Еще раз о палеогеномах европейцев (к работе Haak et. al. 2015)

Еще когда появились первые анонсы препринта статьи Haak et al. 2015,  можно было сделать интуитивные предположения о том, что использованные в работе образцы палеогеномов будут всесторонне изучены не только авторами статьи, но и многочисленными любителями, причем ожидаемая степень детализации полученной картины генетического разнообразия  будет предположительно выше именно у последних (т.е всевозможных геномнных блоггеров).

Так оно и вышло. Давид Веселовский из Eurogenes провел целый ряд экспериментов с объединенным базовым набром «геномов» современных популяций и так называемых древних геномов.  В частности, в одном из своих анализов он задействовал новую программу qpAdm из последней версии пакета Admixtools,  и в ходе пробного моделирования геномов представителей ямной культуры из самарской культуры был наилучшая аппроксимация (fit, подгонка) была получена в комбинации  51.4% генома  охотников-собирателей Самары и  48.6 современных грузин (STD 0,032, chisq 3,890, р-value 2.20661e-22). Образцы палеогеномов представителей  шнуровой керамики могут быть в свою очередь смоделированы как 73% геномов ямников + 27% палеогеномов Esperstedt_MN (STD 0,060, chisq 2,621, р-value 9.74968e-06).

Это интересный результат, главным образом потому данные лингвистики позволяют предположить, что ранние индоевропейцы — по-видимому, кочевники ямной культуры или их предки — были в тесном контакте с прото-картвельскими популяциями.  Похожий результат был получен авторами статьи (у которых представители ямной культуры выступали как 50% -50% смесь геномов карельских охотников-собирателей и армян), а также в моих экспериментах, в которых геномы современных белорусов были представлены  гибридной моделью  современных геномов армян и палегеномов шведских охотников-собирателей Motala.

Впрочем, я согласен с Веселовским — главная проблема с подобными ретроспективными анализами заключается в том, что про причине отсутствия большого количества достоверных древних палеогеномов, популяционные генетики часто вынуждены моделировать древние популяции посредством комбинаций современных популяций. Как отмечает Веселовский, в генофонде современных грузин присутствует (по его оценке) 20% так называемого ANE-компонента, который, вероятно, прибыл на Кавказ из Евразийской степи. Если это так, то алгоритм qpAdm  может переоценить «кавказский» компонент в геномах ямников, по крайней мере, на 10%.

В другом своем анализе Веселовский уделил особое внимание  проблеме происхождения одного из основных компонентов в геноме древних ямников. Так например, анализ Admixture в Haak et al. 2015 включает в себя ряд интригующих компонентов с К = 16 до К = 20, которые, как правило составляют более 40% от генетической структуры потенциально прото-индо-европейских геномов ямников. Веселовский выделил компонент сигнализирующий этот тип «адмикса» и подробно изучил его. Заслуживает внимание тот факт, что компонент достигает своего пика на Кавказе и в горах Гиндукуша, и в целом показывает сильную корреляцию с регионами относительно высокой частоты связанных с палеогеномом MA1  компонентами происхождения (ANE). С другой стороны, другой компонент ямников достигает пиковых значений у  ранних европейских фермеров (EEF), у которых отсутствует компоент ANE.

Выделенные Веселовским 3 основные компоненты-составляющие геномов ямников были преобразованы в синтетические популяции (центрально-азиатская, европейская и неолитическая европейская), которые в свою очередь использовались в качестве подмножества для вычисления векторов загрузки (loadings) в PCA анализе полного набора современных популяций.

https://drive.google.com/file/d/0B9o3EYTdM8lQak82NFVYSUJfWGc/preview

Очевидно, более детальный расклад и анализ вклада различных компонентов геномов палеоевропейцев в геном современных жителей Европы можно найти в подробном анализе Сергея Козлова  «Палеоевропейцы из работы Haak et al, 2015 в свете анализа на IBD-сегменты«.

Как я уже упоминал ранее, мой опыт с «выведением» предкового аутосомного компонента индоевропейцев (обозначенного в статье Lazaridis et al. 2013 сокращением ANE) полностью удался. Поскольку всем очевидно, что этот компонент родственен «североиндийскому предковому компоненту» (ANI — обозначение из статьи Reich et al. 2009 и Moorjani et al 2011) о структуре генофонда индийских этнических групп), я взял 10 индийских этнических групп, имеющихся в кураторском наборе лаборатории Райха и проанализировал эту выборку в Admixture на пропорции вхождения их геномов в 2 априорно заданные кластеры. Первый кластер ANE был априорно задан 40 синтетическим индивидами, сгенерированными в программе Plink на основании расчитанных ранее частот аллелей «чистого» компонента ANE. В качестве дополнительного контрольного образца я использовал геном Malta1, т.к. он содержит в себе наивысшее содержание компонента ANE. Второй кластер был задан 4 индивидами Onge (одна из аборигенных народностей Андаманских островов). Как неоднократно указывалось в литературе, именно жители Андаманских островов являются самыми «чистыми» носителями т.н «южно-индийского» предкового компонента ASI (на континенте чистых носителей этого «компонента» не осталось, в том числе и среди популяций дравидов, ведда и мунда). После нескольких экспериментов по эвристическому методу проб и ошибок, я получил более или менее приемлимое разделение индивидов на 2 кластера, а затем вычислил частоты аллелей в каждом из этих кластеров. Любопытно, что в ходе опыта, удалось не только выделить компонент ANI, но и добиться неплохого уровня дискримнации между компонентом ANI, ANE, и благодаря этому, оба компонента могут быть включены в мой следующий этно-популяционный калькулятор.

Надежность компонентов я проверил на собственных данных. В рабочей модели калькулятора K14 удельное распределение этно-генографических компонентов моего генома выглядит следующим образом:

68.75% — европейский мезолитический компонент
13.12% — северо-евразийский компонент ANE
10.23% — европейский неолитический компонент
4% — ANI (северо-индийский предковый компонент)
1.6% — кавказский компонент
1.2% — алтайский компонент
0.2% — сибирский компонент

Затем я использовал 120 древних образцов аутосомной ДНК человека (начиная с верхнего палеолита до бронзового и железного веков) из последней работы и проработал их в бета-версии своего этно-популяционного калькулятора K14. Я надеялся выделить компонент ANE из ANI, но из таблицы видно, что это фактически один и тот же компонент

Когда я закончу полномерную импутацию всего набора данных от лаборатории Райха, я займусь проведением аналогичных экспериментов. А пока — примерно месяц назад я сообщил о начале первого этапа своего нового проекта. Согласно первоначальному замыслу, на первый этап — фазирование и импутация данных выборок из статей Haak et al .2015 (preprint) и Lazaridis et al. 2014 — я отводил месяц. Так оно и получилось.

В качестве затравки для импутирования я использовал набор 424329 снипов на 22 аутосомных хромосамх. Набор состоял из снипов, прошедших стандратный геномный контроль качества. Фазирование и импутация снипов я проводил с помощью пайплайна Molgenis.

По окончанию этого вычислительно-емкого процесса, мною был получен набор из примерно 5 миллионов снипов; после отсева не входящих в панели Illumina снипов у меня осталось 913841 снипов.

Ниже приведена похромосомная статистика снипов до и после импутации данных.
Как видно, на всех хромосомах (за исключением 19 и 20) количество снипов увеличилось примерно в два раза.

Для оценки качества импутации я сравнил импутированные генотипы своих данных с известными данными из своих сырых данных (снипы с иллюминовского чипсета 23andme) на предмет конкорданса (соответствия).
Оказалось, что у 6.5% импутированных генотипов оба варианта не совпадали с генотипам в rawdata от 23andme, у 17.33% — не совпадал один из двух вариантов. Таким образом, качество импутации составляет примерно 76.18%, что неплохо, учитывая что среднее значение качества импутации в программе IMPUTE v2 + SHAPEIT составляет примерно 69%.

11071088_10206257613949054_7906454924722989677_nChromosome Pre-imputation Post-imputation Percentage of imputed snps

1 36638 88155 41.56
2 40140 90003 44.60
3 33218 62030 53.55
4 23594 54462 43.32
5 19731 55284 35.69
6 27979 56485 49.53
7 22804 49172 46.38
8 23072 48756 47.32
9 19369 42438 45.64
10 25340 49666 51.02
11 23145 46434 49.84
12 16967 45668 37.15
13 14998 35626 42.10
14 15529 36429 42.63
15 14663 27844 52.66
16 15034 33806 44.47
17 7799 24949 31.26
18 11697 27709 42.21
19 7102 17715 40.09
20 12654 5054 -39.94
21 6495 2572 -39.60
22 6361 13584 46.83
424329 913841 36.74

Для проверки полезности полученного набора (объединенного набора «реальных» и импутированных снипов), я соединил его с 112 образцами человеческих палеогеномов из новой статьи Haak et al. 2015. Полученный таким образом набор я проанализировал методом выделения главных компонент, первые две из которых я впоследствии использовал для построения графика главных компонент. Как мне кажется, получилось красиво и правдоподобно.

Two first principal components

 

Через неделю работы в GoogleCloud, получил результаты второго цикла обработки (импутации и фазировки) палеогеномов. Напомню, задачей ставилось увеличение числа снипов палеогеномов до уровня, позволяющего проводить исследования с привлечением сторонних данных по современным человеческим популяциям (т.е не только по тем популяциям, которые включены в кураторский набор лаборатории Рейха, но и другим наборам, генотипированным на платформе Illumina; и что самое главное — с привлечением данных конкретных пользователей 23andme и FTDNA).

И если результатами первой части я был вполне доволен, то этого нельзя сказать о второй части. Теперь я понимаю, что ошибка содержалась в самом дизайне цикла второй части, в которой для импутации и фазирования использовались только реальные и «симуляционные» палеогеномы. В результате, хотя импутация и улучшила взаимное позиционирование палеогеномов в пространстве главных компонент генетического разнообразия, однако при слиянии импутированного в автономном режиме набора палеогеномов с набор полученным в первой части проекта, получилась картина. в которой палеогеномы образуют как бы параллельную субструктуру по отношению к современным популяциям.
Данное обстоятельство объясняется тем, что у древних геномов людей больше общего разнообразия между собой, чем с геномами современных людей (у которых в результате многочисленных генетических дрейфов и бутылочных горлышек большая часть разнообразия была потеряна). По этому причине, при независимой импутации древних геномов их сходство между собой только усилилось, а дистанция с современными популяциями увеличилась. Примечательно при этом, что пропорции вилкообразного разделения генетического разнообразия такие же, как и у современных людей.

На графике PCA эта ситуация прослеживается особенно хорошо, где отчетиливо видно наложение этих двух V-вилок друг на друга (см. нижний график)

Это означает одно — работу над проектом надо продолжить

Палеоевропейцы из работы Haak et al, 2015 в свете анализа на IBD-сегменты

Сергей Козлов

Палеоевропейцы из работы Haak et al, 2015 в свете анализа на IBD-сегменты.

Обновлено 21.03.2015

В феврале произошло событие, которое многие геномные блоггеры с нетерпением ожидали на протяжении большей части предыдущего года — на  сервере Bioarxiv был размещен препринт статьи Haak et al с исследованием множества (преимущественно европейских) палеогеномов. Настолько качественного и подробного среза генетической истории европейцев мы еще не видели. Вадим Веренич уже разместил свой отзыв на работу, присовокупив к нему результаты собственных экспериментов и размышлений. Из его заметки можно составить прекрасное впечатление о статье.

