LAMP: инструмент для анализа «локального происхождения» геномных сегментов

В этом посте мы продолжим обсуждение существующих методик и инструментов анализа т.н «локального происхождения» отдельных сегментов хромосом в человеческом геноме (под локальным происхождением здесь подразумевается предпологаемое географическое происхождение дискретного сегмента одной их двух парных аутосомных хромосом в геноме человека).

Ранее эта тема поднималась в описании программы SupportMix, а также в сжатом изложении методологии оценки происхождения хромосомных сегментов (инструмент PCAdmix).  Данная заметка будет посвящена третьему инструменту — LAMP (Local Ancestry in adMixed Populations) (Sankararaman et al.2008).

Очевидно, что алгоритмы определения локального происхождения отдельных сегментов человеческих хромосом могут дать неплохие результаты при комбинированном использовании программ PLINK /ADMIXTUIRE/LAMP: например, комбинация этих программ позволяет довольно точно определить не только стратификацию отдельных этно-популяционных групп,  но также и уровень «адмикса» у отдельных людей. Поскольку одна из задач нашего проекта MDLP состояла в определении практических и теоретических преимуществ и/или ограничений конкретных методологий биоинформатического анализа полных генома, я провел эксперимент, позволяющий прояснить ряд ограничений, которые значительно уменьшают уровень достоверности результатов  субструктуры аутосомного генофонда населения Европы.

В качестве инструмента контроля качества комбинированного набора данных (аутосомных SNP-ов 22 хромосом) я использовал Plink, с помощью которого я выбрал для последующего анализа только качественные снипы (99% генотиприрования),  частоты минорных аллелей которых превышают 1%.

Поскольку этно-популяционный фон неравновесного линикиджа марекеров (LD) может существенным образом влиять на основные компоненты субструктуры популяции, я исключил из выборки маркеры, характеризующиеся статистически значимым уровнем LD (с коэффициентом попарной корреляции r2 Пирсона > 0,4) в «скользящем окне» из 100 снипов  с пошаговым сдвигом на 10 снипов. Кроме этого, я также использовал  другие методы Plink для получения однородной выборки  — например, кластеризации на основе IBS для обнаружения пары индивидов (outliers) с  уровнем «родства», значительно более высоким, чем у пары выбранных случайным образом индивидов в однородной популяции.  Под более высоким родством здесь понимается  резко отклоняющиеся значения (более 3 стандартных отклонений) парных значнений IBS по отношению к остальной части выбаки, а также случаи с высоким значения PIHAT (более 0,05) и  высокой степень инбридинга (гомозиготности*). Индивиды с подобными аномальными значениями («выбросы») были удалены из  «обучающего» подмножества нашей выборки .


* В программе Plink степень инбридинга определяется через вероятностную функцию гомозиготности.

 

homozyg
Стратификация образцев в соответствии с уровнями гомозиготности. Вдоль оси Х отображена общая сумма гомозиготных сегментов в килобазах; вдоль Y-оси — средний размер гомозиготных сегментов в килобазах

 

 

homozyg2
Уровни индивидуальной гомозиготности в выбороке: вдоль ости X отложено количество сегментов NSEG. Общая длина гомозиготных сегментов отображается осью Y

 

По окончанию описанных выше процедур фильтрации снипов и удаления «выбросов», окончательный набор данных представлял собой набор данных из 90 455 снипов и 317 человек (289 мужчин, 82 женщин). Эти данные были использованы в последующем анализе.

Прежде всего, мы использовали программу ADMIXTURE (Alexandre, Novembre, Lange 2009), в которой реализована модель оценки максимального правдоподобия (ML), т.е алгоритм кластеризации и оценки структуры популяции в наборе генетических данных (снипов).

В целях сохранения совместимости с MDLP калькулятором, я остановился  на модели, в которой выборка представлена в виде комбинации 7 предковых компонентов (K=7).  Индивидуальные значения процентной составляющей каждого компонента в индивидуальном геноме (матрица Q), была визуализированы в R (ниже приведен график с результатами участников проекта MDLP, полный список  доступен в этой таблице).

Результаты K=7

Полученные предковые компоненты (K=7) я обозначил следующими названиями (с сопутствующей цветовой легендой)**:

  • Транс-кавказский — красный
  • Балканском / средиземноморском -желтый
  • Северо-кавказский -зеленый
  • Западно-европейский
  • Алтайский — светло-голубой
  • Балто-славянский — темно-синий
  • Прибалтийско-финский / Северо-европейский -фиолетовый

**Как обычно, названия компонентов условны и  предназначены для мнемонических целей:  исследователи должны быть осторожными при интерполяции предполагаемых компонентов в анализе этнической истории популяций.

 

 

 

 

MDLP v4 components

 

 

 

На следующем этапе, я разбил все 371 индивидуальных «геномов» выборки на 22 фрагмента (каждый из которой соответствует аутосомной хромосоме) и затем использовал  программное обеспечение Admixture для оценки структуры популяционного вклада в каждую из 22 хромосом. После этого я использовал пайплайн для перевода формата Plink  в формат BEAGLE и последующего поэтапного преобразования фазированных данных BEAGLE обратно Plink формат.

Я предположил, что все образцы в моей выборке (представленной образцами VID)  проекта MDLP возникли в в результате смешивание 7 отдельных предковых групп населения. Данное предположение означает, что «чистые» референсные группы населения тесно связаны с истинными предковыми популяциями. Исходя из этого предположения мы снова задействовали программное обеспечение Admixture,  на этот раз с целью определения предковых компонентов в фазированном наборе данных из отдельных неполовых (аутосомных) хромосом.

Только после этой процедуры я смог использовать программу LAMP для определения уровня адмикса у отдельных индивидов. На практике, определение индивидуального уровня адмикса  означает применение любой из указанных выше процедур, в которй используется либо модель «локус-специфического происхождения» (в случае, если предковые группы популяции априори  неизвестны), либо модель «локус-специфического происхождения» гибридного населения.  Затем полученные значения  локус-специфического происхождения» отдельных сегментов в индивидуальном геноме усреднеяются и   получаются значения долей адмикса в индивидуальном геноме.

Я  расчитал в программном обеспечении Plink частоты аллелей (в стратифицированных по этническим признакам кластерах), и добавил в файл фиксированные частоты рекомбинации (определяются отдельно для каждой из 22 хромосом). Для моделирования динамического процесса смешивания предковых компонентов, я использовал различное количество поколений G ( 5, 10,25 поколений),  предполагая 3 хронологически разных варианта, в которых при  K = 7  предковые популяции A1, …, Ak,  перемешивались в течение G = 5,10,25 поколений.

Результаты экспериментов для каждой из хромосом размещены в отдельные таблицы Excel, каждый из файлов Excel включает в себя следующие разделы:

1) результаты Admixture для фазированных генотипов хромосомы (Chr * -phased)
2) результаты Admixture для нефазированных генотипов хромосомы (Chr * -unphased)
3) результаты LAMP для G = 5 (Chr * -lamp-GEN5)
4) результаты LAMP для G = 10 (Chr * -lamp-GEN5)
5) результаты LAMP для G = 25 (Chr * -lamp-GEN5)

Образец этих выходных данных можно посмотреть в файле Excel с результатами анализа хромосомы 1 (Chr1).

2014 год — год палеогенетики и эпигенетики

Оглядываясь назад на события и открытия, коими в уходящем 2014 году ознаменовалась область исследований генетики человека, можно смело сказать что уходящий год был годом прорыва в двух принципиально различных направлениях — в палеогенетике, изучающей геномы популяций древних людей прошлого, и  в эпигенетике,  с помощью которой можно прогнозировать будущее (здоровье и качество жизни) отдельных людей.


Палеогенетика

В самом начале 2014 года, на руках немногочисленных исследователей  палеогеномов было менее десятка древних геномов человека, опубликованных в предыдущие года. К концу 2014 года опубликован ряд работ, посвященных попыткам генотипирования останков древних людей — от живших несколько тысячелетий назад до «усть-ишимца» с предположительным возрастом около 45 тысяч лет, неандертальцев и «денисовки». Количество таких расшифровок растет все быстрее, что не может не вызывать оптимизма.  Вторая половина 2014 года особенно примечательна как количеством подобных публикаций, так и числом полных геномных NGS-сиквенсов древних людей, размещенных в публичных репозиториях (банках геномных данных). Так, в сентябре в Nature была опубликована окончательная версия работы Lazaridis et al. 2014  «Ancient human genomes suggest three ancestral populations for present-day Europeans». Работа получила широкое освещение в СМИ, поскольку аналитическая выборка сэмплов в этом исследовании включала значительное количествао заново генотипированных (на чипе Affymetrix HumanOrigin) образцов ДНК из древних палеолитических стоянок Сибири (Афонтова Гора, Малта), представителя древней индейской культуры Кловис и палеоэскимоса Cаккак. В работе был представлен  целый  ряд образцов древней ДНК представителей европейских мезолитических и неолитических культур, опубликованных в более ранних работах 2012-2014 годов: Skoglund et a. 2014 «Genomic Diversity and Admixture Differs for Stone-Age Scandinavian Foragers and Farmers»(шведские земледельцы и охотники собиратели эпохи неолита); Olalde et al. 2014 «Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European» (дДНК мезолитического населения Иберийского полуострова) и т.д.

Опубликованные геномы так и остались бы достоянием небольшой группы ученых, и по-прежнему бы использовались бы только для сравнения с абстрактными и анонимизрованных данными референсных популяций человека, если бы усилиями пары любителей (прежде всего усилиям Чандракумара) палеогеномы не были преобразованы в привычные и удобные для популяционного анализа форматы  BAM, VCF и Plink binary, а также в стандартный формат геномных данных от FTDNA. По своей сути, преобразование состояло в сложной процедуре сборки генома из библиотек коротких геномных ридов (в формате sra., в котором эти риды хранятся в репозиториях крупных баз геномных данных). Полученные сборки геномов в формате sam/bam cравниваются с референсным геномом человека, и отличающиеся одиночные нуклеотидные полиморфизмы сохраняются в VCF файл. Здесь нужно помнить о том, что в этой процедуре не учитывался параметр качества сиквенса PHRED score. Традиционно рекомендуется использовать только те базовые пары, PHRED score которых превышает 30, т.е чья точность определения составляет 99.9% (или 1 ошибка на 1000 базовых пар). Кроме того, в этой процедуре разработчик не учел влияние постмортальных изменений ДНК. Cледует помнить, что ДНК, как и любая биомолекула, способна вступать в химические реакции с окружающим миром, тут-то и появляются различные модификации нуклеотидов (особенно по краям фрагментов древней ДНК). Наиболее частая постмортальная мутация — дезаминирование цитозинов (C), приводящая к возникновению урацилов (U) в последовательности древней ДНК, которые при проведении ПЦР многократно копируются «бездушным» ферментом ДНК-полимеразой как тимин (Т). Именно по этой причине, при оценке достоверности снипов в полученных из палеогеномов вариантах особое внимание требуется уделять транзициям C->T и  G->A.  Если при подсчете вариантов окажется, что такие транзиции встречаются чаще ожидаемого, то можно сделать вывод о существенном повреждении палео-ДНК.  И хотя по причине игнорирования этих ограничений, автором было получено большое количество снипов, в некоторых случаях, например при объединении полученных данных NGS c данными генотипирования с помощью классических технологий миркочипов, использование таких данных может существенно уменьшить качество интерпретации.

