food and Drug Administration (FDA) компании 23andme о запрете выпуска на рынок услуг персонального геномического диагностирования своего «медицинского девайза» (т.е интерпретации медико-генетических рисков развития заболеваний), компании пришлось сузить свою сферу деятельности до оказания генетико-генеалогических услуг.

Несмотря на это досадное обстоятельство, сказавшееся нелучшим образом на динамике увеличения клиентской базы компании,  нужно помнить, что все клиенты сохранили доступ к своим первичным данным тестирования (т.е списку снипов с генотипами). И при вдумчивом, творческом подходе любой человек может не только «вытащить» из этих «cырых данных» важную с точки зрения медицины информацию, но и заменить спомощью полученной информацией результаты более традиционных тестов.

Каковы могут быть варианты использования данных 23andmе не в привычных генеалогических целях, а скажем для получения сведений, который могут впоследствии пригодится для молекулярного диагностирования?

Я приведу пару примеров такого использования.

Определение HLA-фенотипа.

На мембране клеток организма присутствуют продукты генов всех локусов, размещенных на обеих нитях 6-й хромосомы.

 

bsl-hla1

 

Это означает, что HLA-гены наследуются по кодоминантному типу, т. е. одну хромосому ребенок наследует от матери, а другую – от отца. Как уже упоминалось, совокупность генов, расположенных на одной хромосоме, составляет гаплотип. Таким образом, у человека два гаплотипа и каждая клетка организма несет на себе диплоидный набор антигенов системы HLA, один из которых кодируется HLA-генами матери, а другой – отца. Исключение составляют половые клетки (яйцеклетка и сперматозоид), каждая из которых содержит в своем ядре только по одному гаплотипу.

Антигены гистосовместимости, выявляемые на клетках конкретного человека, составляют HLA-фенотип. Для его определения необходимо произвести фенотипирование клеток индивида. Как правило, “типируются” лимфоциты периферической крови. До настоящего времени в большинстве лабораторий HLA-A. В, С и DR-антигены определяют при помощи серологических методов, в частности, лимфоцитотоксического теста. тот тест основан на способности анти-НLА-антител в присутствии комплемента разрушать лимфоциты, несущие соответствующие антигенные детерминанты. Гибель клеток демонстрируется при помощи добавления трипанового синего. При этом мертвые поврежденные клетки окрашиваются, и под микроскопом учитывается их количество.

Эти тесты часто требуются в ходе стандартных медицинских процедур обследования во время начала беременности, или для изучения этологии аутоимунных заболеваний. Еще более важно определение гистосовеместимости в транплантологии, где типирование HLA-фенотипа  донора является обязательным условием.

Однако, с приходом новых микроматричных технологий опеределния нуклеотидов ДНК и биоинформатических методов рутинной обработки последовательности человеческих геномов , появился дешевая и относительно простая альтернатива классическим серологическим тестам (которые стоят в интервале от 100 до 500 долларов).

Я не буду останавливаться на принципиальном описании процедур, с помощью которых на основании данных 23andme можно с помощью метода «импутирования» определить HLA-фенотип, так как в прошлом году я уже разместил в этом блоге пошаговую инструкцию для выполнения этой задачи.

Впрочем, уже после того, как  я отписался на эту тему здесь,  в департаменте биостатистики Университета Вашингтона был разработан алгоритм HIBAG который принципиально мало чем отличается от алгоритма HLA*IMP (в обеих алгоритмах используется training model, позволяющая определять фенотип HLA по снипам 23andme).  Входные данные программного решения этого алгоритма (язык R) представляют собой формат Plink. А так как в последней версии Plink была включена нативная поддержка формата 23andme, то преобразовать данные 23andme в бинарный формат Plink не сооставит особого труда. Что касается обработки данных в HIBAG, то примерный порядок выполнения команд выглядит следующим образом:

# Load the published parameter estimates from European ancestry
model.list <- get(load(«European-HLA4.RData»))#########################################################################
# Import your PLINK BED file
#
yourgeno <- hlaBED2Geno(bed.fn=».bed», fam.fn=».fam», bim.fn=».bim»)
summary(yourgeno)

# HLA imputation at HLA-A
hla.id <- «A»
model <- hlaModelFromObj(model.list[[hla.id]])
summary(model)
# HLA allele frequencies
cbind(frequency = model$hla.freq)

# SNPs in the model
head(model$snp.id)
# «rs2523442» «rs9257863» «rs2107191» «rs4713226» «rs1362076» «rs7751705»
head(model$snp.position)
# 29525796 29533563 29542274 29542393 29549148 29549597

# best-guess genotypes and all posterior probabilities
pred.guess <- predict(model, yourgeno, type=»response+prob»)
summary(pred.guess)
pred.guess$value
pred.guess$postprob

 
 

Панель метилирования Яско

В последние 10 лет, крупные генетические исследования выявили сотни генных мутаций, которые возникают чаще у аутичных пациентов, чем в общей популяции. Тем не менее, каждый пациент имеет только одну или несколько из этих мутаций, что затрудняет разработку лекарств против болезни. В настоящее время, изучением генетических факторов аутизма занимается большое количество врачей-генетиков,  одним из них является доктор Эми Яско занимается исследованиями генных мутаций у аутистов. Как показали многочисленные молекулярно-генетические обследования и спектрометрия аминокислот, органических кислот и карнитинов, значительное количество аутистов страдает метаболическими нарушениями.  Есть виды аутизма, вызываемые именно этими генетическими нарушениями обмена вещест.

Доктор Эми Яско разработала тест на панель метиляции Яско — тест этот дорогой, стоит 500 долларов, в этой проверяют что-то около 30 генных полиморфизмов (снипов). Выбор снипов в этой панели мотивирован тем, что эти снипы связаны с  определенными генами на «молекулярно-биохимическом пути метиляции» (methyliation pathway),  т.е генами которые влияют на способность организма выполнять ряд ключевых биохимических функций. Наличие генетических дисбалансовт.е снипов в пути метиляции, будет ограничивать эффективность пути метиляции.