Как это обычно и бывает, сообщество геномных блоггеров осталось не вполне удовлетворено полнотой предоставленной информации, и (повторюсь) с нетерпением ожидало возможности наложить свои руки на новые палеогеномы из статьи. Для этого пришлось дождаться официального выхода работы, и вот, наконец, момент настал. В первую очередь мне было интересно провести сравнение аутосомных IBD (или псевдо-IBD) сегментов с современными выборками и удостовериться — кто же все-таки в наибольшей степени является потомками людей, принадлежавших к исследованным археологическим культурам? Конечно, другие виды анализа тоже необходимо провести, но это сделают и без меня. К тому же об их результатах можно было догадаться из информации, опубликованной в статье (и эти догадки действительно подтвердились).

К сожалению, первая попытка оказалась неудачной — опубликованные на страничке лаборатории Райха геномы были полностью гаплоидными. Для того, чтобы сблизить условия анализа прочитанных с разным качеством палеогеномов, авторы статьи случайным образом выбирали один аллель для каждого снипа и далее использовали только его.  Разумеется, все IBD-сегменты при этом оказались разрушены. Однако проблему удалось обойти при помощи утилиты Феликса Чандракумара, преобразующую BAM-файлы в аналоги аутосомных файлов формата FTDNA. Лишь меньшая часть из обработанных геномов пригодна для IBD-анализа, но и прочитанных с удовлетворительным качеством достаточно много. Для этой заметки использованы следующие палеогеномы:

1) «Восточных охотников-собирателей», или EHG, представляет «оленеостровец» I0061 Karelia_HG    Yuzhnyy Oleni Ostrov, Karelia    5500-5000 BCE . «Самарский» образец EHG слишком плохо прочитан.

2) «Самарских ямников» представляют I0443    Yamnaya    Lopatino II, Sok River, Samara    3500-2700 BCE и I0231 Yamnaya    Ekaterinovka, Southern Steppe, Samara    2910-2875 calBCE

3) Культура шнуровой керамики также представлена двумя образцами, это I0103    Corded_Ware_LN    Esperstedt    2566-2477 calBCE и I0104 Corded_Ware_LN    Esperstedt    2473-2348 calBCE (восточная Германия, земля Саксония-Анхальт)

4) От культуры колоколовидных кубков лишь один образец, это I0112 Bell_Beaker_LN    Quedlinburg XII    2340-2190 calBCE (как и в случае КШК, земля Саксония-Анхальт)

5) Лучше всего обстоит дело с охватом неолитических земледельцев из культуры линейно-ленточной керамики, их целых четыре — I0054 LBK_EN    Unterwiederstedt    5209-5070 calBCE , I0100 LBK_EN    Halberstadt-Sonntagsfeld    5032-4946 calBCE, а также два ранее уже известных палеогенома — Stuttgart и NE1

Результаты по выборкам, представленным двумя или более образцами, усреднялись. Кроме этого, производилось нормирование результатов для каждой из пяти палеовыборок в пределах +- 10% с целью наилучшим образом попадать в диапазон карт и убрать влияние разницы в качестве прочтения. Конечно, это искусственное искажение данных, но все же, как мне кажется, оно скорее пошло на пользу, чем нанесло вред. В целом же карты получились качественными и наглядными. Думаю, что метод анализа на IBD-сегменты даже лучше подходит для палеогеномов, чем для наших современников.

«Оленеостровец» I0061 принадлежит к выборке, названной авторами EHG (Eastern Hunter-Gatherers). Это палеоевропейские охотники-собиратели северной части Восточной Европы, предположительно не затронутые позднейшим притоком генов с юга (от неолитических земледельцев и из других источников). И действительно, среди наших современников наибольшее количество пересечений с ним нашлось у северных восточноевропейцев — как говорящих на индоевропейских языках, так и уральцев. В первую очередь выделяются вепсы и северные русские из каргопольской выборки HGDP. Прибалтийская выборка, обычно проявляющаяся у восточноевропейцев наиболее ярко, на этот раз видна чуть слабее. Единственные, кто несколько выбивается из закономерности — поляки. Сложно сказать, случайность это, или же нет. Однако из-за этого отклонения польская выборка временами смотрится странно и на дальнейших «разностных» картах.

Оленеостровец (картинки можно увеличивать):

Обращает на себя внимание пятно в Средней Азии и северной Индии. Особенно интересна значительная разница между высшими и низшими кастами штата Уттар-Прадеш (на карте представлены обе выборки). Напрашивается версия, что это связано с приходом индоевропейцев с севера. Или же, как минимум, с приходом носителей R1a. Кстати, оленеостровец тоже принадлежал к этой Y-гаплогруппе (предковая ветвь R1a1).

Впрочем, как мне справедливо заметили, в северо-западную Индию было немало миграций и в более поздние времена. Например, «кшатрии» на севере считаются многими исследователями потомками переселенцев первого тысячелетия нашей эры.

Следующие на очереди — «ямники». В работе использованы образцы ямников из-под Самары, представляющие их крайний восточный вариант. Авторы статьи смоделировали их как 50% EHG / 50% современные армяне. Как будет показано далее, для этого есть некоторые основания. Однако с точки зрения предковых компонентов Admixture такая модель — далеко не лучший вариант, «южный» ямный компонент скорее связывается с чем-то в промежутке между Восточным Кавказом и Средней Азией. Как и предполагалось, он коррелирует с бимодальным компонентом, условно называемым Gedrosia. Исходя из современных максимумов, его исторический центр находится где-то в южном Прикаспии, возможно, восточнее. Судя по всему, он представляет собой результат смешения «ближневосточного» компонента ENF и ANE, поэтому теоретически исторического центра может и вообще не быть.

Самарские ямники:

В отличие от оленеостровца, «ямное» пятно более широко распределено по всей Европе, а Кавказ и Средняя Азия выделяются сильнее. Впрочем, лучше это смотреть на карте, отображающей разницу между ямниками и оленеостровцем. Не следует думать, что выборки, выделенные на разностной карте одним цветом, обязаны быть схожи между собой — просто разница их «расстояний» до I0443/I0231 и I0061 близка. И не забываем, что разностные карты в большей степени, чем одиночные, подвержены влиянию «шума» и случайных отклонений.

Разница между «оленеостровцем» и «ямниками». Красным цветом обозначено, у кого больше общих сегментов с первым, зеленым — со вторыми.

Как видно, наибольшая разница в пользу оленеостровца у представителей народов из уральской языковой семьи, причем тех, у кого силен «сибирский» вклад. Кроме жителей Западной Сибири, это марийцы (и родственные им тюрки-чуваши) в Поволжье, а также саами. Думаю, это неплохой довод в пользу ямников (или тесно связанной с ними группы), как распространителей индоевропейских языков. Наибольшая же разница «связь с ямниками» минус «связь с оленеостровцем» оказалась у уже упоминавшихся армян (и в целом зеленое пятно Кавказ-Малая Азия выражено сильнее всего). Таким образом, у армян хорошо выражены компоненты, имеющиеся у ямников, но отсутствующие у EHG. Но значит ли это, что модель «ямники=EHG+армяне» оптимальна? Я так не считаю. И при PCA-анализе, и при раскладке на компоненты Admixture мы видим, что «вторая половинка» должна быть где-то восточнее. На карте это проявляется в том, что взаимосвязь ямников с районом Пакистан-северная Индия (а особенно, что представляет отдельный интерес, с уйгурами. Уж не след ли это древних миграций индоевропейцев, например, тохаров, на восток?) выражена сильнее, чем у оленеостровца. Но модель считает, что это взято в основном от него, отсюда и заблуждение. Впрочем, и сами авторы пишут, что более адекватным видится вариант «третья группа, повлиявшая как на ямников, так и на современных армян».

Кроме уже перечисленных, явственно более сильную связь с ямниками проявляет выборка из Йемена (возникла мысль, что мы видим влияние небезызвестных Basal Eurasians — предположительно, именно йеменцы наиболее близки к ним из современных народов) и северо-западные европейцы. Это хорошо укладывается в предложенную авторами статьи модель, согласно которой северные европейцы в очень заметной мере являются потомками связанной с «ямниками» группы, которая мигрировала с востока и по большей части заместила предшествующее население. Кстати, у немцев (и германских народов в целом) необычно сильно проявляется все тот же компонент Gedrosia, которого не было у мезолитических охотников и неолитических земледельцев Западной Европы. И действительно, у восточногерманских образцов, принадлежащих к культуре шнуровой керамики, этот компонент появляется.

Карта для представителей КШК:

Очень похоже на «ямную» карту, не так ли? Но должны существовать и различия, попробуем их увидеть на разностной карте «самарцы» (красное) минус «шнуровики» (зеленое):

SamaraYamnayaMinusCWCIBDext

Картинка отнюдь не настолько контрастна, как было в случае сравнения ямников с оленеостровцем. Видимо, это связано с тем, что разница между сравниваемыми выборками в данном случае слабее. И все же некоторые взаимосвязи проявляются. Во-первых, заметно сильнее связь со шнуровиками у жителей острова Сардиния — как считается, они наиболее хорошо сохранили генофонд неолитических земледельцев Европы. Кроме этого, лучше связаны со шнуровиками, чем с ямниками, люди из района Белоруссия-Польша-Западная Украина. И наоборот, «ямные» пятна выделяются вокруг Удмуртии (уж не там ли живут потомки «самарцев»?), в районе «Средняя Азия-Индия» (включая уже упоминавшихся выше уйгуров), и в Закавказье/Малой Азии. Можно предположить, что шнуровики получились в результате смешения неолитических земледельцев и группы, родственной «самарцам», но более западной, сильнее связанной с «белорусским» пятном (и слабее — с тремя «ямными»).

Намного более наглядна разностная карта представителей культуры линейно-ленточной керамики (неолитических земледельцев) и шнуровиков:

LBKMinusCWCIBDext

Два мира — красным выделены народы, в большей степени связанные с неолитическими земледельцами (в отличие от предыдущей карты, сардинцы здесь сильнее связаны с противоположной шнуровикам стороной), зеленым — связанные с заместившими и поглотившими их пришельцами, носителями компонентов WHG и ANE. Обратите внимание, что армяне здесь ярко-красные — это еще раз доказывает ошибочность модели «ямников» как смеси EHG и армян в пропорции 50/50. Ведь тогда «армянский» вклад у «шнуровиков» был бы заметно сильнее.

А вот разница с «оленеостровцем»:

Здесь мало что можно добавить к тому, что уже писалось про разницу «оленеостровец»-«самарцы». Разве что Западное Средиземноморье стало более зеленым, а Средняя Азия-менее.

Наконец, для полного комплекта добавлю карту сравнения с представителем более западного варианта охотников-собирателей, Loschbour:

LoschbourMinusCWCIBDext

Родство с WHG преобладает лишь в дальнем северо-восточном углу Европы. Таков печальный итог нескольких волн миграций с замещением предыдущего населения.

Результаты для представительницы культуры колоколовидных кубков очень близки предшествующей «шнуровой» выборке. Поэтому разностная карта между ними еще более невразумительная, чем при сравнении шнуровиков и самарцев. Дело усугубляется еще и тем, что образец ККК лишь один, а значит, случайные отклонения и прочий «шум» выше.

ККК минус КШК:

BellBeakerMinusCWCIBDext

Судя по всему, у шнуровиков неколько выше доля вклада «охотников-собирателей» и «ямного» компонента в целом. В то же время «средиземноморский» компонент выглядит чуть сильнее у ККК. Но все это тонет в шуме.