Тем не менее, благодаря этим усилиям, и не в меньшей степени, благодаря соотрудничеству с порталом Gedmatch и компанией  FTDNA, большинство клиентов ведущих компаний на рынке персональной геномики и генетической генеалогии (таких как 23andme, и FTDNA) могут сравнить свои данные с данными древних геномов либо путем сравнения частото аллелей, либо посегментно сравнивая свои хромосомы с гомологичными хромосомами древних геномов.  Более того, Феликс Чандракумар пошел дальше и разместил 10 наиболее качественных палеогеномов (т.е палеогеномов с наибольшим числом перекрывающихся разными микроматрицами снипов) на FTDNA. Таким образом, с помощью сервиса MyOrigins FTDNA, исследователи могут установить распределение «этно-популяционных составляющих» или «предковых этнопопуляционных компонентов» в этих древних геномов. Нужно помнить, конечно же, что в случае с наиболее древними геномами (геномами неандертальца, усть-ишимца и т.д.) полученное распределение более молодых компонентов (полученных из современных популяций) нельзя интерпретировать буквально.


Эту замечательную функцию дополняют калькуляторы Eurogenes, благодаря которым любой интересующийся человек может посмотреть, какой процент его/ее генома приходится на тот или иной древний геном. Для людей, озабоченных вопросами анонимности, Феликс разработал отдельное десктопное приложение  — калькулятор древней ДНК. Этот калькулятор  показывает, какой процент ДНК (составных сегментов) аутосомной ДНК клиента попадает в каждый из 30 образцов древней ДНК . Другими словами, он показывает  процент общих предков в сравнении современного ДНК и палеоДНК.

Подводя итоги года, можно сказать, что в области изучения древней ДНК все ожидания были оправданы.


Эпигенетика

Под эпигенетикой обычно понимают область знаний о совокупности свойств организма, которые не закодированы непосредственно в геноме, но могут и должны передаваться по наследству.Эпигенетика может быть определена как изучение механизмов контроля активности генов во времени и пространстве в процессе развития сложных организмов. К настоящему времени обнаружены и описаны различные механизмы контроля активности генов, однако в уходящем 2014 году особое внимание ученые уделяли  изучению одного из таких механизмов  — ферментативному (энзиматическому) метилированию самой генетической матрицы, то есть ДНК.

Метилирование — это изменение молекулы ДНК путем присоединения метильной группы (-СH3) к нуклеотиду C, причем необходимо, чтобы за С следовал нуклеотид G. Последовательность нуклеотидов -CG- называется СpG динуклеотидом, или CpG сайтом. Метилирование происходит не во всех клетках одновременно, поэтому говорят о проценте метилирования определенного CpG сайта.метилирование ДНК ощутимо сказывается на её взаимодействии (связывании) с различными белками. Во многих случаях метилирование по цитозиновым остаткам препятствует связыванию специфично реагирующих с ДНК ядерных белков (факторов), которые, собственно, и осуществляют разные генетические процессы, в том числе транскрипцию, репликацию и репарацию.Как известно, метилирование играет важнейшую роль в механизме экспрессии (т.е качественном и количественном проявлени) генотипа в фенотип. оказано, что с изменением профиля метилирования связаны такие заболевания, как различные виды рака, диабет первого и второго рода, шизофрения и т.д. Поэтому важно уметь анализировать профиль метилирования генома, и здесь перед энзимологией расскрываются огромные перспективы. Например, в 2014 году компания «СибЭнзайм» открыла новый фермент, на базе которого разработали новый метод детекции. Он позволяет определять, включен или выключен интересующий вас ген — э то управляющий механизм в организме, именно отключение отдельных генов ученые связывают с развитием рака:

С технической точки зрения, изучение метиляции ДНК происходит с использованием модифицированного варианта ChiPSeq (это комбинированный вариант иммунопреципитации хроматина (ChIP) и высокоэффективного секвенирования ДНК для определения участков связывания ДНК и белков). Не вдаваясь в биолого-химические подробности этого модифицированного метода, его можно кратко описать следующим образом. Каждый CpG сайт измеряется с помощью двух флуоресцентных проб. Флуоресцентный сигнал проб пропорционален соответственно количеству метилированных и неметилированных CpG сайтов в тестируемом образце.  Полученные данные образуют собой профиль метилирования, который удобно сравнивать с различными референсными образцами. Как уже говорилось выше, этот профиль можно использовать не только для медицинских целей (например, для изучения эпигенетических факторов развития различных заболеваний), но и для более общих целей. В недавном исследовании, проведённом специалистами из Калифорнийского университета (UCLA), выявило биологические часы, встроенные в геном человека и оно впервые определило, что внутренние часы в состоянии точно оценить возраст различных человеческих органов, тканей и клеток. Исследователи обратили свое внимание на метилировании – естественном процессе, изменяющем химический состав ДНК. Он изучил 121 набор данных, собранных ранее исследователями, изучавшими метилирование здоровых и раковых тканей человека. Проанализировав информацию по 8000 образцов из 51 типа тканей и клеток со всего тела, исследователи смогли определить, как возраст влияет на уровни метилирования с рождения до 101 года. Он определил, что метилирование работает на 353 участках ДНК, которые изменяются с возрастом. Таким образом, профиль метилирования ДНК представляет собой наиболее надежную метрику для расчетов биологического возраста как отдельных органов, так и всего организма.

Принимая это во внимание, можно сказать что и в последующие года эпигенетику ожидают радужные перспективы.

Оценка влияния уровня аутосомной гомозиготности при генотипировании на длину и количество ложных IBD-сегментов

В последнее время я пробовал сравнивать файлы геномов, полученные при генотипировании останков древних людей, с современными выборками в поисках  длинных общих IBD (или все же на деле это IBS?)-сегментов. Как выяснилось, результат в первую очередь зависит от качества прочтения древнего генома, особенно от уровня гомозиготности. Большинство древних геномов прочитывают с небольшим уровнем покрытия (1х-2х), и естественно, при этом захватывается лишь один аллель. Например. если реальные значения снипа A и T, при единичном прочтении можно увидеть либо A, либо T — второе значение останется нерасшифрованным. Любой длинный сегмент при этом окажется разорван.

Есть и геномы, прочитанные с высоким качеством. Их уровень гомозиготности близок к получающемуся у наших современников при коммерческом тестировании в FTDNA и 23andMe. Например, к таким относится BR2 из недавней работы Gamba et al. «Genome flux and stasis in a five millennium transect of European prehistory». Сумма общих сегментов у «венгра» бронзового века с европейскими выборками вполне сопоставима с тем, что получается у наших современников. Как уже неоднократно писалось, возраст таких сегментов вполне может насчитывать несколько тысячелетий, поэтому результат не слишком удивляет. Однако общие сегменты с нашими современниками нашлись и у «усть-ишимца» — древнейшего расшифрованного генома человека современного типа возрастом около 44 тысяч лет (согласно радиоуглеродной датировке). Сложно поверить, чтобы IBD-сегменты могли сохраняться так долго. Что послужило этому причиной? Поддержка отбора, ошибки генетической карты (расстояния между многими снипами получены интерполированием, а это может быть неправильно)? А может быть, это вовсе и не IBD-сегменты, а просто случайно возникшие IBS?

(IBD (identical by descent) — участки совпадающих последовательностей снипов, полученные несколькими людьми от одного и того же предка в результате общности происхождения. IBS (identical by state) — тоже участки совпадающих последовательностей снипов, но причины этого совпадения могут быть другими. Формально IBD это частный случай IBS, но часто понятие IBS используют как синоним лже-IBD сегмента)

Если высокий уровень гомозиготности способен разрушать сегменты, не может ли высокий уровень гетерозиготности создавать лже-сегменты? Вообще, насколько протяженными могут быть лже-IBD сегменты, и каково их количество? Понятно, что идеально гетерозиготный генотип (то есть несущий оба аллеля для каждого снипа) будет совпадать на уровне «родитель-ребенок» с любым человеком (в реальной жизни его возникновение невозможно, разве что искусственным путем). Также понятно, что по теории вероятностей между любыми двумя людьми будут возникать микро»сегменты» из случайно совпавших снипов. Насколько протяженными они могут быть?

Для начала я решил попробовать оценить уровень гомозиготности в используемом мной для IBD-карт наборе выборок. Для сравнения туда же добавлено несколько древних геномов (они выделены жирным шрифтом). «Усть-ишимец» пока выложен лишь до 8 хромосомы, это составляет около половины протяженности аутосом по количеству снипов. Используется набор из примерно 255 тысяч снипов, на другом наборе результаты должны отличаться. Показан усредненный по выборке процент снипов от общего числа, где оба аллеля совпадают.