 

Yasko-Methylation-Pathway

 

К счастью клиентов 23andme, чипсет снипов этой компании включает в себя если не все, то большую часть снипов панели Яско.
Один из проектов, возникший всвязи с неудовлетворенной потребностью клиентов в более развернутой и детальной обработке данных 23andme
, Genetic Genie предлагает  условно-бесплатный сервис с помощью которого данные релевантных снипов можно привести к  традиционному виду таблицы с отчетом по панели Яско:

Gene & Variation rsID Alleles Result
COMT V158M rs4680 AA +/+
COMT H62H rs4633 TT +/+
COMT P199P rs769224 GG -/-
VDR Bsm rs1544410 CC -/-
VDR Taq rs731236 __ no call
MAO-A R297R rs6323 TT +/+
ACAT1-02 rs3741049 AG +/-
MTHFR C677T rs1801133 GG -/-
MTHFR 03 P39P rs2066470 AG +/-
MTHFR A1298C rs1801131 GG +/+
MTR A2756G rs1805087 AA -/-
MTRR A66G rs1801394 GG +/+
MTRR H595Y rs10380 CC -/-
MTRR K350A rs162036 AA -/-
MTRR R415T rs2287780 CC -/-
MTRR A664A rs1802059 AG +/-
BHMT-02 rs567754 CC -/-
BHMT-04 rs617219 AA -/-
BHMT-08 rs651852 __ no call
AHCY-01 rs819147 __ no call
AHCY-02 rs819134 __ no call
AHCY-19 rs819171 __ no call
CBS C699T rs234706 GG -/-
CBS A360A rs1801181 __ no call
CBS N212N rs2298758 __ no call
SHMT1 C1420T rs1979277 __ no call

Несмотря на то, что на выходе клиент получает  готовый частный отчет по тесту Яско, медико-биологическая интерпретация результатов не так уж и проста, и требует определенной интеллектуальной сноровки и общегенетической эрудиции в плане понимания того, какую функцию выполняет тот или иной ген. Строго говоря, при грамотной интерпретации этих результатов, можно самостоятельно составить себе диету из витаминов-пищевых добавок, которые позволяет компенсировать обусловленный генетическим дисбалансом дефицит тех или иных энзимов.Примерный образец интерпретации можно посмотреть здесь

 

 

Еще раз к проблеме генетической преемественности саамов и финнов

Одна из первых записей в этом дневнике была посвящена проблеме происхождения саамов. Поскольку все основные аргументы в споре генетиков, лингвистов и археологов были исчерпаны я решил не возвращаться к этой теме. Однако в середине мая со мной связался Андерс Полсен из генеографического проекта Fennoscandia . Нужно отметить необычайную активность Андерса, которая в последнее время особенно заметна на фоне бездеятельности остальных ведущих геномных блоггеров. В числе прочего следует упомянуть о ряде примечательных заметок Андерса, посвященных сравнительному анализу древнего ДНК останков из мезолитической испанской пещеры La Brana и  ДНК современных саамов. Эти заметки заслуживают дополнительного комментария. Анализом этно-популяционных компонентов ДНК  примерно год тому назад занимался Диенек Понтикос и автор этих строк. Понтикос отметил, в числе прочего, интересный момент:

В связи с небольшим числом извлеченных из останков снипов, я был вынужден создать композитный набор данных за счет слияния данных обеих генотипированных мезолитических индивидов; в моем калькуляторе K7b этот композитный индивид характеризуется наличием 9,3% африканских аллелей и 90,7% аллелей входящих в кластер Atlantic_Baltic, и этот расклад довольно точно соответствует положению этого композита на графике PCA … высокий процент компонента Atlantic_Baltic, согласуется с аналогичным высоким процентом Atlantic_Baltic, выявленным у  охотников-собирателей шведского неолита.

Поскольку география ареала распространения этого компонента, похоже, мало интересует Диенека, более он ничего не писал. Мой анализ показал несколько иную картину. Прежде всего, я использовал несколько иную группировку популяционных кластеров, определенных в ходе анализа чистот аллелей в разных популяциях. Во-вторых, в отличии Диенека, имеющего ограниченный сэмпл популяций балтийского и скандинавского регионов,  у меня была собрана солидная референсная группа эстонцев, шведов, латышей, финнов и саамов. Благодаря этому удалось показать, что ближе всего к La Brana находятся современные саамы, финны, латыши и эстонцы. Это геномная близость оказалась настолько явственной, что представляется возможным выделить компонент объединяющий все эти популяции и мезолитических испанцев в общий компонент, который я назвал палеоевропейским.

Эти выводы заинтересовали Андерса, поскольку в рамках своего проекта Фенноскандия, он уделяет особое внимание скандинавским популяциям, в том числе и саамам.  Месяц назад он написал мне письмо:

Я пытался  много раз проверить твои выводы (насчет близости саамов и мезолитических испанцев). Полученная в программе PLINK IBS матрица позволяет нам предположить, что  в абсолютном выражении, кратчайший путь от La Braña ведет к литовцам, и затем к  части финнов из северных регионов Финляндии. В программе Admixture, которая не учитывает перевес в пользу финнских и скандинавских образцов, финны и литовцы образовали  два разных кластера, а La Brana  попали в  общий кластер с финно-саамским компонентом, а не с литовцами. В другом запуске программы Admixture, я использовал равные по числу образцов выборки финнов и литовцев. В этом эксперимента я не обнаружил какого-либо расхождения между литовцами и финны, а La Brana попали целиком в этом общий финно-литовский компонент. Однако только что я завершил новый анализ структуры генофонда в программе fineStructure -Chromopainter. В размерности 4 «мирового» PCA La Brana  имеют одинаковую вариацию с двумя саамами и финном с небольшой примесью саамской крови.

В качестве ответа, я привел ряд своих собственных наблюдений насчет геномного сходства саамов.Я использовал совокупный набор данных для расчета матриц IBS и последующего импорта попарных IBS матриц в статистическое программное обеспечение R. Используя встроенные библиотеки программы R,  я вычислил средние значения наблюдений в наборе данных с попарными значениями IBS между образцами, включенными в анализ. Ниже приводится таблица с попарными значениями геномного сходства . Как видно,  в этот раз La Brana оказались гораздо более к балтийским популяциям:

Latvian Bra 0,5762
North-German Bra 0,5762
Estonian Bra 0,5761
Lithuanian Bra 0,5703
Russian Bra 0,5699
Czech Bra 0,5694
Swede Bra 0,5694
Russian_North Bra 0,5686
Pole Bra 0,5675
Orcadian Bra 0,5675
Bulgarian Bra 0,5671
South-Germanian Bra 0,5666
TN_Brahmin Bra 0,5661
Swiss Bra 0,5653
CEU Bra 0,5647
Center-Russian Bra 0,5643
Komi Bra 0,5641
Belorusian Bra 0,5638
Athabask Bra 0,5634
Mordovian Bra 0,5629
Kosovar Bra 0,5624
Corsican Bra 0,5622
French Bra 0,5614
Tsimsian Bra 0,5609
Croat Bra 0,5609
Nguni Bra 0,5606
Slovak Bra 0,5606
Hungarian Bra 0,5603
Yukagir Bra 0,5600
West-Ukrainian Bra 0,5596
NAN_Melanesian Bra 0,5595
Chuvash Bra 0,5593
Welsh Bra 0,5593
Colombian Bra 0,5592
Vepsa Bra 0,5591
Karelian Bra 0,5590
Miwok Bra 0,5589
North-Russian Bra 0,5587
Portugese Bra 0,5583
German Bra 0,5582
Macedonian Bra 0,5579
Finn Bra 0,5577
Russian_cossack Bra 0,5577
Colville Bra 0,5576
Russian_Center Bra 0,5576
Bosnian Bra 0,5571
Hakas Bra 0,5570
South-Russian Bra 0,5569
Lumbee Bra 0,5568
Sardinian Bra 0,5567
Selkup Bra 0,5567
Nenets Bra 0,5564
East-Ukrainian Bra 0,5563
Hausa Bra 0,5561
Tuva Bra 0,5558
Meghawal Bra 0,5556
Uzbeki_jew Bra 0,5556
Bashkir Bra 0,5555
Br Bra 0,5554
Inuit-West Bra 0,5552
Mexican Bra 0,5551
Tatar Bra 0,5550
Ukrainian Bra 0,5550
Naxi Bra 0,5548
Libyan-jew Bra 0,5548
British Bra 0,5548
North-Greek Bra 0,5546
French_Basque Bra 0,5545
Khant Bra 0,5544
Ashkenazi_Jew Bra 0,5543
Dharkar Bra 0,5543
Miaozu Bra 0,5542
Tatar_Lithuania Bra 0,5542
Daur Bra 0,5542
Spain Bra 0,5541
Saami Bra 0,5540
Romanian_Jew Bra 0,5540
Brahmin Bra 0,5537
Lezgin Bra 0,5536
Slovenian Bra 0,5536
Udmurd Bra 0,5534
Mongola Bra 0,5533
Sotho Bra 0,5533
Tuscan Bra 0,5533
Altaic Bra 0,5532
Burusho Bra 0,5529
North_Italian Bra 0,5525
Nogay Bra 0,5525
Azeri_Jew Bra 0,5525
Balkar Bra 0,5523
Adygei Bra 0,5522
Kol Bra 0,5520
Montenegrin Bra 0,5520
Gagauz Bra 0,5518
Hakkipikki Bra 0,5518
South-Greek Bra 0,5517
Han Bra 0,5516
Indian_muslim Bra 0,5516
Iberian Bra 0,5515
Georgian_Imereti Bra 0,5515
Greek_Azov Bra 0,5515
She Bra 0,5514
Yakut Bra 0,5513
GreeceThessaly2 Bra 0,5512
Serb Bra 0,5512
North-Ossetian Bra 0,5511
Lak Bra 0,5511
Chechen Bra 0,5511
Dusadh Bra 0,5511
Brahmin_UttarPradesh Bra 0,5510
Tlingit Bra 0,5507
Kalmyk Bra 0,5506
Toscanian Bra 0,5505
IndCan Bra 0,5505
Greek Bra 0,5504
Indian Bra 0,5504
Egyptan Bra 0,5503
Bengali Bra 0,5503
Haida Bra 0,5503
Ashkenazi Bra 0,5503
Kazakh Bra 0,5502
Mansi Bra 0,5502
Burmese Bra 0,5499
Georgian_Jew Bra 0,5499
Tunisian_Jew Bra 0,5496
Mongol Bra 0,5496
Kusunda Bra 0,5496
Turk Bra 0,5495
Karitiana Bra 0,5495
Uttar_Pradesh_scheduled_caste Bra 0,5494
Romanian Bra 0,5494
Kyrgyz Bra 0,5493
Uzbek Bra 0,5491
Roma Bra 0,5491
Ecuadorian Bra 0,5491
Xibo Bra 0,5490
Armenian Bra 0,5490
North_Greek Bra 0,5489
Tujia Bra 0,5489
Caribbean_Hispanic Bra 0,5489
Gond Bra 0,5488
Tatar_Crim Bra 0,5487
Turkmen Bra 0,5487
Iraqi-jew Bra 0,5486
Kurumba Bra 0,5486
Tu Bra 0,5486
Sindhi Bra 0,5484
Kshatriya Bra 0,5483
Oroqen Bra 0,5481
Aleut Bra 0,5478
Brg Bra 0,5478
Druze Bra 0,5478
Tadjik Bra 0,5477
Yizu Bra 0,5477
Kanjar Bra 0,5477
Naga Bra 0,5476
Irani-jew Bra 0,5476
Abhasian Bra 0,5475
Brahui Bra 0,5474
Georgian Bra 0,5472
Dai Bra 0,5471
Evenk Bra 0,5470
Tamil_Brahmin Bra 0,5470
Libyan Bra 0,5469
Cypriot Bra 0,5469
Mari Bra 0,5468
Kumyk Bra 0,5468
Hazara Bra 0,5467
Moroccan Bra 0,5467
Syrian Bra 0,5467
Inkeri Bra 0,5464
Azeri Bra 0,5464
Iraq_jew Bra 0,5464
Indian_Jew Bra 0,5464
Saudian Bra 0,5464
Lambadi Bra 0,5463
Cretan Bra 0,5462
Jordanian Bra 0,5461
Parsi Bra 0,5460
Ket Bra 0,5460
PuertoRican Bra 0,5460
Sephard Bra 0,5459
Chenchus Bra 0,5458
Nyshi Bra 0,5458
Chukchi Bra 0,5455
Shor Bra 0,5455
Velama Bra 0,5455
Lahu Bra 0,5454
Hezhen Bra 0,5454
Bedouin Bra 0,5454
Mozabite Bra 0,5452
Italian_Jew Bra 0,5452
Tamil_Nadu Bra 0,5450
Tharus Bra 0,5449
Chamar Bra 0,5448
Irani Bra 0,5448
Kinh Bra 0,5447
Yemen_jew Bra 0,5446
Center-Italian Bra 0,5445
Tunisian-jew Bra 0,5444
Lebanese Bra 0,5444
Balochi Bra 0,5443
Pygmy Bra 0,5442
Dolgan Bra 0,5442
Serrano Bra 0,5442
Palestinian Bra 0,5441
Brahmin-TNBRAS Bra 0,5441
Makrani Bra 0,5440
Piramalai_Kallar Bra 0,5439
Kalash Bra 0,5439
Algerian Bra 0,5438
Lemba Bra 0,5435
Yemeni Bra 0,5435
Fulani Bra 0,5433
South-Han Bra 0,5432
Uzbekistan_Jew Bra 0,5432
Center-Greek Bra 0,5432
Karakalpak Bra 0,5431
Costanoan Bra 0,5425
Morocco_Jew Bra 0,5422
Gujarati Bra 0,5420
Algerian-jew Bra 0,5418
Tswana Bra 0,5415
Iranian_Jew Bra 0,5413
Yemen_Jew Bra 0,5413
France_Jew Bra 0,5412
Iran_jew Bra 0,5409
Kurd_Jew Bra 0,5407
Egyptian Bra 0,5407
Afar Bra 0,5406
Iraqi Bra 0,5402
Chamat Bra 0,5397
North-Han Bra 0,5392
Khazar_jew Bra 0,5391
!Kung Bra 0,5390
Maya Bra 0,5387
Saudi Bra 0,5379
Tunisian Bra 0,5377
Sicilian Bra 0,5377
Georgian_Laz Bra 0,5373
Indan_muslim Bra 0,5370
Saharan Bra 0,5369
Meena Bra 0,5366
Azeri_jew Bra 0,5364
Ethiopian_Jew Bra 0,5362
Dogon Bra 0,5360
Indian_jew Bra 0,5357
Kongo Bra 0,5347
Algerian_Jew Bra 0,5337
Tat Bra 0,5335
Syrian_Jew Bra 0,5334
Madiga Bra 0,5331
Papuan Bra 0,5322
San Bra 0,5309
Somali Bra 0,5306
Dominican Bra 0,5296
Australian Bra 0,5296
Wolyata Bra 0,5285
Libyan_Jew Bra 0,5280
Bamoun Bra 0,5279
Brong Bra 0,5271
Bambaran Bra 0,5271
Afro-American Bra 0,5271
Tygray Bra 0,5269
Koryak Bra 0,5264
Sandawe Bra 0,5262
Ethiopian Bra 0,5259
Bulala Bra 0,5248
Mada Bra 0,5248
Amhara Bra 0,5246
Kaba Bra 0,5240
Hadza Bra 0,5224
Biaka_Pygmies Bra 0,5211
Oromo Bra 0,5201
Bantu Bra 0,5195
Yoruba Bra 0,5171
Mandenka Bra 0,5169
Igbo Bra 0,5157
African-Caribbean Bra 0,5154
Luhya Bra 0,5152
Yourba Bra 0,5127
Esomali Bra 0,5116
Ari Bra 0,5110
Fang Bra 0,5086
Anuak Bra 0,5077
Sudanese Bra 0,5021
Gumuz Bra 0,4993