Не вижу смысла приводить сравнения представительницы ККК с окружающими, аналогичные КШК, поскольку они выглядят практически так же. А следовательно, мой обзор закончен. Что ж, можно с глубоким удовлетворением отметить, что палеогеномы из работы Haak et al действительно проливают свет на процессы, происходившие в Европе на рубеже каменного и бронзового веков — естественно, уточняя и дополняя уже известное специалистам.

PCAdmix: инструмент и методология для оценки происхождения хромосомных сегментов

В марте прошлого года  Сергей Козлов — один из соавторов данного блога, — опубликовал важную с точки зрения методологии генетико-генеалогического анализа заметку о принципах оценки вероятности определения времени жизни последнего общего предка при попарном сравнении аутосомных данных двух или более сравниваемых индивидов.  Действительно, в последние годы среди людей, интересующихся генеалогией, приобрели заметную популярность сервисы, производящие поиск генетических родственников по всем линиям, а не только по прямой мужской и прямой женской. В качестве примера можно привести Family Finder от FTDNA и DNA relatives от 23andMe. Участник получает достаточно длинный список так называемых «совпаденцев» — людей, имеющих с ним один или более участок половинного совпадения (УПС) на аутосомах (неполовых хромосомах). Если участок достаточно длинный (а его длина измеряется в сантиморганидах, обозначающих вероятность разрыва участка при каждой передаче в следующее поколение), то это говорит о наличии общего предка (от которого участок и получен).
Для значительной части клиентов сервисов персональной коммерческой геномики, интересующихся исключительно вопросами своего происхождения, вопрос о достоверном определении времени жизни общих предков имеет первостепенное значение. И вместе с тем, именно проблема с получением четкого ответа на этот краеугольный вопрос служит одной из главных причин недовольства и раздражения клиентов компаний вроде FTDNA или 23andme.

Действительно, изучив длинные сегменты генома, передававшихся от поколения к поколению и встречающиеся у многих людей, можно примерно определить степень и интенсивность предковых связей, берущих начало много тысяч лет назад.  Здравый смысл подсказыает — дальние родственники имеют такие длинные сегменты генома потому, что они унаследовали их от общих предков. У более далеких родственников длина сегментов общих геномов соответственно становится короче, поскольку происходит рекомбинация гомологичных хромосом, в результате чего с каждым следующим поколением происходит перемешивание всей совокупности генов или генотипа. Очевидно, что число и размер совпадающих общих по происхождению сегментов геномов у двоих произвольно взятых лиц из однородной метапопуляции коррелирует с географический дистанцией —  количество общих генетических предков резко уменьшается по мере увеличения географического расстояния.

Однако наряду с  географически близкими (в пределях 50-100 км)  «совпаденцами», нередко в списках «совпаденцев», предоставляемых в 23andme или FTDNA появляются совершенно экзотические «совпаденцы». Например, у финна может появится совпаденец из Италии, а у корейца — из  Великобритании. Совершенно очевидно, что подобные случаи очень сложно объяснить не только простым сопоставлением сведений о географическом происхождении предков, но даже и безотказной в простых случаях  моделью наложения «этнопопуляционного аутосомного фона в виде коротких реликтовых  IBD сегментов».

В этой связи возникает практический вопрос — как интерпретировать подобные случаи, при условии что подобные сегменты представляют собой не «ложно-позитивные», а вполне достоверные совпадения, указываюшие на существование в неопределенный момент прошлого некоего общего предка. И подобные случаи характерны не только для коммерческих «выборок», но и для вполне серьезных научных баз данных, например 1000 Genomes. В частности,  в этой базе данных при сравнении редких снипов у 89 британцев и 97 китайцев были обнаружены три англо-китайские пары с отдаленным генеалогическим родством ( в геноме этих пар были обнаружены идентичные по происхождению фрагменты (IBD сегменты) ДНК,  которые составляют 0,001%, 0,004% и 0,01%  их геномов).

Самое простое решение этой проблемы некоторые из любителей генетической генеалогии пытались найти в обращении к сервисам главного инструмента аутосомной генетической генеалогии  Gedmatch. В частности, как известно, данный сервер содержит онлайн-версии практически всех популярных среди любителей модификаций DIYDodecad калькуляторов. Например, выбрав разработанный мною калькулятор MDLP K23b в режиме Chromosome painting: Paint differences between 2 kits, 1 chromosome   и сравнив характер распределения предковых компонентов на гомологичных хромосомах у двух сравниваемых людей, можно получить примерное представление о географическом ареале, в котором мог жить общий предок этих людей (вероятно, на этот ареал будет указывать доминирующий на совпадающем сегменте компонент). Логика простая. Предположим, например, что мы сравниваем  сегменты хромосомы X в данных индивида A этнического происхождения D c данными индивида В этнического происхождения С. Здесь возможны три варианта

  • С-происхождение предка или предков индивида A
  • D-происхождение предка или предков индивида B
  • Y-происхождение подмножества предков обоих индивидов

Используя эту логику,  можно предположить что если в попарном сравнении  сегмента обозначится хорошо выраженное преобладание (по отношению к средним значениям) компонента, характерного для этнопопуляции С, то следует выбрать первый сценарий; аналогично, если обнаружится избыток компонентов характерных для этнопопуляции D, то следует выбрать второй сценарий; если будет замечено преобладание редких  для этнопопуляций С и D компонентов, то следует остановится на третьем варианте.

 


Пример I.

В этом примере мы будем использовать свои данные и данные женщины, с которой у нас был обнаружен подтвержденный генеалогией общий предок, живший в середине 19 века.  При сравнении наших данных, алгоритм поиска достоверных генеалого-генетических совпадений обнаружил три сегмента с генетической дистанцией > 7 cантиморганов, cостоящих в блочной записи из более чем 700 последовательно совпадающих снипов

Start Location End Location Centimorgans (cM) SNPs
4 32232224 42421625 13.2 1115
7 8295405 13845989 9.8 885
11 36784445 45084878 8.0 881

Самый большой сегмент = 13.2 cM
Общий размер сегментов с сантиморганах > 7 cM = 30.9 cM
Приблизительное число поколений до общего предка  = 4.4

Задетектированные  сегменты хромосом идеографически отображаются при попарном сравнении в цветовой гамме — черный цвет означает несовпадающие сегменты, другие цвета — компонентную привязку к одному из компонентов моего калькулятора MDLP K23b.  Ниже приведены фрагменты идеографического отображения 2 из 3 вышеуказанных совпадающих сегментов на кариограмму 4 и 7 хромосомы.:

M051225_F298455_4_D64088
Сегмент на 4 хромосоме
M051225_F298455_7_BC1A38
Сегмент на 7 хромосоме

Самый значительный сегмент (13.2 сM) на 4 хромосоме имеют хорошо заметную привязку к северо-восточно-европейскому компоненту [зеленый цвет], в исторической перспективе связанному с наследием мезолитического населения этого региона. А вот сегмент на 7 хромосоме имеет более сложную структуру, в которой характерно преобладание кавказского компонента [голубой цвет]. Таким образом можно уверено утверждать, что общий предок (или предки) могли жить в регионе восточной Европы.

К сожалению, данный инструмент сегментного сравнения на  Gedmatch хотя и прост в обращении (в силу интуитивной понятности), однако  далек от совершенства. В первую очередь, на аккуратность определения «генографического»происхождения сегмента влияет отсутствие на сервере  гаплоидных фаз похромосомных данных. В результате, сравнение ведется не по конкретной фазе (т.е по конкретной хромосоме доставшейся ребенку от каждого из родителей), а по диплоидному составному блоку, т.е вместо настоящих IBD мы можем оперировать half-IBD (HBD), которые на слэнге русскоязычных любителей именуются УПС-ами. Во вторых, аккуратность генографического определения  зависит от аккуратности определения предковых компонентов в используемом варианте калькулятора, но это отдельная тема для разговора.


К счастью, парадокс «экзотических» совпаденцев имеет более точное решение с помощью одной из программ, позволяющих определять геногеографическую структуру или «локальное происхождение» совпадающих сегментов.  Можно использовать разные программы, HAPMIX, LAMP , HAPAA, ANCESTRYMAP — так как несмотря на ряд принципиальных отличий, все они используют алгоритмы моделнй скрытых марковских цепей (HMM) и поэтому выдают в целом схожие результаты. К этому же классу программ относится и более новая програма PCAdmix, которую я буду использовать в своем втором примере, в котором я задействую фазированные в BEAGLE генотипы.  В целях разжевывания принципов работы программы, следует вкратце описать рабочий процесс PCAdmix.
PCAdmix являет cобой метод, который оценивает локальное происхождение хромосомных сегментов с помощью анализа главных компонентов (PCA)  фазированных гаплотипов. В самом начале выполняется анализ главных компонентов в 2-3 референсных панелех, необходимых доя построения пространства главных компонентов, например, для хромосомы 22 . Поскольку метод использует фазированные данные, каждая копия хромосомы 22 в референсных панелях рассматривается как отдельная точка в пространстве главных компонентов. Первые две главные компоненты, как правило, представляют собой оси «предкового» расхождения популяций референсных панелей, что хорошо заметно на графиках. Если подобного рассхождения не наблюдается,  то скорее всего в популяциях референсных панелей «маскируется» присутствие неявной популяционной субструктуры. В построенное таким способом пространство главных компонентов в дальнейшем проецируется группа лиц «смешанного» происхождения, и затем определяется значение нагрузки главных компонентов для каждого снипа.  После этого метод переходит к анализу коротких «окон» снипов — для каждого из этих окон вычисляются  вероятности того, что данное окно в гаплотипе человека «смешанного» происхождения происходит от одной из референсных популяций. Вычисленные таким образоом вероятности различных вариантов происхождения каждого окна снипов, используются на заключительном этапе метода в  скрытой моделе Маркова (HММ) для сглаживания шума в определении происхождения «окон» снипов. Таким образом, данная скрытая модель Маркова НММ зависит от значений главных компонентов, доли каждого «компонента происхождения» на заданной хромосоме, а также матрицы перехода, которая, в свою очередь, зависит от числа поколений прошедших с момента смешивания популяций и генетического расстояния (сM) между двумя окнами снипов. В текущей версии метода, рекомбинаторные расстояния и число поколений определяются параметрами.
Конечным результатом рабочего процесса PCAdmix является матрица состяний скрытой модели Маркова, содержащая апостериорную вероятность каждого из возможных вариантов происхождения для данного «окна снипов», и эта вероятность обусловлена остальной частью данных для хромосомы. Важно отметить, что происхождение каждого окна снипов определяется только в том случае если апостериорная вероятность для одного из возможных происхождений > = 0,8. Любое окно, для которого максимальная апостериорная вероятность любого варианта происхождения <0,8, считается «неопределенным».


Пример 2

Данный пример основан на реальном случае, когда ко мне обратился человек, чьи предки происходят из центральных регионов Азии. Смущенный наличием в списке своих совпаденцев в сервисе Relative Finder 23andme  человека с корейскими и японскими корнями, а также  семейными легендами о «восточноазиатской»прабабушке, он попросил меня определить вероятность присутствия японцев в числе своих ближайших (в пределах 5 поколений) предков, опираясь исключительно на аутосомные данные.