Уровень гомозиготности по выборке:

Nogay 65,49%
BR2 65,61%
Tatar-Kazan 65,65%
Azerbaijani 65,66%
Tatar-Crimean 65,67%
Kumyk 65,71%
Bashkir 65,74%
Balkarian 65,78%
Komi 65,88%
Tadjik 65,92%
Turkmen 65,95%
Uzbek 66,00%
Uygur 66,00%
Greek_Azov 66,01%
Ossetian 66,01%
Ashkenazi 66,03%
Croatian 66,05%
Chuvash 66,08%
Iranian 66,09%
Lezgin 66,10%
German-Austrian 66,13%
Armenian 66,13%
Bulgarian 66,13%
Belarusian 66,13%
Russian-South 66,14%
Abkhazian 66,15%
Turkish 66,15%
Romanian 66,16%
Russian-North 66,17%
Greek 66,17%
Swedish 66,19%
Erzya 66,19%
Chechen 66,20%
Moksha 66,21%
Ukrainian-East-and-Center 66,21%
Georgian 66,22%
Hungarian 66,23%
Udmurt 66,25%
Sephard 66,27%
Italian 66,29%
Kazah 66,29%
Tatar_Lithuanian 66,30%
Ukrainian-West-and-Center 66,31%
Finnish 66,33%
Mari 66,33%
Polish 66,34%
Adygei 66,35%
Norwegian 66,35%
French 66,36%
Russian-West 66,37%
Estonian 66,42%
UstIshim 66,44%
Karelian 66,45%
Balt 66,46%
Veps 66,50%
British 66,51%
Mansi 66,60%
Kirgiz 66,79%
Basque 67,02%
LBK 67,08%
Sardinian 67,08%
Hakas 67,33%
Altaian 67,33%
Saami 67,55%
Mongol 67,56%
Shor 67,63%
Tuvinian 68,08%
Dolgan 68,24%
Buryat 68,48%
Selkup 68,49%
Ket 68,54%
Xibo 68,54%
Mongola 68,63%
Yakut 68,98%
Daur 69,11%
Han-North 69,14%
Nivh 69,25%
Evenk 69,32%
Hezhen 69,34%
Oroqen 69,39%
Nganassan 70,37%
Even 70,62%
Loschbour 73,79%
Motala12 90,19%
Malta-1 94,41%

Выборкой с наибольшим аутосомным разнообразием (наименьшей гомозиготностью)  оказались кубанские ногайцы, что совершенно не удивляет в связи с их смешанным происхождением. Многие другие народы из начала списка также известны своей смешанностью. Любопытно, что близки к началу и ашкенази, хотя я ожидал от них, наоборот, большего однообразия. Видимо, здесь проявляется их происхождение от двух различающихся групп — ближневосточников и европейцев.

Большая часть списка расположилась в промежутке 66-67% , в том числе и усть-ишимец. Несмотря на более свежий вклад неандертальцев и близость к общему корню, по уровню разнообразия он оказался таким же, как и наши современники. Либо здесь сказываются сложности с расшифровкой столь древнего генома, либо аутосомное разнообразие с тех времен поддерживалось на примерно одном уровне — вымывание одних снипов сопровождалось появлением новых.

Самым низким уровень разнообразия оказался у народов Сибири (где мы явно видим результат генного дрейфа) и китайцев (след быстрого расширения?). В Европе хуже всего с разнообразием оказалось у народов-изолятов — басков и сардинцев. Геном охотника-собирателя Loschbour, скорее всего, прочитан со средним качеством — похоже, это и было причиной того, что в предыдущей заметке у него оказалось меньше общих сегментов с нашими современниками, чем у «фермера» LBK, а вовсе не вымирание его народа.

Таким образом, за базовый уровень гомозиготности можно смело принять 66,6%, то есть 2/3 снипов из используемого мной набора у среднего европейца гомозиготны. Попробуем сделать оценку длины и количества лже-сегментов. Очевидно, что на гетерозиготных участках сегмент разорваться не может. Таким образом, вероятность разрыва на отдельно взятом снипе уже падает до 2/32/3=44,36% . (это оценка вероятности, что у обоих сравниваемых геномов выбранный снип гомозиготен. К сожалению, для упрощения модели пришлось использовать предположение, что для каждого снипа вероятность гетерозиготности примерно одинакова, в то время как в реальности это должно быть не так). Далее, если на гомозиготном участке у обоих геномов сравниваемый аллель один и тот же, то разрыва сегмента также не произойдет. Возьмем для простоты вероятность минорного варианта снипа как 1/6 (вероятность гетерозиготности на снипе 1/3, минорным мог быть либо первый, либо второй аллель, значит, делим вероятность пополам. В реальности надо считать сложнее, но для оценки подойдет). К разрыву могут привести два варианта — в первом геноме мажорный вариант снипа, во втором минорный — вероятность 5/61/6=5/36, и наоборот — в первом минорный, во втором мажорный вероятность такая же. Для получения итоговой вероятности разрыва сегмента на один снип мы умножаем 44,36% на (5/36+5/36) и получаем 12,32% вероятность разрыва лже-сегмента на любом случайно выбранном снипе.

Да уж, есть где запутаться ))) Надеюсь, я все же нигде сильно не ошибся и оценка близка к истине ))

Исходя из вероятности разрыва 12,32% на снип, лже-сегмент будет иметь кумулятивную, то есть накопленную вероятность разрыва 50% при прохождении 5-6 снипов (это медиана). Значит, половина лже-сегментов будет короче этого числа, половина-длиннее. Кумулятивная вероятность разрыва растет в 10 раз каждые 17-18 снипов — 90% лже-сегментов будут короче 18 снипов, 99% — короче 37,  99,9%-54 и так далее. Так как медианное значение при нормальном распределении обычно составляет около 0,7 от среднего, средняя длина лже-сегмента оценивается в 7,5 снипов. На 245 тысяч снипов будет приходиться 32 тысячи сегментов, а на 1130 геномов из используемых выборок — в общей сложности около 36 с половиной миллионов.

Из них около трех с половиной тысяч будут иметь длину не менее 72 снипа, около 36 — 107 снипов, а чтобы гарантированно снизить число лже-сегментов до нуля, нужно установить фильтр в районе 130-140 снипов. Что интересно, примерно на те же цифры я вышел экспериментальным путем, пробуя различные настройки. Оптимальным мне показалось отбрасывать все сегменты с длиной менее, чем 150 снипов. Теория неплохо сошлась с практикой.

Итак, лже-УПСы (участки половинного совпадения), возникшие по статистическим причинам, не должны оказывать особого влияния на IBD-сегменты. Подавляющее большинство из них по длине не превышает несколько десятков снипов (лишь примерно каждый тысячный преодолевает рубеж 50-60 снипов). Разумеется, из-за их наличия реально существующие сегменты неизбежно удлиняются, однако принципиально исказить картину это не может. Конечно, такие причины, как поддержка отбором и искажения, вызванные неточностью генетических карт, остаются в силе. Возможны и другие причины — загадка наличия значимых сегментов с палеоДНК продолжает требовать объяснения.

При ослаблении фильтра до 50 снипов, как в случае с мальтинцем, лже-УПСы уже должны стать заметными. Неудивительно, что при нормальных настройках значимых сегментов почти не получалось — уровень гомозиготности оказался весьма велик.

В заключение приведу график зависимости вероятности разрыва лже-сегмента от уровня гомозиготности в популяции при использовании той же формулы. Как уже писалось, идеально гетерозиготный геном не будет иметь разрывов вообще. Но и в идеально гомозиготной выборке разрывов не будет, ведь аллели у всех совпадают! Что же происходит в промежутке между этими двумя крайностями? Как выяснилось, максимальна вероятность разрыва лже-сегмента при уровне гомозиготности около 70%, что близко к реально существующему уровню. При больших значениях длина лже-сегментов начинает быстро расти из-за того, что все слишком похожи между собой, при меньших — из-за того, что на гетерозиготных снипах сегмент порваться не способен. Уровни ниже 0,45 я убрал из-за их явной нереалистичности. Как можно догадаться, там график движется к нулю.

HZ

Визуализация количества общих (IBD) сегментов — часть вторая

Обзор волжско-уральских популяций я хочу начать несколько издалека — с карты для селькупа из селения парабель Томской области. В какой-то мере он служит той же цели, что и литовец в предыдущей части:

Selkup-ParabelIBD

Пересечение с соседями по западной Сибири зашкаливает, как и положено для небольших групп с высоким уровнем генного дрейфа. Однако интересно не это, а выбросы на запад — к башкирам, удмуртам, марийцам. чувашам. Видно и повышение у саами. Таким образом, здесь мы наблюдаем распространение «уральского» генетического компонента.

Очень специфичной популяцией являются и марийцы. Уровень «эффекта ашкенази» получился намного выше, чем у самих ашкенази. Таким образом, все народы, имеющие хоть в сколько-нибудь заметной степени общих предков с марийцами, хорошо видны на карте:

MariIBD

В первую очередь это чуваши, сильно влияние у выборки казанских татар, удмуртов, манси и башкир. Вот это и есть «волжско-уральский круг популяций». Интересно, что коми и удмурты оказались в разных категориях, несмотря на языковое родство. Впрочем. как видно по карте коми-зырянина в предыдущей части, есть между ними и генетические пересечения.

100% чуваша из коммерческих выборок у меня нет, однако человек наполовину чувашского происхождения проявляет сходство как с чувашами, так и с марийцами. В отличие от предыдущей карты, чуваши у него на первом месте (это видно в таблице, поскольку картограф обрезал оба зашкаливающих значения до допустимого максимума) :

Chuvash-MokshaIBD

А вот нижегородские мишари более уместно смотрелись бы в предыдущей части заметки:

Mishar-NizhniyIBD

Родство с балто-славяно-финским кругом популяций явно более выражено. чем с волжско-уральским.

Татарин смешанного казанско-мишарского происхождения, южная часть Татарстана:

Tatar-SamaraIBD

Еще раз напомню — неправомерно на основании наиболее яркого пятна у марийцев говорить, что этот человек наиболее близок марийцам. Наличие общих предков с этим народом проявляется в разы ярче из-за «ашкенази-эффекта». То, что татарско-казанская выборка гораздо бледнее, объясняется тем, что татары — более крупный народ с высоким генетическим разнообразием.

Татарин с Урала (часть предков-башкиры):

Tatar-Bashkir-UralIBD

Как ни странно, я не просчитал ни одного «классического» казанского татарина, увлекшись краевыми случаями. Возможно, у него казанская выборка оказалась бы ярче. Эту задачу оставим на будущее.

Башкир:

BashkirIBD

Интересно продление пятна на северо-восток, к уральским народам вплоть до юкагиров.

У сибирского татарина видна общность с селькупами и марийцами. Вспоминая яркость на карте парабельского селькупа, степень этой общности не так уж и велика. Виден и вклад из монгольских степей.

Tatar-SiberianIBD

Неожиданно, у казаха количество общих сегментов с восточносибирскими популяциями оказалось выше, чем с собственно казахской выборкой:

KazahIBD

На ум приходят два объяснения — гетерогенность казахов и более высокий уровень «ашкенази-эффекта» у восточносибирских народов. Впрочем, я недостаточно владею информацией по этногеномике казахов, чтобы строить предположения.

Результаты казаха замыкают мое исследование. Не скажу, что в его результате я открыл для себя что-то сильно новое и неожиданное, однако общая картина стала более понятной и наглядной. Эксперимент мне понравился.

Визуализация количества общих (IBD) сегментов у жителей Европы и Северной Азии

Визуализация количества общих (IBD) сегментов у жителей Европы и Северной Азии.