Руководствуясь моими замечаниями, Андерс написал новую заметку в свой блог, и эта заметка настолько важна, что я решил ее перевести на русский целиком:

» Те, кто читал мой блог, или участвовал в  проекте Fennoscandia, уже привыкли к появлению на графике  PCA (анализа главных компонентов европейского генетического разнообразия) в программе Chromopainter-finesStructure  типичных фигур с формой напоминающей  символы  «>» или «<«. Обычно кластер располагается близко к корню в то время как популяции Центральной и Восточной Европе популяции оказываются на одной ветке или ребре этой V-образной фигуры, в то время как скандинавы, финны и саамы  — на другой.  Пример этой структуры приведен ниже:

Наверное, многие из моих читателей задавались вопросом, почему распределение популяций на графике PCA имеет именно эту геометрическую форму, а также вопросом касаемо того, сколько лет прошло с момента начала дивергенции двух вышеупомянутых группы популяций.  Чтобы ответить на этот вопрос я произвел анализ данных  по древней ДНК La Braña и MDS анализ  в программе PLINK.  Исходное число точечных мутаций -снипов было уменьшено до 69 000. В анализе я использовал всех участников проекта и референсных популяций. Как мы видим, нет * абсолютно * никаких сомнений, с кем именно кластеризуются древние La Braña в проекции двух основных компонентов генетического разнообразия.


Подобное расположение древних иберийских  La Braña, означает вероятно, что древние La Braña характеризовались определенными генетическими вариациями, вариациями которые напоминали генетические  вариации финнов и саамов  (и сегодня встречаются только в Фенноскандии). В западной и южной Европе эти генетические вариации отсутствуют. Кроме того, существуют вероятно компоненты, которые отделяют La Braña от финнов, и приближают их  к саамам.

Набор данных по La Braña включает в себя 183 000 снипа (эти снипы перекрываются набором данных из проекта 1000G) и мой текущий стандартный набор данных 289 000 снипа.   Интерсекция обеих наборов данных   дает в конечном итоге всего 4 000 снипа. Это явно небольшое количество полиморфизмов, недостаточное для полноценного анализа. Вместо этого я попытался посмотреть, если  другой способ решения этой проблемы, который позволяют произвести анализ с использованием всех 183 000 снипов La Braña. Тот факт, что оба набора данных в этом эксперименте — 183 000 снипа Lа Braña  и 288  000 cнипа  — полностью перекрываются снипами проекта 1000 геномов,  позволяет нам найти решение проблемы  путем импутации SNP-гаплотипов. Эта процедура определения снипов широко используется в генетических исследованиях  в тех случаях, когда объединенный набор данных был генотипирован на различных платформах с использованием общей референсной панели.

Импутация снипов была проnзведена в программе BEAGLE. После этого я сравнил  первоначальный набор данных с «импутированным» набором данных на предмет различий между. Поскольку большинство SNP-ов в данном анализе было определенно в ходе импутирования, то я заметил определенный » искусственный дрейф», состоящий в том, что индивиды с импутированными  снипами становятся более похожи друг на други, чем те же индивиды, но с первоначальными неимпутированными снипами 1000G Поэтому я исключил всех индивидов, чей набор данных содержал импутированные снипы (за исключением La Braña), предполагая что минимизаций фактора неопределенности приведет к тому, что неизбежные незначительные ошибки не будут столь значительно влиять на достоверность результатов. Все генотипы индивидов La Braña представляют собой реальные  генотипы (без использования импутации).

Как мы видим ниже, структура популяций определенная в программе Chromopainter-fineStructure, представляется релевантной как в мировом, так и  в паневропейском масштабе. Это доказывает надежность проведенной операции импутирования снипов,  поэтому эту методологию можно использовать для дальнейшего анализа.

На приведенных выше графиках видно, что отдельные компоненты аутосомных генетических вариаций La Braña сильно отделяет эту группу от остальной части современных европейцев, так же как и  в предыдущем посте с использованием неимпутированных гаплотипов. Причина этого феномена ясна: у индивидов La Braña африканское происхождение выражено более ярко, чем у остальных европейцев. Принадлежность к  восточно-азиатскому, сибирскому и индейскому кластеру, кажется, характерна для сегодняшних финнов.

В этой связи возникает закономерный вопрос: какая из современных нам популяций является самой близкой к La Brana?  При проведении простой IBS-кластеризации в PLINK, мною были получены величины Эвклидовой дистанции между геномными образцами. В режиме диплоидных данных наиболее близкими к La Brana оказываются литовцы и саамы, в  режиме гаплоидном режиме список возглавляют литовцы.


Однако по своему собственному опыту, я могу сказать что нельзя полностью доверять простым сравнениям IBS, поскольку на сходство могут повлиять очень многие факторы. С целью получения большей информации, я произвел новый анализ в  Chromopainter-fineStructure, — на этот раз с использованием только европейских популяций.

Как мы видим из вышеприведенной heatmap, cуществует определенная генетическая связь между литовцами, финнами и басками. В более отдаленной степени, в эту цепочку включаются и саамы.  Наличие большой асимметрии между полученными от других популяций хромосомными сегментами и хромосомными сегментами отданными в другие популяции в ходе процесса обмена генами, а также самый раннее ответвление    La Brana от остальной европейской панели, объясняется очевидно 10%  примеси африканских аллелей обнаруженных ранее.

Однако в анализ главных компонент PCA мы можем выделить влияние разных компонентов в генетическом наборе данных La Brana. В проекции 1 измерения PCA X-ASIS, мы наблюдаем значительную дисперсии отдельных популяций — La Braña находятся в крайне левом углу,  а литовцы — в дальнем правом. В перспективе 1 измерения    (размерности) главных компонентов генетического разнообразия нет никаких сомнений, что саамы находятся ближе всего к La Brana. В перспективе второго измерения 2,  дисперсия смещает La Brana к литовцам. Заметим, что здесь саамы и баски образуют противоположенные кластеры, которые отражают известную генетическую дихотомию-разделение Северо-Восточной  и Юго-Западной Европы.