В этом эксперименте, я решил скурпулезно следовать инструкциям разработчиков PCAdmix, и для начала произвел фазирование (биоинформатическую реконструкцию гаплотипных фаз аутосомных хромосом) в программе BEAGLE. Данные тестанта (ок 400 тыс. снипов) были фазированы в присутствии 3 контрольных референсных групп популяций — британцев GBR, китайцев CHB и японцев JPT — поскольку эти группы были позднее задействованы мной в качестве 3 референсных панелей. В целях уменьшения количества ошибок, которые неизбежно появляются в результате импутации пропущенных «генотипов» снипов, я использовал только те общие снипы, которые были определены как в аутосомных данных клиента 23andme, так и в трех референсных группах.

Затем фазированные данные тестанта были похромосомно обработаны в рабочих циклах программы PCAdmix. Программа отфильтровала cнипы с низким значением MAF и высоким значением LD, в результате чего число снипов уменьшилось почти вдвое. Оставшиеся снипы были разбиты на «окна снипов», каждое из которых состяло из 20 снипов.  При расчете по всем 22 хромосомах, общее количество полученных таким разбиением «окон» составило 11 997. В конце рабочего цикла (метод главных компонентов + HMM) программа выдала для каждой парной аутосомной хромосомы A и B  файл в формате bed, удобном для отображения дополнительной информации в аннотации генома (номер хромосомы, начало и конец сегмента, наиболее вероятный регион происхождения сегмента, cM, максимальная вероятность и апостериорная вероятность одного из трех вариантов происхождения — JPT, GBR, CHB, непоказана в таблице). В конечном отчете GBR используется как индикатор сегментов не-восточноазиатского происхождения (nEA), JPT — японского происхождения (JPA), CHB — неспецифичных сегментов восточноазиатского происхождения (EA) :

10 111955 468599 GBR 0.004885 0.134147 GBR* 0.636943
10 521723 811876 GBR 0.142147 0.582463 GBR* 0.646868
10 815149 1151723 GBR 0.585829 0.898724 GBR* 0.676252
10 1156487 1335849 GBR 0.901503 1.23673 GBR 0.925059
10 1337709 1449849 GBR 1.24246 1.60705 GBR 0.99999
10 1454864 1510208 GBR 1.61249 1.76798 GBR 0.999506
10 1512546 1623734 GBR 1.77039 2.12653 GBR 0.999647
10 1624900 1669347 GBR 2.13038 2.25357 GBR 0.999778


Выбор формата BED в качестве формата выходных в моем случае также был далеко неслучайным. C помощью одной из библиотеки платформы Bioconductor формат BED легко отображается в кариограмме 22 пар аутосомных хромосом человека (я использовал координаты геномного билда b37). Чтобы было понятно, что именно изображают эти «кариоплоты» (идеографические изображения хромосом), необходимо пояснить, что  «японское происхождение» (JPA) приписывалась 20-сниповому сегменту только в том случае, если апостериорная вероятность японского происхождения данного «окна из 20 снипов» составляла > = 0,8. Любое окно, для которого максимальная апостериорная вероятность любого варианта составляля <0,8, засчитывалось как окно  с «неопределенным» происхождением (UND).Chromosomes A

Chromosomes A

 

Chromosomes B
Chromosomes B

Эксперимент показал, что среди 11997 «окн» число  «окон» не-восточноазиатского (nEA) происхождения (7650) почти в два раза больше чем число «восточноазиатских» сегментов. Происхождение 2750 геномных «окон» снипов невозможно определеить, и только 965 «окна» могут быть определены как «японские по происхождению». Вместе с 617 окнами «китайского» (EA),  восточно-азиатские сегменты составляют меньше, чем 10% генома.
Не менее важно и то обстоятельства, что значительная доля этих сегментов-окон пришлась на низких «консервативные, низкорекомбинантные» области хромосом,  — такие, как  например, теломеры, центромеры и регионы с низкой плотностью снипов: сегменты в таких регионах могут переходить от одного поколения к другому фактически в неизменном виде. Наконец, те же закономерности распределения родословной были отмечены в обеих фазированных наборах аутосомных хромосом, что опровергает версию о недавной «восточноазиатской» примеси со стороны одного из родитедей и скорее  свидетельствует о древнем эпизоде смешивание определенных центрально- и юго-западноазиатских групп с группами восточноазиатского происхождения (например, в ходе монгольских или тюркских нашествий).

Разумеется, как и во многих других моделях анализа, основанных на вероятностях, наше заключение нельзя считать окончательным вердикторм. Вместо этого, лучше сказать, что шансы в пользу существования «недавнего японского предка» против шансов отсутствия такого, составляют 10 к 90. Другими словами, вариант с недавней японской «примесью» нельзя полностью исключить, поскольку вероятность такого сценария  составляет 11%.

 

Расширенные карты для палеогеномов

Обновлено 30.11.2014

Этот пост также продолжает один из предыдущих, а именно визуализацию суммы IBD-сегментов (а возможно, это и не IBD — вопрос остается открытым) двух палеоевропейцев и мальчика со стоянки Мальта с современными  выборками. С тех пор в открытом доступе появилось еще несколько обработанных палеогеномов — «усть-ишимец«, «Костенки-14» («человек с Маркиной горы») и два палеогенома хорошего качества из Венгрии.

Результаты собраны мной в онлайн-таблицу, а также отрисованы на расширенных картах. Поскольку усть-ишимец явно тяготел к восточноазиатам, пришлось добавить к сравнению выборки из Южной и Восточной Азии. Ну а после этого логика подсказывала, что неолитических земледельцев Европы неплохо бы сравнить с жителями Ближнего Востока. Таким образом, все карты перерисованы.

Напомню также, что результаты для «мальтинца» и «костенковца» получены при ослабленных настройках фильтра из-за низкого качества прочтения этих двух геномов. Напрямую сравнивать их с пятью другими нельзя. Для отрисовки Loschbour значения умножены на 1,5 в целях повышения контрастности.

«Неолитическая фермерша» )) Stuttgart/LBK

«Неолитический земледелец» NE1:

Усреднение по двум земледельцам дает более ровную картинку:

«Охотник-собиратель» Loschbour:

Разница между «охотником-собирателем» и усреднением по двум земледельцам. Красное — больше сегментов с Loschbour, зеленое — c Stuttgart и NE1

Европеец позднего бронзового века BR2 из Венгрии:

«Усть-ишимец»:

Костенки-14 (ослабленные настройки):

Мальтинец (аналогично):

И наконец, в качестве примера результата нашего современника, моя собственная карта:

 

 

Визуализация уровня гомозиготности и генетического разнообразия у народов Евразии

Обновлено 30.11.2014

После составления при написании предыдущего поста таблицы уровня гомозиготности в выборках Евразии, мне, конечно же, захотелось визуализировать его на карте (дополнив рядом новых выборок) .  Можно считать, что эта карта показывает уровень генетического разнообразия у каждого народа (ведь чем ниже количество гомозиготных снипов, тем разнообразие выше), но с одной оговоркой. Дело в том, что это число сильно зависит от используемого набора снипов. Таким образом, если в наборе много снипов, более часто встречающихся у европейцев, то разнообразие у них автоматически окажется завышенным, а у жителей других частей света — заниженным. А поскольку чипы для генотипирования предназначены в первую очередь для европейцев, такое вполне возможно.

Но все же мне кажется, что этот эффект либо не повлиял на результаты, либо повлиял незначительно. Наиболее разнообразными выборками получились отнюдь не европейские, а жители районов, прилегающих к Красному Морю. Это выглядит вполне объяснимо, поскольку где-то там и находится прародина всех не-африканцев. Другие результаты смотрятся тоже очень логично — по мере удаления от прародины разнообразие постепенно терялось.

Update от 21.01.2015. Для оценки эффекта можно сравнить с подсчетами из работы Fu et al:

FuHomosyg

Как можно увидеть, результаты по неафриканским популяциям хорошо коррелируют с моими. Однако по африканским выборкам результат прямо противоположный. Очевидно, евразийские снипы у них менее распространены, зато имеются свои собственные. Таким образом, метод (с данным набором снипов) можно использовать для выборок за пределами Черной Африки.

На карте зеленым цветом выделены выборки с наибольшим разнообразием, красным — с наименьшим:

HomosygIBDext

Как я уже писал, наивысшим разнообразие получилось у жителей Египта, Эфиопии, Йемена. Наинизшее из присутствующих на карте — у народов Северо-Восточной Сибири и Южного Китая. Однако у не попавших на карту есть и гораздо более экстремальные значения гомозиготности. Наибольшей она оказалась у южноамериканских индейцев и выборки папуасов. Чуть отстали африканские пигмеи, а вот обычные африканцы (йоруба и кенийские банту) вышли примерно на уровне восточноазиатов. Возможно, их реальное разнообразие еще выше (с учетом эффекта, описанного в первом абзаце).

Видно снижение разнообразия у народов-изолятов — калашей и бедуинов. И наоборот, у народов смешанного происхождения разнообразие выше. Например, на границе Европы и Азии выделяются ногайцы, башкиры, татары, коми-зыряне. В целом в Европе разнообразие плавно снижается с юга на север, за исключением выборок-изолятов — басков и сардинцев. А, допустим, в Индии все наоборот — понижение идет с северо-запада, откуда шли вторжения пришельцев, на юг и восток, к дравидам и австроазиатам.

При подсчете суммы IBD-сегментов уровень гомозиготности в выборке играет заметную роль. Например, «экстремалы» эвенки и эвены всегда разделяют меньше сегментов с европейцами, чем их соседи, но зато больше — с восточноазиатами.

В заключение приведу обновленную таблицу среднего процента гомозиготных снипов по используемым выборкам (и по используемому набору снипов):