Этнокалькуляторы на базе Admixture, представляющие результат «просчета» генома испытуемого в виде смеси предковых компонентов, достигли уже очень хорошей точности. Однако у них есть и определенные недостатки. Во-первых, случается, что у двух разных народов пропорции смешения этих компонентов довольно близки, хотя близкого родства между ними не наблюдается. Обычно для исключения такого эффекта увеличивают число компонентов, то есть повышают детализацию. Однако при этом зачастую возрастает и «шумность», случайные отклонения от ожидаемых значений. Кроме того, бывает тяжело понять — смешение произошло в предыдущем поколении, или тысячу лет назад? Если человек происходит из двух отдаленных народов, он часто позиционируется в географической точке, находящейся между ними, и непохож ни на один из родительских народов. При более сложносоставном происхождении все запутывается еще сильнее.

Нет ли метода напрямую измерить уровень родства отдельного человека с той или иной популяцией? При такой постановке вопроса сразу приходит на ум один из возможных ответов — необходимо просчитать количество IBD (то есть идентичных благодаря общности происхождения) аутосомных сегментов. Такой подход уже реализован в утилите от 23andMe под названием Countries of Ancestry, однако с рядом заметных недочетов. Используются результаты опроса пользователей сервиса о стране их происхождения, при этом непонятно, каков размер выборки от каждой страны. Да и детализация уровня «страна» для жителей России явно не подходит — зачем мешать в одну кучу карел, осетинов и якутов.

К счастью, эти проблемы можно частично устранить, используя научные выборки (либо коммерческие, однако набрать подобный объем из коммерческих выборок мне сейчас не по силам). С удешевлением процесса генотипирования количество имеющихся в открытом доступе выборок начало быстро расти. В первую очередь я использовал выборки, выложенные на сервере Эстонского биоцентра . Они стали основой. Часть пробелов была заполнена выборками из недавней работы Hellenthal , их пришлось переконвертировать из build 36 в build 37. Отдельное спасибо Вадиму Вереничу за помощь с несколькими выборками, хорошо увеличившими охват этнокарты.

Главной сложностью в работе оказалось сведение геномов из всех источников вместе. В каждой научной работе использовался свой набор снипов, часто с разной ориентацией. Коммерческие выборки тоже неоднородны — например, в FTDNA, как оказалось, существует четыре варианта файлов raw data со слегка отличающимся набором снипов и разной ориентацией примерно трех сотен из них. Добавьте к этому два варианта выравнивания и трансферы из 23andMe (у которой нашлись свои заморочки, например, дублирование одних и тех же снипов под разными названиями).

Конечно, хотелось использовать как можно большее количество снипов. Однако после ряда попыток придумать коэффициенты пересчета и прочее, стало понятно, что это методологически неверно. Пришлось оставить лишь те снипы, которые присутствовали во всех используемых выборках, в стандарте FTDNA, а также на чипе v3 от 23andMe. Вероятно, в будущем придется включить в просчет и новый, четвертый чип от этой компании, однако пока я решил с ним не связываться. В общем итоге осталось около 244 тысяч снипов — не так уж мало, я опасался худшего. От покрытия FTDNA это составляет чуть больше трети.

Компания FTDNA и сервис Gedmatch используют для фильтрации общих сегментов критерий наличия не менее 700 снипов. Однако для мелких сегментов он выполняется не так уж часто (из-за чего у клиентов FTDNA возникает иллюзия сравнительно небольшого количества таких сегментов). Поэкспериментировав, я остановился на рубеже в 150 снипов — менее него количество сегментов, являющихся статистическими артефактами, начало быстро расти. Основным показателем для отрисовки на этнокарте я взял общую сумму сегментов длиной более 3 сМ. Конечно, более длинные сегменты являются более четким показателем родства, однако их заметно меньше. А это значит, что их количество более подвержено случайным отклонениям. С другой стороны, более мелкие сегменты сливаются в общую кашу. Таким образом, выбранный критерий является компромиссом. При увеличении объема выборок на порядки станет возможно использовать только длинные сегменты и улавливать родство более четко.

Метод дает релевантные результаты при сравнении с выборками свыше 10 человек. Чем меньше размер выборки, тем сильнее влияние случайных отклонений. Из-за этого часть выборок я объединил вместе (например, литовцы и латыши стали балтами), часть исключил с карты. Однако некоторые все же пришлось оставить — в первую очередь это финны (2 человека), западные украинцы (6), башкиры (6) и австрийцы (4). Если для какой-то популяции значения явно выпадают из ряда соседей, всегда обращайте внимание на размер выборки, приведенный в сопроводительной таблице.

Одновременно достоинством и недостатком метода является сильное влияние «эффекта основателя», «множественного родства», «бутылочных горлышек» и т.д. За этим перечислением скрывается примерно одно и то же — когда популяция происходит от сравнительно небольшой группы людей, ее члены разделяют между собой большое количество общих сегментов. Наиболее известным примером являются евреи-ашкенази — достаточно иметь одного отдаленного предка из этого народа, чтобы получить множество генетических «кузенов». Таким образом, родство с народом, подвергшемуся такому эффекту, видно более четко. Но это же искажает общую картину — одинаковое количество генетических пересечений может означать совершенно разную степень близости в зависимости от истории популяции.

Я сравнил 26 человек из коммерческих выборок, представляющие различные популяции интересующих меня регионов, с набором из 1130 геномов, взятых из научных выборок. Результаты сведены в таблицу и частично визуализированы на картах. При интерпретации помните о вышеперечисленных искажениях!

Начнем с представителя народа, считающегося наиболее архетипичными восточноевропейцами в большинстве этнокалькуляторов. Это литовцы (картинка увеличивается по клику):

 

LithuanianIBD

Как видно, литовец оправдывает это звание и по количеству общих сегментов. Красное пятно закрывает большую часть Восточной Европы, в том числе и балтийских финнов. Условно говоря, на этой карте мы видим некий «базовый уровень родства» среди восточноевропейцев.

Пятно восточного финна практически совпадает по форме, однако распределение интенсивности иное:

Finnish-EastIBD

Я бы сказал, что в основном это более частный и специфичный вариант того же, что мы видим у литовца. Доказательством может служить высокий уровень пересечения с балтской выборкой. В то же время, существует и финская специфика, например, пересечение с саами, которые у литовца довольно бледные. Более яркое и пересечение со шведами. Скорее всего, здесь мы видим результат включения в состав шведов финского субстрата, поскольку с теми же норвежцами интенсивность явно ниже.

Крайней западной точкой у нас будет представитель российских немцев. На этнокалькуляторах Admixture он получается достаточно типичным представителем немецкого народа, поэтому версию о заметном влиянии на его наследственность русских можно исключить.

German_RussiaIBD

К сожалению, немецкой выборки у меня нет, поэтому Германия закрашена серым. Некоторым заменителем является Швеция, которая чуть ярче соседей. К некоторому  удивлению, французы и британцы не показали заметной общности с немцем, хотя ее уровень все же выше средневосточноевропейского. Частично это может объясняться тем, что в британской выборке лишь семь человек из 23 — англичане, остальные являются ирландцами. шотландцами и валлийцами. Пятно у восточных украинцев и южных русских также загадочно — неужели это след знаменитых готов?

Невозможно исследовать генетическое разнообразие восточноевропейцев и обойти при этом ашкенази. Поэтому я позволил себе небольшую некорректность и разместил их на карте в районе нынешней Одессы. Картинка для ашкенази из коммерческой выборки:

AshkenaziIBD

Ожидаемое ярко-красное пятно сходства с родной популяцией, остальные все довольно далеко (на втором месте получилась выборка сефардов, но ее на карте нет). Повышение у басков и греков показывает родство ашкенази со средиземноморскими популяциями, пятно у восточных украинцев и белорусов объяснимо длительным совместным проживанием.

Перейдем к восточным славянам. Небольшой размер выборки западных украинцев не помешал им оказаться на первом месте у карпатского русина:

Carpathian_RusinIBD

Пятна на остальной территории получились довольно неровными. Я бы не стал делать из этого каких-то глубоких выводов о древних пересечениях карпатцев и финнов или эрзян.

Северо-восточная Беларусь:

BelarusianIBD

Украина (Полтава):

Ukrainian-PoltavaIBD

Обращает на себя внимание пересечение с поляками.

Человек смешанного происхождения — донские казаки и украинцы:

RuUa-CossackIBD

Тверь-Рязань:

Russian-CenterIBD

Как видно, балто-славянская общность улавливается всегда, в то время как более тонкие различия частично видны, частично скрываются шумом (случайными отклонениями).

Представители эрзи и мокши явно в своей основе близки балто-славянам. При этом балтийские финны никак не выделяются, а народы волго-уральского региона уже довольно далеки. Все это не является новостью для интересующихся темой людей, однако независимое подтверждение результатов показывает действенность методики.

Эрзя:

ErzyaIBD

Мокша:

MokshaIBD

Мокшанская выборка не помещена на карту из-за своего маленького размера (давала слишком большие случайные отклонения). У мокши «родная» выборка получилась заметно ближе эрзянской, у эрзи, соответственно, наоборот. Вероятно, это значит, что, несмотря на родственность двух групп, различие между ними с точки зрения разделяемой популяционной истории существенно (простыми словами, женились преимущественно внутри своего народа).

У северного русского видно родство как с балто-славянскими выборками, так и с балтийскими финнами:

Russian-NorthIBD

Наряду с этим, у русского из Пермского края ощущается влияние коми. Вероятно, с этим же связано и приближение других народов Урала:

Russian-PermIBD

В то же время, сами коми-зыряне скорее относятся к тому же «балто-славяно-финскому» кругу популяций:

KomiIBD

Чтобы не делать пост бесконечным, карты для народов волжско-уральского региона (в широком смысле) будут приведены в следующей части.

Алгоритм самостоятельного анализа результатов экзомного тестирования

Осенью 2011 года один из флагманов коммерческой персональной геномики, компания 23andme, запустила пилотный проект экзомного тестирования, в котором клиентам предлагался продукт — экзомный тест за 999 американских долларов вместе с интерпретацией результатов.  Тест покрывал примерно 50 млн. базовых пар ДНК, включающих в себя информацию необходмую для синтеза протеинов. К сожалению, пилотный проект быстро закрылся из-за отсутствия интереса и высокой стоимости теста. Тем не менее, некоторые из россиян успели заказать себе этот тест и получить результаты. Но так как авторизированный отчет 23andme с толкованием полученных результатов оказался написанным на сложном для понимания эзотерическом научном языке,  возникла необходимость в дополнительной интерпретации, вернее разжевывании имеющейся интерпретации, то я решил показать, как можно проанализировать экзом самостоятельно с помощью подручных средств.

В качестве примера я использую анонимизированный файл vcf (файл с перечнем геномных вариантов) одного из немногих россиян, заказавших экзомное тестирование в 23andme.