В проекциях 1 и 3 измерения (Y-ось) мы видим, что La Braña наиболее близки к финнам и в некоторой степени также к пресловутым вологодским русским. В размерности 3 мы также видим, что баски и литовцы расходятся в противоположных направлениях, а  саамы появляется в качестве  промежуточное звена между ними.

Выводы: La Braña, судя по всему, отражают один из основных компонентов, которые в  самой значительной степени присутствуют среди современных популяциях у саамов, но практически отсутствует у остальных европейцев.  У саамы наблюдается и  второй значительный генетический компонент, который, кажется, отражает характерный градиент по направлению север-юг характерный  для  большой части финнов. Однако расположение La Braña в пространстве этого второго компонента нарушает общий тренд — они смещаются гораздо «южнее» от нижней части кластера литовцев в направлении кластера басков. Это означает, что у La Braña наблюдается значительный вклад южно-европейских предков. Оба доминирующих компонента в размерностях 1 и 2 на графики PCA достигают своего пика в северной части Европы (у саамов), причем второй компонент (который отсутствует у  La Braña) может указывать на аутентичный «северный» компонент, cвязанный с позднейшими миграциями. Интерпретация третьего компонента вызывает затруднения. Здесь присутствуют и финны, и русские из Вологда, в то время  как La Braña смещается ближе к литовцам, а  саамы —  в сторону кластера басков.

Заключение: Мезолитические жители Иберийского полуострова — La Brаna — характеризовались генетическими вариациями, которые в настоящее время встречаются среди саамов, и в то же время указывают на принадлежность к более южным популяциям, вроде литовцев и басков. Можно предположить, что оба компонента отражают «северный» и «южный» вклад в их родословную.

Наши наблюдения, по крайней мере частично, согласуются с  выводами Вадима Веренича впервые обнаружившим  связь между мезолитическими охотниками-собирателями Иберийского полуострова и саамами. Behind the Curtains: MDLP World 22 showcase

Экспериментальный тест: определение HLA-гаплотипов из нуклеотидов ДНК-последовательностей с помощью программы HLA*IMP

Введение

Большинство из моих записей и экспериментов являются уникальными — именно по этой причине я очень часто дублирую эти записи на английском и русском языках.  Без ложной скромности хочу представить читателю мое самое значимое достижение в области любительской персональной геномики — эксперимент по определению HLA серотипа на основе известных снипов из клиентских raw_data (файла с перечнем генотипированных снипов) компаний 23andme и FTDNA.

Однако перед тем как перейти к описанию самого эксперимента, необходимо вкратце напомнить о важности HLA-гаплотипов. Молекулярные различия между аллелями HLA могут варьироваться до 57 нуклеотидов в пептидо-связывающей кодирующего региона главный комплекса генов гистосовместимости (MHC) человека,  однако еще до конца не установлено, являются ли эти молекулярные полиморфизмы результатом случайного стохастического процесса или же в процессе естественного отбора возникли селективные ограничения, связанные с функциональными различиями между молекулами HLA . Хотя HLA аллели, как правило, рассматривается в популяционно-генетических исследованиях  в качестве эквидистантных молекулярных единиц, однако последовательность ДНК, и популяционное разнообразие также имеет решающее значение для интерпретации наблюдаемого полиморфизма HLA ( (Buhler S, Sanchez-Mazas A, 2011 HLA DNA Sequence Variation among Human Populations: Molecular Signatures of Demographic and Selective Events. PLoS ONE 6(2): e14643. doi:10.1371/journal.pone.0014643).

Стоит отметить еще один важный момент: HLA локусы характеризуются наиболее максимальным уровнем генетического разнообразия из всех человеческих генетических систем. Предварительные знания о степени разнообразия играет важную роль в эволюции и отборе молекулярных методов типирования. Определение частот аллелей также важны и в трансплантологии —  например при аллогенетической трансплантации гематопоэтических стволовых клеток аллели используются для определения вероятности нахождения соответствующих «гистосовместимых» доноров для каждого пациента. Генетическое разнообразие локусов HLA отвечает также за эффективность работы иммунной системы  при  устранении клеток, несущих чужеродные антигены. Существует необходимость разработать методы оценки этого генетического разнообразия с целью изучения того, как различные группы людей  реагируют на воздействие чужеродныъ антигенов, а также для оценки вклада каждого локуса HLA.

Система HLA была тщательно изучена также и с эволюционной точки зрения. Эта система содержит ряд тесно связанных генов, продукты экспрессии которых определяют множеством функций, связанных с регулированием иммунного ответа. Кроме того, последние исследования в области медицинской генетики установили в этом геномном регионе целый ряд вариантов, обуславливающих генетическую предрасположенность к более чем 40 заболеваниям. Ряд наблюдений показывает, что  система человеческого HLA подвержена существенному влиянию естественного отбора, что приводит к появлению большого числа полиморфизмов с очень четко выраженным градиентом частот аллелей.  Возникновение высокого уровня изменчивости в локусах имеет решающее значение для распознавания антигена, определения возраста аллелей и закономерностей в нарушении равновесного сцепления между локусами. Форма воздействия отбора неизвестна. Большинство исследователей склоняется к тому, что сложный характер наследования HLA вряд  ли можно объяснить одним лишь воздействием естественного отбора. Мутации, рекомбинации и генетическая конверсия — все это также способствует увеличению изменчивости HLA. В то же время, очевидная древность многих аллелей HLA выявленных в ходе филогенетического анализа доказывают, что абсолютные темпы производства новых вариантов не являются высокоми. Детальное изучение популяционной и эволюционной особенности региона HLA, необходимо для обоснованного обсуждения эволюции генетических вариантов, предрасполагающих к определенным типам болезней (Thomson G.HLA population genetics.1991 Jun;5(2):247-60.).

Большинство из обычных людей сталкивались с термином антиген HLA только  в процессе сдачи/получения донорских органов. В некоторых случаях имеются показания к выявлению типов антигенов HLA у родителей при осложнениях во время беременности:

 При совпадении родителей по антигенам HLA увеличивается количество повторных аномальных беременностей с неустановленными причинами аномалий (Gerencer et al., 1978). Установлено отсутствие антигенов HLA в трофобласте, обнаруживается только b2-микроглобулин (Bodmer, 1981). Показано, что несовместимость по антигенам HLA матери и плода благоприятствует нормальному протеканию беременности и развитию плода.

Тот же самый авторитетный источник дает вполне сносное и вполне доступное для понимания начинающих любителей генетики:

Главная система тканевой совместимости (major histocompatibility Complex — МНС) может быть рассмотрена в качестве еще одного примера комплекса тесно сцепленных локусов. МНС человека обозначается латинскими буквами HLA (human leukocyte antigene) и называется системой или комплексом HLA.