Yemenite 65,20%
Egyptian 65,31%
Ethiopian 65,33%
Nogay 65,49%
Moroccan 65,52%
BR2 65,61%
Tatar-Kazan 65,65%
Azerbaijani 65,66%
Tatar-Crimean 65,67%
Kumyk 65,71%
Uttar-Pradesh-HC 65,72%
Bashkir 65,73%
Balkarian 65,78%
Komi 65,88%
Gujarati 65,92%
Tadjik 65,92%
UAE 65,92%
Turkmen 65,95%
Uzbek 66,00%
Uygur 66,00%
Greek_Azov 66,01%
Ashkenazi 66,03%
Ossetian 66,04%
Spanish 66,05%
Burusho 66,05%
Chuvash 66,05%
Croatian 66,05%
Abkhazian 66,09%
Iranian 66,09%
Russian-North-East 66,10%
Lezgin 66,10%
German 66,10%
Armenian 66,13%
Bulgarian 66,13%
Russian-South 66,14%
Italian-South 66,15%
Romanian 66,16%
Ukrainian-West-and-Center 66,16%
Sicilian 66,16%
Russian-North-Kargopol 66,17%
Greek 66,17%
Cypriot 66,18%
Swedish 66,19%
Palestinian 66,19%
Chechen 66,20%
Belarusian 66,20%
Hungarian 66,23%
Hazara 66,23%
Moksha 66,23%
Erzya 66,24%
Udmurt 66,25%
Georgian 66,26%
Ukrainian-East-and-Center 66,26%
Sephard 66,27%
Italian 66,29%
Ust-Ishim 66,29%
Kazah 66,29%
Tatar_Lithuanian 66,30%
Kurd 66,32%
Jordanian 66,33%
Turkish 66,33%
Mari 66,33%
Polish 66,34%
Adygei 66,35%
Norwegian 66,35%
Russian-West 66,36%
French 66,36%
Estonian 66,42%
Balt 66,45%
Karelian 66,45%
Kol 66,47%
NE1 66,49%
Veps 66,50%
British 66,51%
Finnish 66,51%
Tunisian 66,52%
Uttar-Pradesh 66,53%
Mansi 66,60%
Sindhi 66,61%
Brahui 66,68%
Kanjar 66,71%
Pathan 66,75%
Syrian 66,78%
Kirgiz 66,79%
Saud 66,91%
Makrani 67,02%
Basque 67,02%
Druze 67,08%
LBK 67,08%
Sardinian 67,08%
Andhra-Pradesh 67,09%
Bedouin 67,27%
Karnataka 67,33%
Hakas 67,33%
Altaian 67,33%
Balochi 67,36%
Saami 67,55%
Mongol 67,56%
Kalash 67,59%
Shor 67,63%
Munda 67,75%
Kerala 67,88%
Burmese 67,97%
BantuKenia 68,08%
Tuvinian 68,08%
Dolgan 68,24%
Tamil-Nadu 68,27%
Buryat 68,48%
Selkup 68,49%
Ket 68,54%
Xibo 68,54%
Cambodian 68,61%
Mongola 68,63%
Tu 68,65%
Yoruba 68,68%
Yakut 69,01%
Daur 69,11%
Han-North 69,14%
Nivh 69,25%
Naxi 69,31%
Evenk 69,32%
Hezhen 69,34%
Oroqen 69,39%
Yi 69,40%
Han 69,48%
Dai 69,62%
Japanese 69,67%
Miao 69,73%
Tujia 69,80%
She 69,88%
Naga 70,06%
Lahu 70,14%
Nganassan 70,37%
Even 70,64%
BiakaPygmy 70,69%
Maya 71,08%
MbutiPygmy 72,80%
Melanesian 73,03%
Loschbour 73,79%
Papuan 75,67%
Karitiana 76,17%
Kostenki-14 85,96%
Motala12 90,19%
Malta 94,41%

Оценка влияния уровня аутосомной гомозиготности при генотипировании на длину и количество ложных IBD-сегментов

В последнее время я пробовал сравнивать файлы геномов, полученные при генотипировании останков древних людей, с современными выборками в поисках  длинных общих IBD (или все же на деле это IBS?)-сегментов. Как выяснилось, результат в первую очередь зависит от качества прочтения древнего генома, особенно от уровня гомозиготности. Большинство древних геномов прочитывают с небольшим уровнем покрытия (1х-2х), и естественно, при этом захватывается лишь один аллель. Например. если реальные значения снипа A и T, при единичном прочтении можно увидеть либо A, либо T — второе значение останется нерасшифрованным. Любой длинный сегмент при этом окажется разорван.

Есть и геномы, прочитанные с высоким качеством. Их уровень гомозиготности близок к получающемуся у наших современников при коммерческом тестировании в FTDNA и 23andMe. Например, к таким относится BR2 из недавней работы Gamba et al. «Genome flux and stasis in a five millennium transect of European prehistory». Сумма общих сегментов у «венгра» бронзового века с европейскими выборками вполне сопоставима с тем, что получается у наших современников. Как уже неоднократно писалось, возраст таких сегментов вполне может насчитывать несколько тысячелетий, поэтому результат не слишком удивляет. Однако общие сегменты с нашими современниками нашлись и у «усть-ишимца» — древнейшего расшифрованного генома человека современного типа возрастом около 44 тысяч лет (согласно радиоуглеродной датировке). Сложно поверить, чтобы IBD-сегменты могли сохраняться так долго. Что послужило этому причиной? Поддержка отбора, ошибки генетической карты (расстояния между многими снипами получены интерполированием, а это может быть неправильно)? А может быть, это вовсе и не IBD-сегменты, а просто случайно возникшие IBS?

(IBD (identical by descent) — участки совпадающих последовательностей снипов, полученные несколькими людьми от одного и того же предка в результате общности происхождения. IBS (identical by state) — тоже участки совпадающих последовательностей снипов, но причины этого совпадения могут быть другими. Формально IBD это частный случай IBS, но часто понятие IBS используют как синоним лже-IBD сегмента)

Если высокий уровень гомозиготности способен разрушать сегменты, не может ли высокий уровень гетерозиготности создавать лже-сегменты? Вообще, насколько протяженными могут быть лже-IBD сегменты, и каково их количество? Понятно, что идеально гетерозиготный генотип (то есть несущий оба аллеля для каждого снипа) будет совпадать на уровне «родитель-ребенок» с любым человеком (в реальной жизни его возникновение невозможно, разве что искусственным путем). Также понятно, что по теории вероятностей между любыми двумя людьми будут возникать микро»сегменты» из случайно совпавших снипов. Насколько протяженными они могут быть?

Для начала я решил попробовать оценить уровень гомозиготности в используемом мной для IBD-карт наборе выборок. Для сравнения туда же добавлено несколько древних геномов (они выделены жирным шрифтом). «Усть-ишимец» пока выложен лишь до 8 хромосомы, это составляет около половины протяженности аутосом по количеству снипов. Используется набор из примерно 255 тысяч снипов, на другом наборе результаты должны отличаться. Показан усредненный по выборке процент снипов от общего числа, где оба аллеля совпадают.

Уровень гомозиготности по выборке:

Nogay 65,49%
BR2 65,61%
Tatar-Kazan 65,65%
Azerbaijani 65,66%
Tatar-Crimean 65,67%
Kumyk 65,71%
Bashkir 65,74%
Balkarian 65,78%
Komi 65,88%
Tadjik 65,92%
Turkmen 65,95%
Uzbek 66,00%
Uygur 66,00%
Greek_Azov 66,01%
Ossetian 66,01%
Ashkenazi 66,03%
Croatian 66,05%
Chuvash 66,08%
Iranian 66,09%
Lezgin 66,10%
German-Austrian 66,13%
Armenian 66,13%
Bulgarian 66,13%
Belarusian 66,13%
Russian-South 66,14%
Abkhazian 66,15%
Turkish 66,15%
Romanian 66,16%
Russian-North 66,17%
Greek 66,17%
Swedish 66,19%
Erzya 66,19%
Chechen 66,20%
Moksha 66,21%
Ukrainian-East-and-Center 66,21%
Georgian 66,22%
Hungarian 66,23%
Udmurt 66,25%
Sephard 66,27%
Italian 66,29%
Kazah 66,29%
Tatar_Lithuanian 66,30%
Ukrainian-West-and-Center 66,31%
Finnish 66,33%
Mari 66,33%
Polish 66,34%
Adygei 66,35%
Norwegian 66,35%
French 66,36%
Russian-West 66,37%
Estonian 66,42%
UstIshim 66,44%
Karelian 66,45%
Balt 66,46%
Veps 66,50%
British 66,51%
Mansi 66,60%
Kirgiz 66,79%
Basque 67,02%
LBK 67,08%
Sardinian 67,08%
Hakas 67,33%
Altaian 67,33%
Saami 67,55%
Mongol 67,56%
Shor 67,63%
Tuvinian 68,08%
Dolgan 68,24%
Buryat 68,48%
Selkup 68,49%
Ket 68,54%
Xibo 68,54%
Mongola 68,63%
Yakut 68,98%
Daur 69,11%
Han-North 69,14%
Nivh 69,25%
Evenk 69,32%
Hezhen 69,34%
Oroqen 69,39%
Nganassan 70,37%
Even 70,62%
Loschbour 73,79%
Motala12 90,19%
Malta-1 94,41%

Выборкой с наибольшим аутосомным разнообразием (наименьшей гомозиготностью)  оказались кубанские ногайцы, что совершенно не удивляет в связи с их смешанным происхождением. Многие другие народы из начала списка также известны своей смешанностью. Любопытно, что близки к началу и ашкенази, хотя я ожидал от них, наоборот, большего однообразия. Видимо, здесь проявляется их происхождение от двух различающихся групп — ближневосточников и европейцев.

Большая часть списка расположилась в промежутке 66-67% , в том числе и усть-ишимец. Несмотря на более свежий вклад неандертальцев и близость к общему корню, по уровню разнообразия он оказался таким же, как и наши современники. Либо здесь сказываются сложности с расшифровкой столь древнего генома, либо аутосомное разнообразие с тех времен поддерживалось на примерно одном уровне — вымывание одних снипов сопровождалось появлением новых.

Самым низким уровень разнообразия оказался у народов Сибири (где мы явно видим результат генного дрейфа) и китайцев (след быстрого расширения?). В Европе хуже всего с разнообразием оказалось у народов-изолятов — басков и сардинцев. Геном охотника-собирателя Loschbour, скорее всего, прочитан со средним качеством — похоже, это и было причиной того, что в предыдущей заметке у него оказалось меньше общих сегментов с нашими современниками, чем у «фермера» LBK, а вовсе не вымирание его народа.

Таким образом, за базовый уровень гомозиготности можно смело принять 66,6%, то есть 2/3 снипов из используемого мной набора у среднего европейца гомозиготны. Попробуем сделать оценку длины и количества лже-сегментов. Очевидно, что на гетерозиготных участках сегмент разорваться не может. Таким образом, вероятность разрыва на отдельно взятом снипе уже падает до 2/32/3=44,36% . (это оценка вероятности, что у обоих сравниваемых геномов выбранный снип гомозиготен. К сожалению, для упрощения модели пришлось использовать предположение, что для каждого снипа вероятность гетерозиготности примерно одинакова, в то время как в реальности это должно быть не так). Далее, если на гомозиготном участке у обоих геномов сравниваемый аллель один и тот же, то разрыва сегмента также не произойдет. Возьмем для простоты вероятность минорного варианта снипа как 1/6 (вероятность гетерозиготности на снипе 1/3, минорным мог быть либо первый, либо второй аллель, значит, делим вероятность пополам. В реальности надо считать сложнее, но для оценки подойдет). К разрыву могут привести два варианта — в первом геноме мажорный вариант снипа, во втором минорный — вероятность 5/61/6=5/36, и наоборот — в первом минорный, во втором мажорный вероятность такая же. Для получения итоговой вероятности разрыва сегмента на один снип мы умножаем 44,36% на (5/36+5/36) и получаем 12,32% вероятность разрыва лже-сегмента на любом случайно выбранном снипе.

Да уж, есть где запутаться ))) Надеюсь, я все же нигде сильно не ошибся и оценка близка к истине ))

Исходя из вероятности разрыва 12,32% на снип, лже-сегмент будет иметь кумулятивную, то есть накопленную вероятность разрыва 50% при прохождении 5-6 снипов (это медиана). Значит, половина лже-сегментов будет короче этого числа, половина-длиннее. Кумулятивная вероятность разрыва растет в 10 раз каждые 17-18 снипов — 90% лже-сегментов будут короче 18 снипов, 99% — короче 37,  99,9%-54 и так далее. Так как медианное значение при нормальном распределении обычно составляет около 0,7 от среднего, средняя длина лже-сегмента оценивается в 7,5 снипов. На 245 тысяч снипов будет приходиться 32 тысячи сегментов, а на 1130 геномов из используемых выборок — в общей сложности около 36 с половиной миллионов.

Из них около трех с половиной тысяч будут иметь длину не менее 72 снипа, около 36 — 107 снипов, а чтобы гарантированно снизить число лже-сегментов до нуля, нужно установить фильтр в районе 130-140 снипов. Что интересно, примерно на те же цифры я вышел экспериментальным путем, пробуя различные настройки. Оптимальным мне показалось отбрасывать все сегменты с длиной менее, чем 150 снипов. Теория неплохо сошлась с практикой.