 

Техническое описание исследования.

Для анализа экзома я использовал NGS-библиотеки пакета Bioconductor-R (в среде статистических вычислений R), предназначенного для анализа полногеномных данных. Основной библиотекой, задействованной в анализе была библиотека variantAnnotation.

source(«http://bioconductor.org/biocLite.R»)

library(VariantAnnotation)

Загрузка требуемого пакета: BiocGenerics

Загрузка требуемого пакета: parallel

Присоединяю пакет: ‘BiocGenerics’

Загрузка требуемого пакета: GenomicRanges

Загрузка требуемого пакета: IRanges

Загрузка требуемого пакета: XVector

Загрузка требуемого пакета: Rsamtools

Загрузка требуемого пакета: Biostrings

Присоединяю пакет: ‘VariantAnnotation’

В самом начале я загрузил заархивированный файл x.vcf в память с использованием координат геномного билда hg19 (т.к. VCF был получен из bam-файла, координаты которого были взяты из GRCh37.64, соответствующего hg19):
> vcf <- readVcf(«x.vcf», «hg19»)

> vcf

class: CollapsedVCF

dim: 110651 1

rowData(vcf):

  GRanges with 5 metadata columns: paramRangeID, REF, ALT, QUAL, FILTER

info(vcf):

  DataFrame with 28 columns: AB, AC, AF, AN, BaseQRankSum, DB, DP, DS, Dels,.

geno(header(vcf))

DataFrame with 5 rows and 3 columns

        Number        Type

   <character> <character>

AD           .     Integer

DP           1     Integer

GQ           1       Float

GT           1      String

PL           .     Integer

head(rowData(vcf), 3)

GRanges with 3 ranges and 5 metadata columns:

             seqnames         ranges strand | paramRangeID            REF

                <Rle>      <IRanges>  <Rle> |     <factor> <DNAStringSet>

  rs79585140        1 [14907, 14907]      * |         <NA>              A

  rs75454623        1 [14930, 14930]      * |         <NA>              A

  rs78601809        1 [15211, 15211]      * |         <NA>              T

                            ALT      QUAL      FILTER

             <DNAStringSetList> <numeric> <character>

  rs79585140                  G    494.81  MQFilter40

  rs75454623                  G    718.96  MQFilter40

  rs78601809                  G    125.22  MQFilter40

Затем я определил качество полученных генотипов (эти данные содержаться в колонке GQ секции генотипов vcf). Как видно из приведенных ниже значений, только 52% всех генотипов имеют 99%  степень аккуратности определения, качество остальных 48% вариантов лежит в диапазоне между 0 и 90% процентами. 

> geno(vcf)

List of length 5

names(5): AD DP GQ GT PL

> GQ <-geno(vcf)$GQ

> dim(GQ)

[1] 110651      1

> geno(vcf)

List of length 5

names(5): AD DP GQ GT PL

> GQ <-geno(vcf)$GQ

> dim(GQ)

[1] 110651      1

> fivenum(GQ)

[1]  0.03 33.98 99.00 99.00 99.00

> length(which(GQ==99.00))/length(GQ)

[1] 0.5221552

 hist(GQ[GQ != 0], breaks=seq(0, 100, by=10)

qc

На следующем этапе я опредилил число ранее неизвестных (новельных, то есть отствующих в базе dbSNP) вариантов в файле VCF. Всего вариантов 110651, из них известных 106076 и новельных 4575 (в отчете 23andme 4137). В целях определения качества новельных снипов я создал метрику для оценки качества снипов на основе сопоставления двух параметров – качества глубины покрытия генома и качества генотипирования. Из приведенного ниже графика видно, что примерно 25 % новельных снипов находятся в зоне низкого качества глубины покрытия, и это означает что примерно четверть новельных снипов могут представлять собой артефакт генотипирования:

info(vcf)$DB -> dbsnpsnp

metrics <- data.frame(QUAL=qual(vcf), inDbSNP=dbsnpsnp, RSQ=info(vcf)$QD)

 

qdПосле предварительных статистических тестов, я приступил к определению генов, в которых были обнаружены варианты. В зависимости от своего расположения, варианты могут оказаться в одном из 7 участков: интрон,  кодирующий участок, 5’UTR, 3’UTR, интергенный регион, сплайс-сайт и промоутер.   Для обнаружения положения вариантов, я задействовал библиотеку TxDb.Hsapiens.UCSC.hg19.knownGene.  Сначала я определил положение всех вариантов (cм.  Excel файл exomevariants.xlsx), однако поскольку нас интересует в первую очередь frameshift мутации, то гораздо более информативным является нахождение вариантов в кодирующих участках. Всего таких вариантов в кодирующих участка обнаружено 56035 в 23140 генах, причем 989 из 23140 генов имеет больше одного обнаруженного варианта в кодирующем участке

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

loc <- locateVariants(rd, txdb, CodingVariants())

table(sapply(splt, function(x) length(unique(x)) > 1))

FALSE  TRUE

22151   989

Далее, я использовал функцию predictCoding, она вычисляет изменения кодирования аминокислот в несинонимичных вариантах. В запросе к базе данных рассматрываются только те участки , которые перекрываются с кодирующей областью. Референсные последовательности извлекаются из BSgenome. Вариант последовательности определяется путем замены, вставки или удаления значения в колонке varAllele в референсной последовательности.  Код аминокислот вычисляются для последовательности кодонов  в тех вариантах, когда длина кратна 3.

library(BSgenome.Hsapiens.UCSC.hg19)

coding <- predictCoding(vcf, txdb, seqSource=Hsapiens)


Затем из полученных 56035 вариантов в кодирующей области я выбрал только те, которые привели к сдвигу рамки чтения (таковых оказалось 412).

coding[mcols(coding)$CONSEQUENCE == «frameshift»]

Благодаря запуску функции predictCoding я отождествил код измененных аминокислот для не-синонимичных вариантов.  Анализируя это подмножество, я задался целью установить, какой физиологический ущерб эти изменения кодируемых аминокислот могут нанести при экспресии в фенотип.  Для этих целей я использовал методы PolyPhen, которые предсказывают последствия замены аминокислот в человеческих протеинах.  PolyPhen использует информарцию о функции последовательностей и структурную информацию, характеризующую замену аминокислоты для прогнозах о структуре и функции белка.

nms <- names(coding)

idx <- mcols(coding)$CONSEQUENCE == «nonsynonymous

nonsyn <- coding[idx]

rsids <- unique(names(nonsyn)[grep(«rs», names(nonsyn), fixed=TRUE)])

library(PolyPhen.Hsapiens.dbSNP131)

pp <- select(PolyPhen.Hsapiens.dbSNP131, keys=rsids,cols=c(«TRAININGSET», «PREDICTION», «PPH2PROB»))

head(pp[!is.na(pp$PREDICTION), ])

Полученные файлы сохранены в Excel файл x.xlsx, и затем подсчитано в каких протеинах наблюдается наибольшое число потенциально вредных frameshift мутаций

Название гена  Число frameshift мутаций

 