Годом открытия главной системы тканевой совместимости человека считают 1958 г., в котором Ж. Доссе открыл первый антиген, обозначенный Mac (современное обозначение — HLA-A2) (Снелл и др., 1979). С момента открытия первого антигена тканевой совместимости велась неуклонная работа по уточнению типирования тех или иных антигенных специфичностей, открытию новых антигенов, изучению их строения, разработке универсального метода типирования антигенов, локализации на хромосоме генов системы HLA, выяснению характера наследования, а также по совершенствованию антисывороток, выявляющих тканевые антигены и по выявлению особенностей распространения антигенов в различных популяциях мира.

Интенсивному развитию исследований способствовали в значительной мере Международные рабочие совещания по совместимости тканей. Первое такое совещание было организовано Д.Б. Эймосом в 1964 г. Затем были проведены рабочие совещания в 1965, 1967, 1970, 1972, 1975, 1977, 1980 и 1984 гг. Материалы Международных рабочих совещаний по совместимости тканей публикуются в качестве периодического издания “Histocompatibility Testing” и отражают основные этапы в развитии иммуногенетики человека и тканевого типирования. В 1967 г. после окончания очередного рабочего совещания был организован Международный номенклатурный комитет под руководством ВОЗ, который осуществляет разработку номенклатуры комплекса HLA, соответствующей уровню развития отрасли. Номенклатуры системы HLA выходили в Бюллетенях ВОЗ в 1968, 1972, 1975 и 1978 гг., а также в материалах Международных рабочих совещаний по совместимости тканей в 1970 и 1980 гг. Новая номенклатура была принята после окончания работы 9-го Международного рабочего совещания в 1984 г. (Bodmer et al., 1985). В таблице 1 номенклатура представлена для локусов HLA-A, -B, -C и -DR. Латинские буквы перед цифрами обозначают принадлежность к тому или иному локусу, а цифры — номер антигена. У некоторых специфичностей есть еще добавочное “w”, обозначающее, что данные специфичности либо не признаны к этому моменту всеми лабораториями, либо есть сложности в их типировании.

Каждое название специфического типа HLA или как еще говорят HLA аллелей имеет свой уникальный номер, соответствующий до четырех наборов цифр, разделенных двоеточиями. Длина обозначения аллели зависит от последовательности аллеля.  Как правило, все аллели имеют по крайней мере  четырех-символьное обозначения, которое соответствует  двум наборам цифр, длинная номенклатура назначается только по необходимости. Цифры до первого двоеточия описывают тип, который практически всегда соответствует серологическому антигену, который несет  данный аллотип. Следующий набор цифр, который используется в списке подтипов является обозначением порядка, в котором были определены последовательности ДНК. Аллели, номера которых отличаются  двумя наборами цифр, отличаются друг от друга одной или несколькими нуклеотидными заменами которые ведут к изменению аминокислотной последовательности кодируемого белка. Аллели, которые отличаются только синонимичными/некодирующими нуклеотидными заменами в кодирующей последовательности, отличаются друг от друга использованием третьего дополнительного  набора цифр. Аллели, которые отличаются только последовательностью полиморфизмов в интронах или в 5 ‘и 3’ нетранслируемых регионах, которые примыкают к  экзонам и интронам, отличает использование четвертого набора цифр (см.дополнительную информацию).

Пример

HLA-A определяет HLA локуса
HLA-A1 серологическое обозначение антигена
HLA-A * звездочкой обозначается HLA аллелей определяется методами молекулярного типирования.
HLA-A * 01 2-разрядное разрешение обозначает группы аллелей, которые соответствует обычным серологическим группам — с низким разрешением
HLA-A * 0101 4-разрядное разрешение — последовательность различий между аллелями, которые приводят к аминокислотным заменами
HLA-A10101 60-значное разрешение — определяет некодирующие варианты, т.е последовательность изменений,  не ведущих к аминокислотным заменам

В целях понимания уникальности проведенного мною эксперимента необходимо еще пояснить особенности определения типов антигенов. До прихода эра молекулярной геномики, антигены HLA подразделяются выявлялись серологически и с помощью лимфоцитов. К последним относятся антигены Dw, DQ, DP и некоторые DRw, относящиеся к области D. Большинство исследований фоксируется лишь на серологически определяемых антигенах, относящихся к локусам HLA-A, -B, -C и -DR. Первые три группы антигенов представляют собой гликопротеиды, обнаруживающиеся на клеточной мембране любой ядросодержащей клетки (Amos, Kostyu, 1980).

Как следует из вышесказанного, традиционно на протяжении десятилетий для HLA-типирования использовались серологические метода много десятилетий, и при этом серологическое типирование II класса молекул главного комплекса гистосовместимости человека зависело от адекватной экспресии этих молекул на поверхности В-лимфоцитов, наличия жизнеспособных клеток и полным набором иммунных сывороток. Тем не менее, применение молекулярно-генетических методов первого поколения (RFLP, PCR, SSO и т.д.) для типирования HLA привело к ситуации, в которой почти каждая лаборатория может независимо выполнять  ДНК-типирование для определения аллеля HLA.

HLA типы и сцепленные SNP-ы на 6 хромосоме

Как показал мой эксперимент, что даже того относительно небольшого количества снипов, которое типируется  коммерческими компаниями в регионе MHC-HLA достаточно для определения типа антигена с высокой точностью.

К сожалению, имеется целый ряд нюансов значительно усложняющих анализ. Во-первых, определение классических аллелей HLA (например, HLA-, HLA-B и др.), с помощью  новой чип-технологии, используемой в популярных коммерческих услугах геномных компаний (23andMe, FTDNA Family Finder и deCODEme), является очень сложным процессом, требующим проведения большого количества мультиплекс-ПЦР-реакций для получения полного генотипа пациента. Именно поэтому классические методы типирования HLA зачастую оказываются непрактичными в крупномасштабных исследованиях.Во-вторых, техническая сторона выявления типа HLA на основании генотипов является относительно сложной, и я не уверен что рядовой пользователь сможет ее осилить.  При  я могу помочь определить тип антигенов в качестве коммерческой услуги (которая примерно на 50 процентов дешевле стоимости стандартной медицинско-генетической услуги серотипирования).

К счастью для нас, в Центре генетики человека в Wellcome Trust Центра был разработан метод определения классических аллелей на основании анализа сцепленных SNP-ов. Метод был реализован в виде специального фреймворка  (HLA * IMP) (Dilthey, A. T., Leslie, S., Moutsianas, L., Shen, J., Cox, C., Nelson, M. R., McVean, G. (2012): «Multi-population classical HLA type imputation» (submitted to Plos Comp Bio)).

HLA * IMP определяет HLA тип  на основе данных о генотипе SNP, используя для этих итеративный метод отбора наиболее информативных полиморфизмов для отдельных поддерживаемых чипов генотипирования (Affymetrix 500K, 900K Affymetrix, Illumina 300K, 550K Illumina, Illumina 650K, Illumina 1M). Таким образом, HLA * IMP позволяет исследователям  определить тип  HLA в ходе импутирования геномных данные, собранных из нескольких доступных наборов SNP путем сопоставления импутируемых данных с референсными данными более 2500 индивидов европейского происхождения. Референсные данные содержат как  SNP-варианты, так и классические аллели HLA типов.