Итак, лже-УПСы (участки половинного совпадения), возникшие по статистическим причинам, не должны оказывать особого влияния на IBD-сегменты. Подавляющее большинство из них по длине не превышает несколько десятков снипов (лишь примерно каждый тысячный преодолевает рубеж 50-60 снипов). Разумеется, из-за их наличия реально существующие сегменты неизбежно удлиняются, однако принципиально исказить картину это не может. Конечно, такие причины, как поддержка отбором и искажения, вызванные неточностью генетических карт, остаются в силе. Возможны и другие причины — загадка наличия значимых сегментов с палеоДНК продолжает требовать объяснения.

При ослаблении фильтра до 50 снипов, как в случае с мальтинцем, лже-УПСы уже должны стать заметными. Неудивительно, что при нормальных настройках значимых сегментов почти не получалось — уровень гомозиготности оказался весьма велик.

В заключение приведу график зависимости вероятности разрыва лже-сегмента от уровня гомозиготности в популяции при использовании той же формулы. Как уже писалось, идеально гетерозиготный геном не будет иметь разрывов вообще. Но и в идеально гомозиготной выборке разрывов не будет, ведь аллели у всех совпадают! Что же происходит в промежутке между этими двумя крайностями? Как выяснилось, максимальна вероятность разрыва лже-сегмента при уровне гомозиготности около 70%, что близко к реально существующему уровню. При больших значениях длина лже-сегментов начинает быстро расти из-за того, что все слишком похожи между собой, при меньших — из-за того, что на гетерозиготных снипах сегмент порваться не способен. Уровни ниже 0,45 я убрал из-за их явной нереалистичности. Как можно догадаться, там график движется к нулю.

HZ

Сравнение двух древних европейцев и одного сибиряка с выборками из современных народов методом поиска общих аутосомных сегментов

За последние годы был опубликован ряд работ, посвященных попыткам генотипирования останков древних людей — от живших несколько тысячелетий назад до «усть-ишимца» с предположительным возрастом около 45 тысяч лет, неандертальцев и «денисовки». Количество таких расшифровок растет все быстрее, что не может не вызывать оптимизма.  Трудами известного геномного блоггера Феликса Чандракумара большинство из них было переведено в простой и доступный формат, аналогичный файлам raw data от FTDNA и 23andMe.

Ради интереса я попробовал проверить геномы (предположительно, это два «бритта» железного века и три «англа», «сакса» или «юта» времен переселения этих племен в Британию) из одной из таких недавних работ на наличие IBD-сегментов с современными выборками. Ничего особенного от этой попытки я не ожидал, но результат все равно разочаровал. Никаких связей с современными германцами или кельтами, лишь короткие обрывки сегментов с северо-восточными европейцами.

Как выяснилось, большинство из имеющихся сейчас древних геномов совершенно не годится для такого рода анализа. Основная причина — крайне низкое качество генотипирования. Количество снипов и прочтений на один снип невелико, и подавляющее большинство из них гомозиготно (то есть второй аллель не прочитан). А это значит, что практически все IBD-сегменты разрушены и мы можем увидеть лишь самый базовый и древний уровень родства. В терминах этнокалькуляторов на основе Admixture это оказался (в данном случае) «северо-восточноевропейский» предковый компонент, который наиболее ярко проявляется у народов восточной Балтики — с ними и нашлось наибольшее количество обрывков.

Тем не менее, не все так плохо. Можно выделить известную работу Иосифа Лазаридиса с коллегами о трех предковых популяциях современных европейцев. Геномы европейского раннего земледельца культуры линейно-ленточной керамики (образец Stuttgart, или LBK. Около 7500 лет назад) и почти синхронного ему охотника-собирателя, останки которого найдены на территории нынешнего Люксембурга (Loschbour, около 8000 лет назад) прочитаны очень качественно и почти не уступают файлам от 23andMe и FTDNA.

Карта сумм общих сегментов древнего земледельца с современными выборками:

LBKIBD

С заметным отрывом от остальных лидируют жители острова Сардиния, считающиеся сохранившимися в наиболее чистом виде потомками когда-то переселившихся в Европу земледельцев Восточного Средиземноморья. За ними следуют другие южноевропейские популяции (включая ашкенази и сефардов), скандинавы и восточноевропейцы.

Sardinian 61,06 —//Confidence: very high
Italian 50,14 —//Confidence: very high
French 49,56 —//Confidence: very high
Bulgarian 48,9 —//Confidence: high
Hungarian 48,29 —//Confidence: very high
Basque 45,92 —//Confidence: very high
Greek 45,7 —//Confidence: very high
Norwegian 44,95 —//Confidence: high
Ashkenazi 44,04 —//Confidence: high
Sephard 43,52 —//Confidence: high
Croatian 42,23 —//Confidence: very high
Belarusian 42,12 —//Confidence: high
Swedish 41,86 —//Confidence: high
German-Austrian 41,33 —//Confidence: very low
British 41,2 —//Confidence: very high
Russian-South 40,7 —//Confidence: very high
Balt 40,38 —//Confidence: high
Greek_Azov 39,61 —//Confidence: low
Ukrainian-East-and-Center 39,49 —//Confidence: medium
Estonian 39,27 —//Confidence: high

Наличие общих сегментов с этими народами можно объяснять и миграциями потомков земледельцев на север, и ассимиляцией «земледельцами» «охотников» при продвижении вглубь Европы. Думается, для южных европейцев более актуальна первая причина, для восточных вторая, скандинавы где-то посередине.

Все это не новость, хотя мне понравилось подтверждение работоспособности метода. Более интересным мне показался «язык», протянувшийся на восток — через Кавказ и Среднюю Азию до самой Монголии. Забегая вперед, скажу, что у «охотника» Loschbour такого не наблюдается. Чем может объясняться эта связь? Приток генов с Востока к предкам «штутгартца»? Или же наоборот, его родственники, переселившиеся на восток, оставили свой след в геноме монголов? Для проверки я решил использовать один из этнокалькуляторов, разработанных до появления образца LBK в открытом доступе. При разработке более поздних он был использован как европеец и мог исказить картину.

LBK

Как видите, никаких следов Восточной Азии — чистый средиземноморец. Так что совсем не исключено, что на востоке мы здесь видим следы, к примеру, афанасьевцев.

«Охотник» Loschbour не показал такого яркого сходства ни с одной из современных выборок. Можно предположить, что его племя не оставило дожившего до наших дней потомства, или же оставило мало. Тем не менее, очень хорошо видно, кто из наших современников в наибольшей степени родственен древнему охотнику — это восточноевропейцы с максимумом на восточном побережье Балтийского моря

LoschbourIBD

Finnish 41,21 —//Confidence: very low
Estonian 39,63 —//Confidence: high
Balt 37,85 —//Confidence: high
Russian-North 36,25 —//Confidence: very high
Belarusian 35,31 —//Confidence: high
Karelian 35,21 —//Confidence: high
Veps 34,75 —//Confidence: medium
Ukrainian-West-and-Center 34,48 —//Confidence: medium
Polish 33,8 —//Confidence: high
Norwegian 32,34 —//Confidence: high
German-Austrian 31,4 —//Confidence: very low
Russian-South 30,87 —//Confidence: very high
Russian-West 30,73 —//Confidence: medium
Erzya 30,19 —//Confidence: medium
Saami 30,12 —//Confidence: high
Swedish 29,78 —//Confidence: high
Hungarian 28,55 —//Confidence: very high
Ukrainian-East-and-Center 28,54 —//Confidence: medium
Croatian 27,31 —//Confidence: very high
Komi 26,48 —//Confidence: high

Образец Loschbour в том же этнокалькуляторе MDLP K5:

Loschbour

Для визуализации разницы между «охотником» и «земледельцем» я нормировал значения первого путем умножения на 1.5. Красный цвет означает большее родство с Loschbour, зеленый — LBK. Бурый, как у удмуртов, эвенков или китайцев — нейтрален.

LminusLBKIBD

Но что же наш третий источник наследственности европейцев, аутосомный компонент Ancestral North Eurasian, полученный при генотипировании останков мальчика с сибирской палеолитической стоянки Мальта? К сожалению, его геном расшифрован не так хорошо по сравнению с двумя предыдущими. Это и неудивительно — оценочный возраст мальтинца втрое больше, около 24 тысяч лет. К тому же за это время и количество сегментов, дошедших до наших современников, должно заметно упасть. Поэтому поиск общих сегментов со стандартными настройками дал весьма невразумительную картину. Пришлось резко ослабить настройки фильтра — вместо минимального размера сегмента в 15о снипов (из примерно 200 тысяч) до 50, и вместо минимальной длины сегмента в 3 сМ до 2. После этого алгоритм смог кое-что уловить:

MaltaIBD

Итак, наиболее родственным мальтинцу народом среди наших современников получились удмурты. Вспоминается, что этот народ является одним из чемпионов по наличию Y-гаплогруппы N, пришедшей в Европу с востока. Впрочем, дело тут может быть совсем в другом.

Конечно, уровень погрешности здесь еще выше, чем в предыдущих случаях, но тем не менее, картина вырисовывается довольно отчетливо и неплохо коррелирует с распространением компонента ANE.

Сборный образец «древнего скандинава» Motala1-2 не показал столь же отчетливой картины, как Loschbour и LBK. Видимо, дело в том, что он получен в результате объединения данных из разных наиболее качественно прочитанных геномов. При ослаблении настроек фильтра аналогично мальтинцу получается весьма похожая на Loschbour картина, но более размытая. Не думаю, что есть смысл приводить ее здесь.

Итак, среди современных европейцев можно найти родственников представителей всех трех основных источников (по крайней мере, известных сейчас) их современного генофонда. Насколько реально это родство? Сложно сказать. Конечно, тяжело поверить в сохранение IBD-сегментов на протяжении сотен поколений. С другой стороны, как показало моделирование, мелкие сегменты почти неуничтожимы. А ведь для отрисовки карт используются в основном именно маленькие сегменты в диапазоне 3-4-5 сМ. Возможно, многие из них являются результатом случайного объединения еще более мелких сегментов, или они поддерживаются отбором, или случайно закрепились в популяции. Думаю, что мы в любом случае можем считать этих людей своими родственниками, хотя и не очень близкими ))

Исследование генетики татар Поволжья при помощи анализа на IBD-сегменты

Исследование генетики татар Поволжья при помощи анализа на IBD-сегменты

Не секрет, что под этнонимом «татары» в России зачастую скрываются совершенно разные этнические группы. Существуют татары казанские, астраханские, сибирские, крымские и т.д. В данном исследовании нас интересуют татары среднего Поволжья — казанцы и мишари.

Это достаточно многочисленный и активно тестирующийся народ, неплохо представленный в аутосомных базах 23andMe и FTDNA. По мере роста статистики прогонов татарских генотипов через калькулятор Вадима Веренича К27, я начал впадать в некоторое замешательство. В своем большинстве татары получались довольно близкими друг к другу по соотношению предковых компонентов Admixture. Однако одновременно существовали и различия, где было весьма сложно понять — не результат ли это попросту случайных отклонений? Разделение между казанскими татарами и мишарями проявлялось скорее как тенденция к несколько большим значениям «балто-славянских» и «финских» компонентов у вторых, чем как явный сигнал.