NA 2288
uc001lsw.2 44
P20930 34
P22105-3 21
P25940 13
O60732 12
Q5SSG8 10
Q86YZ3 10
Q9NYF8 9
P46013 9
Q5VU43 9
Q14500 9
Q9UMD9 8
O14513 8
A6NKC6 8
uc003ssj.2 7
O95678 7
O15360 7
Q86VF7 7
uc001mdw.3 6
Q9Y289 6
Q8NEZ4 6
Q96C45 6
Q9HD43 6
Q01955 6
Q2KHM9 6
Q701N2 6
P38570 6
P24821 6
P46734 6
Q9Y2K3 5
uc002vwl.2 5
uc002nfb.2 5
uc003nsm.1 5
Q9UNS1 5
Q9NZH6 5
D3DSV6 5
C9IYD7 5
P20853 5
Q14676 5
P38159 5
P35125 5
P35670 5
Q8N6F8 4
Q96Q06 4
uc001bvt.2 4
uc011dxu.1 4
uc004csb.2 4
Q8TE73 4
Q9H2D6 4
uc002yfm.2 4
Q96J66 4
uc002zag.1 4
Q8TB24 4
Q96RN1 4
Q99572 4
Q9C0D2 4
uc002zwe.2 4
Q9ULD2 4
Q8WXH0-2 4
uc003uhx.2 4
O95050 4
O75128 4
P02533 4
A3KMH1 4
Q5HYK9 4
P48634 4
O15069 4
Q8IUA7 4
Q16600 4
P60331 4
Q5D862 4
B7ZBR5 4
Q5KU26 4
Q12802-2 4
A8MTL4 4
P23327 4
Q7Z3S9 4
O75096 4
A1A5D9 4
Q15149 4
P54257-2 4
uc001saw.2 3
Q96PX6 3
Q9BWT7 3
Q9H0J4 3
uc001kgr.1 3
Q9H0U9 3
uc002uln.2 3
Q8TD33 3
Q9BYR5 3
Q9H339 3
Q9Y6R7 3
Q8N808 3
Q96RW7 3
uc003wcz.2 3
uc002fmv.2 3
Q8N865 3
uc002ycq.2 3
Q92954 3
uc003eee.3 3
Q9NQN1 3
Q9UQ84 3
Q9NQT5 3
Q96PX9 3
Q8NC74 3
Q8NGH7 3
uc011lix.1 3
Q8NH40 3
Q9NWH7 3
uc001rks.2 3
Q96EZ4 3
uc001wit.3 3
Q8N436 3
Q8TAX7 3
Q9P126 3
Q99954 3
Q9UI47 3
Q9BRB3 3
Q9UIU6 3
Q9BYQ6 3
Q96JF6 3
uc003kju.2 3
Q96L96 3
Q8N1N5 3
Q96PQ1 3
Q9H4A3 3
uc003zfz.2 3
Q9HCE0 3
uc010ebn.2 3
Q9HCS5 3
Q9NQG7-3 3
Q5JU00 3
Q6ZW33 3
Q6E0U4 3
O60500 3
O94900 3
P56945 3
Q5VIY5 3
P57679 3
Q6PFW2 3
A2I2N5 3
O60269 3
P60369 3
O15016 3
P60371 3
Q5QNZ9 3
P78334 3
Q5VY09 3
O75056 3
Q6NTE8 3
Q02386 3
Q6XYB7-2 3
Q07092 3
Q75N90 3
Q07157 3
P51689 3
Q08170 3
Q4G0N8 3
Q12789 3
P35908 3
C9JIP1 3
C9JLR2 3
Q12889 3
B9EIK7 3
Q13033 3
P11473 3
Q13635 3
Q685J3 3
Q14246 3
Q6H9L7 3
O14617 3
Q6PEW0 3
P27816 3
Q6UWM9 3
Q15051 3
Q6ZS72 3
Q15084 3
P13645 3
P27987 3
P47881 3
Q15345 3
P49747 3
P30926 3
Q17RW2 3
Q02447 3
uc002ckw.2 2
Q9BYQ4 2
uc002xvf.2 2
Q9H1I8 2
uc009zoy.1 2
Q9H1M4 2
uc002npq.1 2
Q92764 2
uc003cbl.3 2
Q92766-2 2
Q8NDY8 2
Q8N568 2
uc001say.2 2
Q9HBR0 2
uc002hwr.2 2
Q9HC10 2
uc002qoi.1 2
Q9HCC9 2
uc002yxk.1 2
Q92956 2
Q9BX84 2
Q9HCH5-8 2
uc003tcj.1 2
Q969J2 2
uc003xza.2 2
Q8NG08 2
uc010neg.1 2
Q9NP71 2
Q96SK3 2
Q9NPR9 2
Q99518 2
Q9NQ92 2
uc002mdk.2 2
uc010ooe.1 2
uc002oyh.1 2
Q96DS6 2
Q8N531 2
Q8NGF6 2
Q9BS92 2
Q9NQW5 2
uc002zwc.1 2
uc010sxc.1 2
uc003cwg.3 2
Q96GX9 2
Q9BYD2 2
Q8N146 2
uc003qtl.2 2
Q9NU22 2
Q8WXA2 2
Q9NV39 2
uc003xio.3 2
Q96JA4 2
Q8WXU2 2
Q9NY99 2
uc010cov.2 2
Q8NGV6 2
uc001sax.2 2
Q9NYQ6 2
uc001sck.2 2
Q96JM2 2
uc001zrt.2 2
Q9NZM3 2
uc002cyd.1 2
Q96KT7 2
uc002frs.1 2
Q9P2F8 2
uc002jjm.3 2
Q9UBK8 2
Q8TD19 2
Q9UGC7 2
uc002oxx.2 2
Q96KV7 2
uc002pdw.2 2
Q8NH01 2
uc002shl.3 2
Q9UK85 2
Q9BQ66 2
Q96LB9 2
Q8TE60 2
Q96LP6 2
uc002yip.1 2
Q96MC2 2
Q9BW66 2
Q9UPR6 2
Q8ND61 2
Q96NY9 2
uc003cpb.3 2
Q9Y237-2 2
uc003dnv.2 2
Q8N3K9 2
uc003gix.2 2
Q8N1A6 2
uc003lwz.2 2
Q8TAX9-3 2
uc003pgu.3 2
uc001aru.2 2
Q8WWF5 2
Q96PY6 2
uc003tpz.2 2
uc001dpq.2 2
uc003vuk.3 2
uc001drv.2 2
uc003wsh.3 2
uc001jrr.3 2
uc003xkm.1 2
Q8NA69 2
Q9GZP7 2
Q96QA5 2
uc009vzo.2 2
Q96RD9 2
uc010azk.1 2
uc001qnn.1 2
Q9H0R5 2
Q8TBZ5 2
Q8WZ92 2
Q8TCU5 2
Q9NRD8 2
Q5T9A4 2
Q6ZRI6 2
B9EGI0 2
O75830 2
Q86VW1 2
C9J2Y8 2
Q658L1 2
C9JF86 2
Q6PEY2 2
P60412 2
Q7RTR8 2
O95153 2
Q8IYM2 2
O95255 2
O60391 2
O95425 2
Q6DT37 2
Q8IZ20-2 2
Q6NXP2-2 2
O95460-2 2
P50226 2
A6NMZ7 2
P54253 2
O95786 2
Q86TB3 2
Q0P670 2
P59827 2
Q0VAR9 2
Q5T6X5 2
Q0VDD8-4 2
O60336 2
O95817 2
O60423-2 2
A6PVS8 2
Q68DN1 2
P04439 2
O60602 2
A8MSH3 2
Q6NV75 2
Q13427 2
Q6P6B7 2
A8MSQ1 2
Q6PXP3 2
Q14028 2
Q6ZMY3 2
Q14031-2 2
Q6ZTY8 2
P15822 2
B9ZVK6 2
P15848 2
Q7Z570 2
P17931 2
Q86UQ0 2
Q14929 2
Q86XA9 2
P20742 2
Q8IYG6 2
A8MT70 2
P60014 2
A8MT77 2
Q5T8R8 2
O14830 2
Q5TZA2 2
Q15643 2
Q5VTH9 2
P23141-2 2
Q5VV43 2
P23280 2
Q5W0A0 2
Q24JP5-2 2
O60443 2
A6ND91 2
Q6BDS2 2
Q2M243 2
A6NE01 2
Q32MH5 2
Q6IMN6 2
Q32P51 2
Q6NUI1 2
Q3L8U1-2 2
Q6NWU0 2
Q499Z3 2
Q6P3X3 2
O15018 2
A6NEL2 2
Q4G0P3 2
O75081 2
Q4LDE5 2
Q6U949 2
Q58DX5 2
P50238 2
Q58EX7 2
Q6ZN79 2
Q5D0E6 2
O75095 2
P25391 2
P54108 2
A9UL12 2
Q70EL2 2
Q5JTH9 2
Q76I76 2
B4E1X0 2
P56545-2 2
Q5JUB6 2
Q7Z6J9 2
O15389 2
Q86TY3 2
O43164 2
A5PLN7 2
B5MDQ5 2
Q86W24 2
Q5T035 2
O75376 2
Q5T036 2
Q8IUX4 2
Q5T0J7 2
Q8IYK2 2
Q5T124 2
Q8IYS4 2
Q5T1M5 2
Q5T6F2 2
Q12955 2
uc003xax.3 1
uc002eax.2 1
uc001dwa.2 1
Q96JL9 1
uc003aka.2 1
Q8N9L9 1
Q9Y2Y8 1
Q96JQ0 1
uc001rig.1 1
Q96KD3 1
Q92889 1
Q8N9R8-2 1
uc003mtg.2 1
Q8N9T8 1
Q96HJ3 1
Q96L50 1
Q9Y623 1
Q8N386 1
uc001law.2 1
Q8NA82 1
uc001whc.2 1
Q96LI9 1
uc002lvh.2 1
Q8NAT2 1
Q93075 1
Q96LW7-2 1
uc003fpa.2 1
Q96LW9 1
uc003sys.2 1
Q96M29 1
uc004bmg.1 1
Q96M89 1
Q9Y2G2 1
Q96M91 1
Q9Y566 1
Q8NC38 1
uc001abz.3 1
Q96MG8 1
uc001hfx.2 1
Q96MK3 1
uc001mty.2 1
Q96MY7 1
uc001stk.2 1
Q96N77 1
uc002aon.2 1
Q8N3D4 1
Q92583 1
Q96P69 1
Q8N323 1
Q96PC2 1
uc002sfp.2 1
Q96PD4 1
Q969T7 1
Q96PE6 1
Q96AQ6 1
Q96PH1 1
uc003hti.2 1
Q96PL5 1
uc003ntp.1 1
Q96PN7 1
uc003vsp.2 1
Q8NCW5 1
uc003yyy.2 1
Q96PQ7 1
uc009wcm.2 1
Q8N196 1
uc010jzk.1 1
Q8NDN9 1
Q8WUP2 1
Q8NDX1 1
Q9Y442 1
Q8NDX9 1
Q9Y5P1 1
Q8N3Y1 1
Q9Y6J0 1
Q96QD9 1
uc001cqe.3 1
Q96QE3 1
uc001fgr.1 1
Q96QI5 1
Q8WW52 1
Q8NDZ6 1
uc001mgt.2 1
Q96RG2 1
uc001qyz.3 1
Q96RL6 1
Q8WXD5 1
Q8NE62 1
uc001urv.2 1
Q96RP7 1
uc001zhi.2 1
Q8NEG0 1
uc002cmq.1 1
Q96S42 1
Q92543 1
Q96SB8 1
uc002iob.2 1
Q8NEQ5 1
uc002mkl.2 1
Q96SN8 1
uc002oqh.1 1
Q96ST8 1
Q92935 1
Q96SZ5 1
uc002unu.2 1
Q96T17 1
Q8N8C0 1
Q99456 1
Q969X1 1
Q8NEV8 1
uc003cna.3 1
Q8N412 1
Q96AY2 1
Q99595 1
Q96BF3 1
Q99678 1
uc003knc.2 1
Q99705 1
uc003nif.3 1
Q99707 1
Q8N910 1
Q99856 1
Q96E39 1
Q8NFD2 1
Q8N960 1
Q8NFT2 1
Q96FX8 1
Q9BQI5 1
uc003zsj.2 1
Q9BR39 1
uc009vnn.1 1
Q9BR77 1
Q96HD9 1
Q8NFV5 1
Q96HP8 1
Q9BRQ8 1
Q8N9H6 1
Q8NFZ6 1
Q9Y2I6 1
Q9BSA9 1
Q9Y2R9 1
Q9BT25 1
Q9Y3N9 1
Q9BU76 1
Q9Y4K0 1
Q9BUV0 1
Q9Y5E3 1
Q9BVL2 1
Q9Y5T5 1
Q9BVP2 1
Q9Y6C9 1
Q8NG04 1
Q9Y6S9-2 1
Q9BWD1 1
uc001bfk.2 1
Q9BWH6 1
Q8WW01 1
Q9BWN1 1
uc001epm.3 1
Q8N434 1
uc001ggg.1 1
Q9BWW9 1
uc001ikw.3 1
Q9BX26 1
Q8N715 1
Q8NG31-2 1
uc001lvm.2 1
Q9BXA9 1
uc001mjv.2 1
Q9BXI2 1
Q8WWU7 1
Q9BXI9-2 1
uc001rdt.2 1
Q9BXL6 1
uc001sah.1 1
Q9BXR5 1
uc001saz.2 1
Q9BXT6 1
uc001ugs.3 1
Q9BXT8 1
uc001vmt.2 1
Q9BXW6 1
uc001wja.2 1
Q9BY07 1
Q8WYQ9 1
Q8NGD2 1
uc002axo.2 1
Q9BYH1 1
uc002dai.3 1
Q9BYJ0 1
uc002flb.2 1
Q8NGD4 1
uc002hjn.2 1
Q8N123 1
uc002hzw.2 1
Q9BYR3 1
Q92610 1
Q8N475 1
uc002mdo.3 1
Q9BZE2 1
uc002nhl.1 1
Q9BZJ0 1
uc002oek.2 1
Q9BZJ3 1
Q92794 1
Q9BZY9 1
uc002pgj.1 1
Q9C000 1
uc002rxt.1 1
Q8NGI3 1
uc002spl.1 1
Q9C0D6 1
uc002vfa.2 1
Q9C0G6 1
uc002wtp.2 1
Q9C0J9 1
Q969S8 1
Q8NGJ0 1
uc002zji.3 1
Q9GZS9 1
uc002zxx.2 1
Q9GZU2 1
uc003cfi.1 1
Q9H063 1
Q96AP0 1
Q9H094 1
uc003dar.2 1
Q8NGK0 1
uc003eny.2 1
Q9H0M4 1
uc003fts.2 1
Q8NGV0 1
uc003gxu.2 1
Q9H0U6 1
uc003jig.2 1
Q8N4B4 1
Q96BJ8-3 1
Q9H190 1
uc003mwv.2 1
Q8NGX0 1
Q96BT3 1
Q9H1L0 1
uc003nzw.2 1
Q8NGY9 1
Q96CB5 1
Q9H1V8 1
Q8N957 1
Q9H201 1
Q96E52 1
Q9H205 1
uc003vvi.2 1
Q9H208 1
Q96F05 1
Q9H222 1
uc003xda.2 1
Q9H2B4 1
Q96GQ7 1
Q8N4T4 1
uc003zjw.2 1
Q9H306 1
uc004aid.2 1
Q8N4W9 1
Q8N9B5 1
Q9H347 1
uc009vxy.2 1
Q9H3S1 1
uc009yor.2 1
Q8NHC8 1
uc009zxk.2 1
Q9H4I0 1
Q96HP0 1
Q9H4M7 1
uc010fxm.1 1
Q9H583 1
uc010lpr.1 1
Q9H5L6 1
Q9Y2F5 1
Q9H6S0 1
Q9Y2H0-1 1
Q9H6Y2 1
Q9Y2K1 1
Q9H720 1
Q9Y2K9 1
Q9H816 1
Q9Y2T7 1
Q9H8X2 1
Q9Y345 1
Q9H9Y2 1
Q9Y3T6 1
Q9HAT1 1
Q9Y485 1
Q9HBF5 1
Q9Y508 1
Q9HBJ7 1
Q9Y585 1
Q9HBL0 1
Q9Y5E6 1
Q9HBM0 1
Q9Y5P3 1
Q8NHL6-3 1
Q9Y5W3 1
Q9HBW9 1
Q9Y644 1
Q8NHY0 1
Q9Y6G9 1
Q8NHY3 1
Q8WV93 1
Q8NI17-2 1
Q9Y6X5 1
Q9HCG8 1
Q8WVE6 1
Q8NI35 1
Q8WVT3 1
Q8N4X5 1
uc001doh.2 1
Q9HCX3 1
Q8WW43 1
Q8N1N2 1
uc001dzr.2 1
Q9NNX1 1
uc001ffh.2 1
Q9NP70 1
uc001fst.1 1
Q8TAZ6 1
uc001hdj.2 1
Q9NPB3 1