Референсная панель которую я использую в целях импутации пропущенных значений, включает в себя:

1) так называемый The British Birth Cohort 1958 года включающем в себя SNP-ы Illumina 1,2 м и Affymetrix 6.0 (TheWellcome TheWellcome Trust Case Control Consortium, 2007) — 2420 индивидуальных образцов х 7733 SNP в расширенном регионе HLA.
2) выборку образцов CEU из HapMap  (Международный консорциум HapMap, 2007) и CEPH CEU + дополнительные образцы (дde Bakker et al., 2006) — 92 образца х 7733 SNP-а перекрывающиеся со снипами The British Birth Cohort 1958)

Программа использует аутосомные гаплотипов состоящих из SNP -ов BC-195и CEU , и именно эти гаплотипы были  задействованы в качестве эталонного набора данных.  Была определена взаимосвязь типов HLA и гаплотипов SNP (эти гаплотипы были фазированы с помощью программы PHASE (Stevens and Scheet, 2005) с применением стандартных параметров фазирования многоаллельных локусов. Вместе с  эталонным набором данных было получено около 5024 гаплотипов высокого разрешения, имеющими прямую корреляцию с 7733 SNP-ами в  геномном регионе HLA.  Эти гаплотипы  определяют разное  количества типов антигенов -2474 типа (HLA-A), 3090 (HLA-B), 2022 (HLA-C), 175 (HLA-DQA1), 2629 (HLA-DQB1), 2665 (HLA-DRB1). Это конкретные SNP-гаплотипы которые в дальнейшим программа использует для инференции типа антигена.

Эксперимент с  выборкой проекта MDLP.

Поясню вкратце суть эксперимента

Как я уже упоминал в блоге MDLP (Re: Хромосома 6), геномные инструменты 23andme — RelativeFinder  и AncestryFinder выделили   целый кластер полуидентичных сегментных совпадений в который попало примерно 315 геномных совпадений с другими клиентами из базы данных 23andme. Примечательно, что все эти  участки совпадения полностью или частчино перекрываются и расположены в одном и том же субрегионе области HLA-MHC на 6 хромосоме (21Mb-38MB). Эта замечательное скопление совпадающих участков  составляет почти половину от общего количества моих AF / RF совпадений (315/720 или 43,75%).

Ранее я предположил, что столь явный перекос числа общих по происхождению полуидентичных сегментов  в области HLA свидетельствует о том, что один из гаплотипов совпаденцев  является идентичным типом антигенов HLA. До недавнего времени, мое предложение опиралась исключительно на мои интуитивные догадки. Затем я смог найти ключ решения проблемы с помощью HLA * IMP  и до сих пор,  после чего мне удалось провести  эксперимент в HLA * IMP , в ходе которого я применил методологию к анализу данных 23andMe  (Illumina Omnio Express) .

Условия эксперимента

Для успешного проведения моих тестов, я должен был убедиться, что мои собственные данные соответствуют следующим требованиям:

* SNP-ы  должны входить в область  xMHC  ( на  6 хромосоме )
* Отобранные в первоначальной выборки кандидаты должны быть европейского происхождения
* Высокое качество  и плотность типированных SNP в регионе HLA, что является критическим условием повышения точности импутации
* Поскольку HLA IMP не обеспечивает прямой поддержки кастомных модифицированных чипсетов 23andMe,  и я был ограничен в своем использовании комбинированным набором генотипов с  двух чиспетов 23andMe (v2 и v3), то мне пришлось «понизить» число SNP-ов в версии платформы Illumina  (Illumina 300K). Но и этого оказалось достаточно.

Тест гипотезы

Для того, чтобы проверить свое первоначальное предположение о  том что вышеупомянутые совпаденцы разделяют одинаковый гаплотип HLA, я выбрал 7 участников из cвоих проектов (себя, свою мать; человека, о котором заведомо было известно, что  у него есть наполовину идентичный совпадющий сегмент со мною и моей матерью в xMHC область; oстальные участники использовались в качестве контрольной группы).

C этой целью я преобразовал исходные данные 23andMe  участников проекта в формат Plink, затем объединил файлы в один набор данных, и  выделил подмножество  SNPs на 6-ой хромосоме , используя команду Plink — сhr 6. После этого я преобразовал файл с данными генотипов из формата Plink во входной формат данных HLA * IMP. В качестве следующего шага, я провел контроль качества данных путем удаления SNP-ов и частных лиц со слишком большим количеством отсутствующих данных, а также  привел в соответствие (за счет выравнивания) дополнительные SNP-ы из  референсной панели HapMap. Наконец, я поэтапно профазировал генотипы для получения гаплотипов Примечание:  я также заменил  ID задействованных участников  проекта на префикс N.

Гаплотипные данные были затем загружены на серевер HLA * IMP, где и была произведена процедура импутации  HLA типов.

Выявленные в ходе этой операции типы HLA выглядили следующим образом (каждый из индивидов представлен 2 гаплотипами, один из которых был унаследован от матери, другой от отца): HLA-A: HLA-B: HLA-C: HLA-DQA: HLA-DQB: HLA-DRB.

IndividualID Chromosome HLAA HLAB HLAC HLADQA HLADQB HLADRB
N1 1 101 801 701 501 201 301
N1 2 2601 2705 102 101 501 101
N6 1 3101 801 701 501 201 301
N6 2 201 1501 304 501 201 301
N3 1 6801 1501 102 101 501 101
N3 2 2301 5201 501 101 501 101
N2 1 101 801 701 501 201 301
N2 2 2601 3801 1203 102 602 1501
N5 1 301 1501 304 501 302 401
N5 2 205 5001 602 501 202 701
N7 1 101 801 701 501 301 1101
N7 2 101 1501 303 103 604 1301
N4 1 301 702 702 401 402 801
N4 2 2402 4002 202 501 301 1101

Гаплотипы в приведенной выше записи следует читать следующим образом (например, в случае N1):  HLA * 0101: Cw * 0701: B * 0801: DRB1 * 0301: DQA1 * 0501: DQB1 * 0201.

В вышеприведенной таблице можно  отметить совпадение одного из гаплотипов у участников эксперимента под номерами  N1, N2 и N7, т.е  они имеют идентичный гаплотип.

Это подтверждает одну из моих рабочих гипотез. У индивидов N1 (моей матери), N2 (меня) и N7  с помощью инструмента Relative Finder от 23andme  в геномном регионе HLA на 6 хромосоме был задетектирован полуидентичный сегмент ДНК, ( этот сигмент отвечает формальным требованиям идентичного по происхождению сегмента, то есть генетическая дистанция превышает порогое значение в 7 сантиморганид (сокращенно сМ — это единица измерения вероятности кроссинговера между двумя генами) и число снипов в непрервыном полуидентичном сегменте равно 700 ).