Поэтому при появлении у меня нового инструмента — скрипта, анализирующего наличие общих IBD-сегментов с научными выборками, я не замедлил пропустить через него имеющиеся генотипы татар из коммерческих выборок. Сразу же проявились различия, что позволило сделать вывод — несмотря на сходство татар по пропорциям предковых компонентов, их источники частично различаются.

Чтобы по возможности снизить влияние случайных отклонений, я постарался выделить усреднения по территориально-этническим группам. Наиболее бросающимся в глаза признаком казанских татар оказалось большое количество общих сегментов с марийской и чувашской выборками. Однако это еще не означает, что казанцы разделяют большую часть общих предков с марийцами или чувашами. Дело в том, что эти выборки испытали очень сильный генный дрейф. В результате даже не очень значительное родство с ними проявляется весьма ярко. В прошлой заметке я назвал это «эффект ашкенази», по имени наиболее известного примера. Судя по всему, марийцы и чуваши разделяют заметную часть общих предков, поэтому и «эффект ашкенази» у них общий.

Усреднение по трем казанским татарам из Апастовского района Татарстана:

Tatar-ApastovIBD

Довольно типичная картина — фоновая засветка по Восточной Европе, яркое пятно у марийцев и чувашей и более бледное — у татарской научной выборки. Точный источник татарской выборки мне неизвестен, но сравнительно слабые показатели могут хорошо объясняться большей численностью и генетическим разнообразием татар.

Татары из Тархановского района, 5 человек, выглядят весьма похоже, лишь марийско-чувашское пятно менее яркое:

Tatar-TarhanIBD

Татары из северо-западной части Башкирии, четыре человека. По сравнению с предыдущими выборками, добавилось некоторое влияние удмуртов и башкир:

Tatar-Bash-NWIBD

Насколько же велико может быть количество общих предков татар с чувашами и марийцами? Попробуем сравнить апастовскую выборку с усреднением по трем чувашам:

ChuvashIBD

В калькуляторах на базе Admixture у чувашей ярко проявляется «уральский» компонент, и здесь мы хорошо видим его распространение — от саами до манси. Уровень пересечения с чувашской выборкой при моих типичных настройках — 115 сМ. Примерно такой же уровень получился у марийца (отличие от чувашей — в более высоком пересечении с марийской выборкой). При этом у людей с наполовину марийским или чувашским происхождением этот показатель составил чуть меньше 80. У апастовской выборки — 67. Можно сделать прикидку, что при недавнем адмиксе это соответствовало бы примерно 1/3 общих предков. Однако если эти предки жили давно, когда дрейф проявился еще не так сильно, их доля могла быть выше. Таким образом, оценкой снизу будет 30%. Провести оценку сверху поможет упоминавшийся «уральский» компонент. При калибровке К27 его содержание у чувашей получилось равным 19, усреднение по татарам из апастовской выборки —  около 9. Таким образом, даже если все не пересекающиеся с чувашами предки были из популяций с нулевым содержанием этого компонента (что малореально), вклад чувашей не мог быть выше 50%. Думаю, что наиболее реалистичным вариантом будет все же 1/3.

Разумеется, существует еще вариант, что чуваши получили «уральский» компонент уже после разделения с татарами. Тогда количество общих предков может быть и гораздо большим. Однако этому варианту скорее соответствует некий более древний уровень родства, чем рассматриваемые здесь исторические времена.

Я попробовал подсчитать, исходя из предположения, что «чувашские» компоненты составили 1/3 наследственности татар, на что могли быть похожи оставшиеся 2/3 по К27. В одиночном режиме результат оказался непохожим ни на один народ, кроме самих татар. В режиме смеси комбинации тоже показались на первый взгляд очень странными, однако, как мы позже увидим, кое-какой смысл в них был:

Using 2 populations approximation:
1 Nogay_D+Russian_Novgorod_D @ 6,174824

Using 3 populations approximation:
1 50% Russian_North_R8 +25% Kazakh_R2 +25% Romanian_D @ 3,826868

2 50% Russian_North_R8 +25% Bulgarian_S14 +25% Kazakh_R2 @ 4,087314

У меня не нашлось полноценной мишарской выборки из районов за пределами Татарстана и Башкирии, поэтому пришлось объединить три образца, получившиеся похожими и по IBD-картографу, и по предковым компонентам в калькуляторе Вадима Веренича. Первый происходит из мишарей Нижегородской области, второй — из пензенских мишарей, третий — из служилых татар Самарской области.

Mishar-NPSIBD

Как мы можем видеть, здесь не только нет «марийского» пятна, но даже наоборот — на этом месте показано уменьшение количества общих сегментов по сравнению с соседними популяциями. Родство с чувашами имеется, однако, очевидно, идет по другой линии предков чувашей, не совпадающей с предками марийцев. Наиболее же сильно выделяются эрзяне. Как и в случае родства казанских татар с чувашами, это вовсе не говорит об определяющем вкладе эрзян в генетику мишарей. Нижний предел я бы оценил аналогичным предыдущему случаю методом примерно в 20-25%. Что касается верхнего ограничителя, тут сложнее из-за отсутствия специфического «эрзянского» компонента Admixture. Если ориентироваться на общий восточноевропейский компонент Balto-Slavic, то он ограничивает максимальный уровень примерно 70-80 процентами. Вполне возможно, что предками мишарей были не сами эрзяне или мокшане, а родственная им соседняя популяция — это дополнительно затрудняет оценку.

Для сравнения, эрзянская выборка, пять человек:

ErzyaIBD

Мишари из Дрожжановского района Татарстана, три человека:

Mishar-DrozzhIBD

Картина схожа с предыдущей мишарской выборкой, однако у марийцев уже нет провала. Возможно, это связано с близостью к Чувашии, возможно — с влиянием казанских татар.

Выборка мишарей из Башкирии получилась ближе к казанскому варианту. Это может объясняться спецификой именно данной выборки, либо различиями между мишарями в целом. Придумать объяснений можно много, но думаю, здесь нет смысла в них вдаваться.

Mishar-BashkIBD

Итак, для каждого из народов (или, при другом подходе, субэтносов), мы видим на картах один из предковых источников. Однако попытка вывести оставшиеся источники методом пересчета предковых компонентов оказалась малоудачной. Чтобы решить эту проблему, я попробовал визуализировать разницу с первым источником. На карте приведена разница между первой («сборной») мишарской выборкой и эрзянами, для контрастности умноженная на три:

MNPSminusErzyaIBD

Зеленые тона показывают выборки, более близкие эрзянам, красно-бурые — мишарской выборке. Промежуточные варианты одинаково близки и тем, и другим. Максимум разницы в пользу мишарей достигается из крупных выборок у бурят и тувинцев, что очень хорошо совпадает с недавней работой по генетическим следам тюркской экспансии . Немногим отстают от них и башкиры с казахами. Интересно, что кавказские выборки, за исключением ногайцев и балкарцев (наличие в этой компании армян остается загадкой )) ), получились несколько ближе к эрзянам, что говорит против теории о связи мишарей с Кавказом (либо она каким-то образом идет через эрзяноподобную сторону). Пятно у вепсов, думаю, тоже что-то означает, поскольку в слабом виде видно у многих татар. Однако это может быть и следствием более высокого уровня дрейфа у вепсов по сравнению с соседями.

При построении аналогичной карты для пары казанцы/чуваши в качестве базовой выборки я выбрал апастовскую. Башкирские по понятным причинам не могут служить типичным образцом, а тархановская демонстрирует тенденцию сдвига к мишарям. К тому же наиболее родственная чувашам выборка может выявить отличия с ними более показательно.

TAminusChuvashIBD

Зеленая зона вдоль северной части Сибири объясняется более высоким уровнем родства с этими народами у чувашей, чем у татар (все тот же уральский компонент). Родство с народами степной полосы и возможной тюркской прародины находится на примерно одном уровне у «чувашской» и «нечувашской» части генома казанских татар. Родство же с выборками Средней Азии, Кавказа, Средиземноморья — выше. Вероятно, средиземноморскими же пересечениями объясняется повышенный уровень общих сегментов с ашкенази (не забываем, что это число надо делить в разы из-за ашкенази-эффекта). Примерно такого же уровня пятно с крымскими татарами выглядит бледнее из-за небольшой площади полуострова. Интересно также пересечение с болгарами. Не думал, что их тюркский компонент проявится настолько заметно. Впрочем, возможно, это объясняется турецкими или татарскими вливаниями, а не древними булгарами. Ну и обращает на себя внимание знакомое пятно у вепсов и эстонцев.

А теперь вспомним еще раз раскладку при попытке реконструкции «нечувашской» части на базе К27:

2 50% Russian_North_R8 +25% Bulgarian_S14 +25% Kazakh_R2 @ 4,087314

Неправильно, однако уже не так странно, как казалось вначале.

Не следует думать, что перечисленные популяции составляют 2/3 наследственности казанских татар (раз уж 1/3 мы оцениваем вклад «чувашской» стороны). Более вероятным кажется вариант, когда заметную часть от этих 2/3 занимает некая нейтральная по отношению к чувашам популяция, у которой уровень IBD сегментов с другими уральцами и восточноевропейцами был близок к ней. Из-за нейтральности она плохо выделяется на картах IBD-разности, однако калькуляторы на базе Admixture показывают — вклад пришельцев с далекого Юга или Востока не мог быть определяющим. Возможно, именно на эту популяцию намекают «вепсско-эстонское» и «южно-русское» пятна.

В завершение я хочу привести карту разницы между мишарями и казанцами:

MNPSminusTAIBD

С казанской стороны мы видим знакомые марийско-чувашское и крымско-татарское пятна, а также, слегка неожиданно, но не удивительно, азербайджанское (с расширением вдоль Южного Каспия). С мишарской стороны знакомые эрзяне, неожиданно выделилась территория ВКЛ (какие-то вливания оттуда в геном мишарей?), и, по совсем непонятной причине, выборка коми. Родство с азиатскими выборками идет с некоторым перевесом в пользу казанцев, особенно в «зоне марийско-чувашского влияния».

Аналогично примечанию к предыдущей карте, не следует забывать — здесь показана разница. Нейтральная общность может быть велика, но не видна этим методом.

Визуализация количества общих (IBD) сегментов — часть вторая

Обзор волжско-уральских популяций я хочу начать несколько издалека — с карты для селькупа из селения парабель Томской области. В какой-то мере он служит той же цели, что и литовец в предыдущей части:

Selkup-ParabelIBD

Пересечение с соседями по западной Сибири зашкаливает, как и положено для небольших групп с высоким уровнем генного дрейфа. Однако интересно не это, а выбросы на запад — к башкирам, удмуртам, марийцам. чувашам. Видно и повышение у саами. Таким образом, здесь мы наблюдаем распространение «уральского» генетического компонента.

Очень специфичной популяцией являются и марийцы. Уровень «эффекта ашкенази» получился намного выше, чем у самих ашкенази. Таким образом, все народы, имеющие хоть в сколько-нибудь заметной степени общих предков с марийцами, хорошо видны на карте:

MariIBD

В первую очередь это чуваши, сильно влияние у выборки казанских татар, удмуртов, манси и башкир. Вот это и есть «волжско-уральский круг популяций». Интересно, что коми и удмурты оказались в разных категориях, несмотря на языковое родство. Впрочем. как видно по карте коми-зырянина в предыдущей части, есть между ними и генетические пересечения.