uc001hob.3 1
Q9NPB6 1
uc001ioo.2 1
Q9NPG4 1
uc001kal.3 1
Q8TB03 1
uc001koi.2 1
Q8N1N4 1
Q8WWK9 1
Q9NQC3 1
Q8WWQ8 1
Q8TB52 1
uc001mhb.3 1
Q8N5C6 1
uc001mqw.2 1
Q9NQS7 1
uc001nps.2 1
Q8TC84 1
uc001qvk.1 1
Q9NQW1 1
uc001qzt.2 1
Q8TCG1 1
uc001rgh.2 1
Q9NR11-2 1
Q8N7M2 1
Q9NR20 1
Q8WXB1 1
Q9NRC9 1
Q8WXG8 1
uc010otd.1 1
Q8N7Q3 1
Q8TCU4 1
uc001swc.3 1
uc010xwr.1 1
uc001uom.2 1
Q8N5H7 1
uc001usl.3 1
Q8TCY9 1
uc001vwo.1 1
Q9NRY5 1
Q8N7U7 1
Q9NU02 1
uc001wph.3 1
Q8TD07 1
uc001zif.2 1
Q9NV12 1
uc002adi.2 1
Q8N5W8 1
uc002ari.2 1
Q9NVI1 1
Q8N7X4 1
Q9NVL8 1
Q92485 1
Q9NVR5 1
uc002eab.2 1
Q9NVV2 1
uc002elh.2 1
Q8TD31-2 1
Q92535 1
Q9NWN3 1
uc002gov.3 1
Q9NWS6 1
uc002hwb.2 1
Q9NWS9 1
uc002hzv.2 1
Q9NX76 1
uc002ile.3 1
Q8N628 1
uc002jad.2 1
Q9NYA4 1
uc002knr.2 1
Q8TDM6 1
Q92614 1
Q9NYG8 1
uc002mkc.2 1
Q9NYK6 1
Q8N309 1
Q8TDR0-2 1
uc002niv.2 1
Q9NYQ8 1
uc002nrk.3 1
Q9NYR8 1
uc002onr.2 1
Q9NYW5 1
uc002owt.2 1
Q9NZ56 1
uc002oyf.1 1
Q9NZC7 1
Q92932 1
Q8TDV0 1
uc002pjn.2 1
Q8TDX9 1
uc002red.2 1
Q9NZM4 1
uc002sen.3 1
Q9NZP2 1
Q8N884 1
Q9NZP6 1
Q8N8A6 1
Q9NZQ3 1
uc002vcz.2 1
Q9NZQ8 1
uc002vml.2 1
Q9P0L9 1
uc002wgf.1 1
Q9P0W8 1
Q969H9 1
Q8TDY8 1
Q969Q4 1
Q9P1Z2 1
Q969T3 1
Q9P212 1
uc002zcm.2 1
Q9P266 1
uc002zsk.1 1
Q9P272 1
Q96A59-2 1
Q9P275-2 1
uc003afo.2 1
Q9P2A4 1
Q96A84-3 1
Q9P2E9-3 1
uc003cib.2 1
Q8TE59 1
uc003com.2 1
Q9P2X7 1
uc003cqx.2 1
Q9UBC7 1
uc003cxg.2 1
Q8N183 1
Q96AQ9 1
Q9UBS4 1
uc003eev.3 1
Q9UBU2 1
uc003fli.1 1
Q9UDX4 1
uc003frm.2 1
Q9UFP1 1
uc003gco.3 1
Q8TE68 1
uc003gkv.3 1
Q9UGP5 1
uc003hqx.3 1
Q9UH36 1
uc003ian.3 1
Q9UH92 1
Q96BH3 1
Q9UHF4 1
uc003lnj.2 1
Q9UHN6 1
uc003mlz.3 1
Q8N6I1 1
uc003mwa.3 1
Q9UIS9 1
uc003nef.2 1
Q8TEC5 1
uc003nkt.2 1
Q9UJ78 1
uc003ntn.3 1
Q9UJA3 1
uc003nvm.1 1
Q9UJL9 1
uc003ods.2 1
Q9UJW7 1
uc003qtf.2 1
Q8TER0 1
Q96DA0 1
Q9UKB5 1
uc003tbm.2 1
Q9UKP4 1
uc003toq.2 1
Q9UL01 1
uc003tzn.2 1
Q9UL49 1
uc003vrz.2 1
Q9UL52 1
Q96EK5 1
Q8TER5 1
uc003wcr.1 1
Q9ULE4 1
uc003wkp.2 1
Q9ULE6 1
uc003wwm.2 1
Q9ULI1 1
uc003xcu.2 1
Q9ULI3 1
uc003xep.1 1
Q9ULM0 1
Q96G42 1
Q8TEV9 1
uc003yyd.2 1
Q9UMR7 1
Q96GU1 1
Q9UMS0 1
uc003zlr.1 1
Q9UMX9 1
uc004aay.2 1
Q9UNI1 1
uc004atg.3 1
Q9UNK9 1
uc004can.3 1
Q9UNQ0 1
uc004ded.1 1
Q8TEX9 1
uc009vvi.2 1
Q9UPA5 1
Q96HA7 1
Q9UPN6 1
uc009ynk.2 1
Q9UPP2-2 1
uc009zhj.2 1
Q8TF21 1
uc009zwi.2 1
Q9UPV0 1
uc010awk.1 1
Q9UQ35 1
uc010boe.2 1
Q9UQ74 1
uc010eas.2 1
Q8TF76 1
uc010fvs.1 1
Q9UQ90 1
uc010inb.2 1
Q9UQP3 1
uc010ljy.1 1
Q8WTP8 1
Q8N9F8 1
Q8WTV0-2 1
Q8N9H9 1
Q9Y2A4 1
uc010wmr.1 1
Q9NRH2 1
uc010yvx.1 1
Q9NRP7 1
uc011jvp.1 1
Q9NRR1 1
Q8N0W5 1
Q9NRR4 1
Q8IX07 1
Q6P461 1
Q5TCM9 1
P19075 1
P10515 1
P19484 1
Q5JZ73 1
P19878 1
Q66K79 1
P19971 1
Q6W5P4 1
P20138 1
Q86V20 1
P20702 1
O95202 1
C9JN24 1
A6NGG8 1
C9JN71 1
Q5VVP1 1
D3DQK9 1
Q6IQ23 1
P21462 1
P08123 1
A6NMK8 1
Q6ZR62 1
A6NMR0 1
Q7Z5M8-2 1
O00182 1
Q86YD7 1
O00192 1
Q8IYW5 1
P23490 1
Q5JRA6 1
P24071 1
O95521 1
O00253 1
Q5T5J6 1
P24928 1
P02452 1
O00292 1
Q5XUX1-3 1
P25440 1
Q6AZY7 1
P25774 1
P05362 1
O00330 1
Q6PHR2 1
P26378 1
Q6UWT4 1
P26640 1
Q6ZMZ3 1
O00418 1
Q6ZU80 1
O00421 1
A2RUB6 1
P28070 1
Q86T20 1
P28330 1
P13646 1
P30042 1
Q8IVF2 1
P30154-2 1
A6NM10-2 1
O00451 1
Q8IZJ4 1
P31391 1
O95229 1
P31930 1
O95359 1
P32519 1
Q5QGT7 1
P34741 1
Q5SXM8 1
P34820 1
Q5T197 1
P34947 1
Q5T7V8 1
O00566 1
Q5TZ20 1
P35346 1
Q5VUJ5 1
P35372-3 1
P02462 1
P35452 1
Q63HK3 1
P35542 1
Q68DQ2 1
P35556 1
P04264 1
A2RUE3 1
P05107 1
P35789 1
P06133 1
O14610 1
P07197 1
P35968 1
Q6Q4G3 1
P36888 1
Q6UQ28 1
P37108 1
Q6V0I7 1
P37231 1
P08572 1
P38117-2 1
Q6ZNH5 1
A6NNB3 1
P09172 1
O14641 1
P0C0P6 1
P40145 1
P10643 1
P40394 1
Q7Z4N2 1
P42694 1
Q7Z736 1
P42898 1
P12643 1
P43360 1
Q86VI3 1
O14656 1
P14060 1
O14777 1
Q8IUC4 1
O14798 1
Q8IWC1 1
P48357 1
Q8IXT1 1
A2RUQ5 1
Q8IYN0 1
P48681 1
P17693 1
P48736 1
Q587J8 1
O14944 1
Q5CZA4 1
P49917 1
O95236 1
A7MBM2 1
B9A029 1
A8K1K9 1
Q5JVX7 1
P50748 1
Q5M775 1
P50995 1
A6NFJ4 1
P51172-2 1
Q5SXH7-4 1
P51636 1
Q5SYB0 1
P51659 1
A6NII6 1
O15021-3 1
O95900 1
P51801 1
O95988 1
P51858 1
P01011 1
P51957 1
Q5TEA6 1
P51993 1
Q5U5R9 1
P52569-2 1
Q5VTT5 1
O15031 1
P02461 1
A8K8G6 1
Q5VXM1 1
O15205 1
Q5VZR2-2 1
P55103 1
Q5Y7D6 1
P55198 1
Q659C4 1
P56159 1
Q68D06 1
A8K979 1
Q68EA5 1
P56696 1
P04004 1
P56715 1
P04626 1
A8MQT4 1
Q6MZQ0 1
P57071 1
Q6NUQ4 1
O15534 1
Q6NVY1 1
P57727 1
Q6P0N0 1
P57737 1
P06734 1
P58182 1
P07919 1
P59046 1
P07996 1
P59282 1
Q6S9Z5 1
P59533 1
Q6UDR6 1
P59826 1
Q6UWB4 1
O15553 1
Q6UXN2 1
P59910 1
Q6VVB1 1
O43151 1
Q6X4T0 1
A2VDJ0-5 1
Q6ZMT4 1
P60368 1
P08949-2 1
O43187 1
Q6ZQQ6 1
P60370 1
Q6ZRQ5 1
O43314-2 1
Q6ZS82 1
P60411 1
Q6ZUX3 1
O43493-2 1
Q70CQ4 1
P63211 1
Q7KYR7 1
P68363 1
Q7RTV2 1
P78329 1
Q7Z3Y9 1
O43555 1
Q7Z5L4 1
P78364 1
P12109 1
P78396 1
Q7Z7A1 1
P80075 1
Q86TC9 1
P98164 1
P12645 1
Q00056 1
Q86V71 1
Q008S8 1
Q86VY4 1
Q01459 1
Q86WB0 1
Q01658 1
Q86XM0 1
Q01664 1
P15169 1
O43731-2 1
C9JG81 1
O60225 1
Q8IVF5 1
O60243 1
Q8IWE2 1
Q02742 1
Q8IXI1 1
Q02880-2 1
Q8IYD8 1
Q03188 1
P15924 1
Q03405 1
P17036 1
Q03468 1
Q8IYX7 1
Q04671 1
Q8IZF2 1
Q04844 1
A6NM11 1
Q05952 1
O95185 1
Q07075 1
Q58F21 1
A1A4T8-2 1
O95206 1
O60285 1
Q5H9F3 1
Q07283 1
Q5IJ48 1
O60292 1
Q5JSS6 1
Q08397 1
Q5JTV8 1
Q08426 1
O95394 1
Q08999 1
Q5JWR5 1
Q08AF3 1
A1A519 1
Q08AG7 1
Q5M9N0 1
Q09MP3 1
Q5QJE6 1
O60312 1
Q5SQ64 1
Q0P6D6 1
Q5SW96 1
A4D1E9 1
Q5SXM2 1
A4D263 1
Q5SY16 1
Q0ZGT2 1
Q5SZD4 1
Q0ZLH3 1
A6NHR9 1
O60403 1
O95897 1
A4Z6T7 1
Q5T1B0 1
Q12887 1
Q5T2N8 1
A8MV65 1
O95944 1
Q8IZU2 1
Q5T7B8 1
Q8IZY2 1
O95995 1
A0PJX4 1
Q5TAA0 1
A1IGU5 1
Q5TD97 1
Q13084 1
Q5THR3 1
Q13127 1
P01031 1
Q13137 1
P01833 1
Q13233 1
Q5VTJ3 1
Q13316-2 1
P02458 1
O60548 1
Q5VV41 1
Q13470-2 1
Q5VVB8 1
Q13487 1
Q5VW36 1
Q13601 1
Q5VXT5 1
Q13615 1
Q5VYM1 1
B1AH88 1
C9JBG3 1
Q13748 1
Q5XX13-4 1
Q13753 1
Q60I27 1
Q13797 1
P02538 1
Q13946-2 1
Q66K74 1
O60603 1
P02730 1
O60721 1
P02788 1
Q14032 1
Q68DV7 1
Q14112 1
Q6A555-2 1
Q14126 1
Q6B9Z1 1
Q14160-3 1
P04259 1
Q14209 1
C9JDV5 1
Q14210 1
Q6IPM2 1
Q14244 1
Q6L8Q7 1
B1ANC0 1
P04731 1
Q14331 1
Q6NUN0 1
O75023-3 1
Q6NUS8 1
B1APY0 1
Q6NVV3 1
Q14679 1
P05787 1
Q14690 1
Q6NY19-2 1
Q14774 1
P06732 1
B2R6C3 1
Q6P4A8 1
Q14934-3 1
Q6PDB4 1
Q14980 1
P07900-2 1
Q14990 1
Q6PGQ1 1
Q15032 1
Q6PJF5-2 1
B4DQM4 1
Q6Q0C1 1
A6ND48 1
Q6Q759 1
B5B2M5 1
Q6T423 1
O75161 1
Q6UB98 1
O75185 1
Q6UE05 1
Q15652 1
Q6UW78 1
Q16204 1
P08151 1
Q16348 1
Q6UXC1-2 1
B5MDD1 1
Q6UXY1 1
Q16610 1
Q6V1P9 1
Q16762 1
Q6W3E5-2 1
Q16787 1
Q6WQI6 1
Q16790 1
Q6X784 1
Q16828 1
Q6XZB0-2 1
Q17R60 1
P08922 1
O75635 1
Q6ZN28 1
Q18PE1 1
Q6ZNB6 1
Q1EHB4 1
Q6ZP82 1
Q1X8D7 1
Q6ZR52-2 1
O75717 1
P08F94 1
Q2HXU8 1
Q6ZRV2 1
Q2I0M4 1
Q6ZS81 1
A1L443 1
P09871 1
Q2L4Q9 1
Q6ZUB1 1
O75952 1
Q6ZV73 1
Q2M2I5 1
P10321 1
Q2M329 1
P10412 1
Q2M3C7 1
P10523 1
Q2NL98 1
Q7RTR0 1
Q2TAA8 1
Q7RTS3 1
Q2TAL5 1
Q7Z2W4 1
Q2TBF2 1
Q7Z3Y8 1
Q2VIQ3 1
Q7Z407 1
Q2VPA4 1
P12107-2 1
Q2VPK5 1
Q7Z5L7-3 1
Q30201 1
Q7Z5Y6 1
Q32M84 1
Q7Z6L1 1
Q32M92 1
Q7Z745 1
O76014 1
Q86SH2 1
Q32MK0 1
P12270 1
O94769 1
Q86TJ5 1
Q3KPI0 1
Q86U06 1
O94823 1
Q86US8 1
Q3LHN0 1
Q86V48 1
Q3LI76 1
P13284 1
Q3LIE5 1
C9JFW9 1
Q3MJ13 1
Q86VZ4 1
Q3SY84 1
Q86W28 1
Q3YEC7 1
Q86X19 1
Q3ZCM7 1
Q86XL3 1
Q3ZCV2 1
Q86YB8 1
Q3ZCX4 1
Q86YE8-3 1
Q495D7 1
P15313 1
Q495Z4 1
Q8IUN9-2 1
O94850 1
Q8IUX7 1
Q49A88-6 1
Q8IVF4 1
Q49MG5 1
Q8IWA6 1
A1Z1Q3-2 1
Q8IWD5 1
B7ZLS8 1
Q8IWT3 1
Q4G0Z9 1
Q8IX12 1
B8A4U7 1
Q8IXS2 1
Q4VX76-2 1
Q8IY37 1
Q4W5C3 1
Q8IYE1 1
Q4W5G0 1
Q8IYI8 1
Q4ZJI4 1
P17022 1
Q53EZ4 1
Q8IYR2 1
Q53GL7 1
Q8IYU4 1
Q53HC0 1
Q8IYX0 1
Q53QW1 1
Q8IYY4 1
Q53RT3 1
Q8IZC4 1
Q53S99 1
Q8IZF3 1
Q53SF7 1
Q8IZT6 1
Q53T94 1
Q56UN5 1
Q8N0U7 1
Q13007 1
Q13018 1