Таким образом, можно с уверенностью утверждать,  что мое первоначальное предположение,  подкрепляется результатами установления типа  HLA.

Практические результаты испытаний

Практически каждый из известных и описанных в литературе типов человеческих HLA имеет убедительную связь с так называемыми медицинскими рисками. Мы не будем сейчас останавливаться на них, и отложим рассмотрение этой тематики на будущей. Однако помимо медицинской полезности, существуют также и некоторые преимущества знания своего типа HLA и с точки зрения генетической генеалогии:

1) Прежде всего, это возможность определить характер распространения сегментов в области xMHC на хромосоме 6. Приведу конкретный пример на своих собственных данных — вышеупомянутый «расширенный» гаплотип HLA * 0101: Cw * 0701: B * 0801: DRB1 * 0301: DQA1 * 0501: DQB1 * 0201 (в англоязычной литературе встречаются и другие обозначения —AH8.1, COX,[1] Super B8, ancestral MHC 8.1[2] or 8.1 ancestral haplotype; далее мы будем писать его в сокращенном виде: A1 :: DQ2). По мнению некоторых исследователей этот гаплотип A1 :: DQ2 представляет собой  загадку с точки зрения изучения эволюционного процесса рекомбинаци. Дело в том, что скорость рекомбинации этого гаплотипв A1 :: DQ2 не соответствует теоретическими ожиданиям в плане скорости рекомбинации.  Нам известно, что в регионах Европы, где этот гаплотип  впервые сформировался и начал распространятся, существуют другие гаплотипы, некоторые из которых являются «предковыми», обладая при этом  весьма значимой длиной. Однако рассматриваемый гаплотип является своего рода рекордсменом  — он включает в себя последовательный контиг ДНК длинной примерно в 4,7 миллионов  (!) пар нуклеотидов,  и около 300 генных локусов. Кроме того, все исследования отмечают высокую «резистентность» этого гаплотипа по отношению  к рекомбинации. В качестве объяснения этого уникального феномена выдвигаются разные гипотезы — некоторые полагают что обструкция рекомбинации в этом гаплотипе была неким неизвестным была жестким образом кодирована в самой ДНК (по аналогии с хардкодингом -жестким «вшиванием» в программный код различных данных, касающихся окружения программы) Другие объясняют эту аномалию последствиями многократного селективного  отбора гаплотипа. Здесь следует прояснить суть проблемы: согласно классической теории рекомбинации, физическая длина любого аутосомного гаплотипа (то есть число нуклеотидов входящих в него) из-за быстрых темпов эволюционной рекомбинации должна неизменно  уменьшатся  с каждым поколением. Однако гаплотип A1 :: DQ2 является живым опровержением универсальности этого представления.

2) Во-вторых, можно попытатся произвести оценку времени и места возникновения этого гаплотипа.  В ходе систематического обследования мировых популяций, регулярно проводимого сетью центров и институтов трансплантологии, было  установлено, что гаплотип A1 :: DQ2 является наиболее часто встречается у белых жителей США , ~ 15% которых имеет этот гаплотип. Анализ SNP-ов сцепленных с этим типом, дает основания полагать, что гаплотип мог возникнуть примерно 20.000 лет в Европе, хотя  эта интерпретация в настоящее время признается некоторыми исследователями неубедительной. Согласно этой интепретации, гаплотип мог возникнуть  в результате  климатических изменений  во врема последнего ледникового максимума  примерно 11500 лет назад (поэтому этот гаплотип называют иногда предковым европейским гаплотипом, или гаплотипом A1-B8 (AH8.1). Этот один из тех 4 гаплотипов HLA, которые являются общими для западных европейцев и азиатов. Если предположить, что частота  распространения этого гаплотипа  в начальной популяции составляла 50%  во время последнего ледникового максимума и плавно снижалась  на 50% каждые 500 лет то частота гаплотипа в современных популяциях не должна превышать 0,1% в любой европейской популяции. Однако реальная частота  составляет, как было показано выше,  примерно 10%,  что превышает ожидаемую в теории частоту распространения почти в 100 раз. Применительно к генетической генеалогии,  это подробное разъяснение может означать только то, что массовое скопление совпадающих сегментов в xMHC регионе на 6 хромосоме может быть четким указанием  на наличие очень далеких общих предков (вплоть до жителей эпохи неолита). При любом раскладе, предлагаемый RelativeFinder/23andme интервал в 5-10 поколений до  последних общего предка для региона xMHC является нереалистично заниженным.

2) Кроме того,  используя стандартные средства геногеографии можно сделать вывод о географическом ареале распространения конкретного гаплотипа HLA. Опять-таки, изучая геногеографию все того же гаплотипа A1 :: DQ2, можно   увидеть, что  его локальные пики  приходятся на весьма удаленные  друг от друга регионы — это Исландия, регион исторического проживания поморов на Севере России, северная Сербия, земля басков, а также те регионы Мексики, которые массовао заселялись басками.  Общей чертой этих регионов является не географическая близость, а крайняя степень изоляции.
Относительно высокая частота распространения гаплотипа в  наиболее изолированных географических регионах Западной Европы, Ирландии, Скандинавии и Швейцарии наряду с  крайне низкой частотой во Франции и латинизированной  части Иберии является результатом описанной в популяционной генетике и антропологии модели замещения, народонаселения Европы, которое обычно связывается с началом эры неолита. В этом случае возраст рассматриваемого гаплотипа в Европе, превышает 8000 лет.

Напоследок хочу порекомендовать —The Allele Frequency Net Database  -хорошую базу данных по частотам аллелей полиморфичных регионов HLA,KIR,Cytokine,MIC Института транплантной иммунологии при Ливерпульском университете.  Она является очень удобным инструментом для анализа частот HLA гаплотипов в мировом масштабе.

В  частности, можно производить поиски по гаплотипам, и получать на выходе данные о частотах в различных популяциях, а также визуализировать полученные данные на карте.

Пример (гаплотип A1 :: DQ2)

1 A*01:01B*08:01C*07:01DRB1*03:01DQB1*02:01 Ireland South
11.50
250
                               
2 A*01:01B*08:01C*07:01DRB1*03:01:01-DQB1*02:01 England North West
9.50
298
                               
3 A*01:01B*08:01C*07:01DRB1*03:01DQB1*02:01-DPB1*04:01 Ireland South
8.30
250
                               
4 A*01:01B*08:01C*07:01DRB1*03:01DQB1*02:01 Poland
4.00
200
                               
5 A*01:01B*08:01C*07:01DRB1*03:01DQB1*02:01 USA Hispanic pop 2
1.78
1,999
                               
6 A*01:01B*08:01C*07:01DRB1*03:01DQB1*02:01-DPB1*01:01 Ireland South
1.40
250
                               
7 A*01:01B*08:01C*07:01DRB1*03:01DQB1*02:01 USA African American pop 4
1.39
2,411
                               
8 A*01:01B*08:01C*07:01DRB1*03:01DQB1*02:01 USA Asian pop 2
0.09
1,772