100% чуваша из коммерческих выборок у меня нет, однако человек наполовину чувашского происхождения проявляет сходство как с чувашами, так и с марийцами. В отличие от предыдущей карты, чуваши у него на первом месте (это видно в таблице, поскольку картограф обрезал оба зашкаливающих значения до допустимого максимума) :

Chuvash-MokshaIBD

А вот нижегородские мишари более уместно смотрелись бы в предыдущей части заметки:

Mishar-NizhniyIBD

Родство с балто-славяно-финским кругом популяций явно более выражено. чем с волжско-уральским.

Татарин смешанного казанско-мишарского происхождения, южная часть Татарстана:

Tatar-SamaraIBD

Еще раз напомню — неправомерно на основании наиболее яркого пятна у марийцев говорить, что этот человек наиболее близок марийцам. Наличие общих предков с этим народом проявляется в разы ярче из-за «ашкенази-эффекта». То, что татарско-казанская выборка гораздо бледнее, объясняется тем, что татары — более крупный народ с высоким генетическим разнообразием.

Татарин с Урала (часть предков-башкиры):

Tatar-Bashkir-UralIBD

Как ни странно, я не просчитал ни одного «классического» казанского татарина, увлекшись краевыми случаями. Возможно, у него казанская выборка оказалась бы ярче. Эту задачу оставим на будущее.

Башкир:

BashkirIBD

Интересно продление пятна на северо-восток, к уральским народам вплоть до юкагиров.

У сибирского татарина видна общность с селькупами и марийцами. Вспоминая яркость на карте парабельского селькупа, степень этой общности не так уж и велика. Виден и вклад из монгольских степей.

Tatar-SiberianIBD

Неожиданно, у казаха количество общих сегментов с восточносибирскими популяциями оказалось выше, чем с собственно казахской выборкой:

KazahIBD

На ум приходят два объяснения — гетерогенность казахов и более высокий уровень «ашкенази-эффекта» у восточносибирских народов. Впрочем, я недостаточно владею информацией по этногеномике казахов, чтобы строить предположения.

Результаты казаха замыкают мое исследование. Не скажу, что в его результате я открыл для себя что-то сильно новое и неожиданное, однако общая картина стала более понятной и наглядной. Эксперимент мне понравился.

Этногеномика беларусов — часть V

Обсуждение результатов и выводы

 

Как отмечалось в введении к нашей статье, главной задачей нашего исследования являлась проверка двух рабочих гипотез, озвученных в предыдущих исследованиях профессиональных попгенетиков. Во-первых, это гипотеза о присутствии трех основных древних компонентов , которая указывает на возможность общего происхождения славян и балтов. Во-вторых, это утверждение о том, что своеобразие аутосомного генофонда беларусов может быть связанно с вкладом балтского субстрата.

После внимательного изучения результатов нашего исследования,можно сказать, что оба из приведенных выше заключений представляют собой крайне упрощеные варианты сложного процесса формирования аутосомного генофонда беларусов. Хотя мы и не можем предоставить окончательных аргументов в пользу или опровержение каждой из этих версий, мы может предоставить более полное и подробное обозрение структуры аутосомного генофонда. В отличие от трех основых компонентов, упомянутых выше, в нашем исследовании мы выделили шесть основных компонентов, типичных для европейцев в целом. Основу генофонда составляет компонент, который мы обозначили как северо-восточно-европейский компонент. Именно этот компонент выделяет беларусов среди других восточных славян, приближая их к современным балтийским популяциям (у литовцев процент компонента составляет 81,9, у латышей — 79,5%, у беларусов -76,4%, у эстонцев — 75,2%). Примечательно, по мере удаления от территории Беларуси на север в с торону Латвии и Эстонии, увеличивается процент северо-европейского генетического компонента (как мы полагаем, этот компонент доминировал в генофонде доисторических жителей Скандинавии в эпоху до распространения финно-угоров и индо-европейцев). С другой стороны, беларусов и других восточных славян отдаляет от балтов и сближает друг к другу более высокий процент так называемого западно-азиатского или кавказского компонента (любопытно, что в этом случае эта закономерность может свидетельствовать в пользу западно-азиатской теории происхождения индо-европейцев).

Далее, как показывает анализ в программе fineStructure, генофонд беларусов характеризируется высокой степенью генетических контактов как с балтами, так и остальными славянами, а также с рядом финно-угорских популяций (например, c эрзя и мокша). О симметричном характере межпопуляционного обмена свидетельствует симметричное расположение популяции беларусов относительно этих трех групп.

Исходяизвышенаписанного,представляетсялогичнымсделатьвыводотом,чтоосновнойкритическийэтапстановленияаутосомногогенофондапришелсянапериодсмешиванияносителейсеверо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента,послечегопредковыйаутосомныйгенофондбеларусовприобрелотносительнуюстабильность.Разумеется,даннаямодельнеисключаетпозднейшиеэпизодысмешиванияпопуляций,ноониоставилименьшийследвструктуреаутосомногогенофондабеларусов.Вэтойсвязивозникаеточевидныйвопрос–вкакойименноисторическийпериодпроизошлосмешениеносителейсеверо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента,иктобылиихносителями?
В начале сентября 2012 года известная американская лаборатория популяционной генетики доктора Райха опубликовала альфа-версию программного продуктаADMIXTOOOLS1.0. Альфа-версия была разработана для внутреннего использования, поэтому modusoperandiэтого продукта вряд ли является кристально понятным для стороннего пользователя. Положительным аспектом на мой взгляд является то, что ADMIXTOOLSпакет обеспечивает полную совместимость с форматом другой очень популярной программыEIGENSOFT, которая была разработана в той же лаборатории. Это немаловажное обстоятельство намного упрощает процесс обучения в ADMIXTOOLS.

Вышеупомянутый пакет включает в себя 6 приложений, среди которых я считаю наиболее полезнойqp3Popи утилиты для вычисления частотной характеристики аллелей. Впрочем, я не собираюсь обсуждатьqp3popво всех деталях и в контексте данной заметки достаточно отметить, что эта программа реализует тест three_pop(F_3), подробно описанный в известной статье Рейха и соавт. 2009.

Однако другой имплементированный в пакете метод, – метод rolloff– нуждается в более пристальном внимании. Этот метод позволяет производить математическую оценку как времени, так как и уровня адмикса. Оценка производится на основании анализа неравновесия по сцеплению между SNP-ами. Тут необходимо вспомнить стандартное определение неравновесия по сцеплению.Неравновесием по сцеплению (часто используется английская аббревиатураLD) называется неслучайная связь между двумя аллелями, в силу которой определенные комбинации аллелей встречаются наиболее часть. В теории, чем дальше друг от друга находятся SNP-ы ,тем меньше будет уровень LD. Темп угасания снижения LDв адмиксе напрямую связана с числом поколений, прошедших с момента адмикса, так как cвозрастанием числа поколений увлечивается число рекомбинаций произошедших между двумя отдельными SNP-ами. Проще говоря: Rolloffсоответствует экспоненциальной кривой угасания уровня LDот расстояния, и эта скорость экспоненциального снижения как раз и используется для оценки числа поколений, так и уровня адмикса в анализируемой популяии. Учитывая, что одно поколение примерно равно 29 лет, можно преобразовать число поколений в года.

Этот метод открывает интересные перспективы. Для целей этого анализа, я создал специальный набор SNP-данных, который включает в себя около 750 000 cнипов, частично или полностью в 250 различных популяциях человека. Далее, я разбил популяции 3 * 62 000 трио в следующем виде (X, Y, Z), где X и Y – пара рефренсных групп, а Z – белорусы из коллекцииBehar et al.2010. После этого я провел q3Pop анализ этих трио.

Результаты изложены в нижеприведенной таблице

Indian Polish Belarusian -0.000736 0.000251 -2.935
Polish Indian Belarusian -0.000736 0.000251 -2.935
Karitiana Sardinian Belarusian -0.001278 0.000517 -2.471
Sardinian Karitiana Belarusian -0.001278 0.000517 -2.471
Otzi North_Amerind Belarusian -0.002556 0.001126 -2.271
Cirkassian Polish Belarusian -0.000488 0.000231 -2.113
Polish Cirkassian Belarusian -0.000488 0.000231 -2.113
Pima Otzi Belarusian -0.002727 0.00137 -1.99
Pima Sardinian Belarusian -0.000794 0.000431 -1.843
Sardinian Pima Belarusian -0.000794 0.000431 -1.843
Otzi Surui Belarusian -0.002938 0.001931 -1.522
Surui Otzi Belarusian -0.002938 0.001931 -1.522

 

На первый взгляд, результаты нашего эксперимента с 3qPop, кажется, неплохо согласуются с выводами, содержащимися в работеПаттерсон и др. 2012: “Самый поразительный вывод состоит в обнаружени четкого сигнала адмикса в северной Европе, один из элементов которого связан с предками населения наиболее близкого по своей генетике к баскам и жителям Сардинии, а другой – с предками современного населения северо-восточной Азии и Америки. Этот явный сигнал, вероятно, отражает историю смешивания неолитических мигрантов с коренным населением Европы, что подтверждается недавним генетическим анализом древних костей Швеция и секвенированием полного генома Отци Тирольца”. Что касается собственно белорусов, то источники сигнала смешивания с посторонними популяцими менее ясны и расплывчаты. Как было показано ранее, с точки зрения формального анализа примесей (f3 статистики), белорусы могут быть представлены в виде популяционного микса поляков и индусов / черкессов. Первый компонент смеси может быть связан с носителями культуры шнуровой керамики/боевых топоров и культуры колоковидных кубков; второй, в соответствии с результатами, должен быть общим для индусов и черкесов.

 

Белорусы = ((неолитические культуры Европы) + “носители культуры колоковидных кубков”) + (мезолитическое население Европы) + компонент носителей культуры шнуровой керамики)) + скифо-сарматский тип

 

Для оценки дата события базового адмикса в белорусской популяции, мы использовали в качестве референсных популяций поляков и индусов (Примечание: мы снизили порог генетических дистанции в параметрах Rolloff для снижения уровня шума от более поздних адмиксов).

 

rolloff

Как вы можете видеть, сигнал присутствия адмикса обнаруживается гораздо хуже, и в силу этого, погрешности в оценке временного промежутка высоки:

154,158 + -87,024 поколений назад (или, 4470 + -2523 года до настоящего времени / 2510 – +2523 лет до н.э.).

 

Исходя из этого, мы решили модифицировать Rolloff-анализ генофонда белорусов, используя на этот раз в качестве референсов литовцев и пуштунов. Следуя этому совету, я решил предпринять вторую попытку формального анализа адмикса в двух имеющихся у нас выборках беларусов ( выборка беларусов из статьи Behar et al. 2011), и выборка беларусов, собранная в нашем проекте.Ниже приведены результаты эксперимента с двумя этими группам (в отличие результатов нашей предыдущей попытки, результаты данного эксперимента менее “зашумленные”):

rolloff2

 

Интервал числа поколений, прошедших со времен анализируемого адмикса (105.086+-52.59) или 3069 +- 1525 лет до настоящего времени, что соответствует временном интервалу 2 тыс. до нашей эры – 6 век нашей эры. Принимая во внимание эти выводы, мы можем предположить, что основной аутосомный эпизод смешивания предковых популяций беларусов произошел в течении довольно таки продолжительного времени, охватывающего несколько тысяч лет. В этой связи, вопрос о том, кто именно был носителями северо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента, остается открытым.