 

На следующем этапе возникает вопрос — что делать с полученным списком генов с наибольшим числом frameshift мутаций? Можно ли определить характер и уровень функциональных изменений в организме человека? Оказывается, можно. Как упоминалась выше, полученные потенциальные генетические варианты, приведшие к замене кода аминокислот, были сохранены в таблице. Затем я подсчитал, в каких именно протеинах наблюдается наибольшое число потенциально вредных frameshift мутаций, и выделил их в отдельный список. Поскольку это самые интересные (с точки зрения возможных изменений в фенотипе) мутации, то далее я работал только с теми протеинами, в которых наблюдается повышенное количество вредоносных мутаций. Из общего числа я отобрал 35 протеинов с наибольшим количеством мутаций. Отмечу, что ни один из обнаруженных протеинов сам по себе не имеет значимой связи с риском развития заболеваний  интересующего нас спектра. Поэтому вышеприведенный список протеинов был обработан в программе Cytoscape, так как нас интересуют в первую очередь обнаружение функциональных связей с теми протеинами, которые ранее были описаны в литературе как потенциальные факторы развития отдельных расстройств и заболеваний.  Я не буду приводить полученные сетевые графы взаимодействия протеинов, так как они содержат деликатную информацию медицинского характера, поэтому помещенный ниже образец графического отображения в программе Cytoscape взаимодействия протеинов носит сугубо иллюстрирующий характер и взят с сайта програмыы Cytoscape

visualMapping1

Предварительный обзор нового этнокалькулятора от FTDNA myOrigins

Предварительный обзор нового этнокалькулятора от FTDNA myOrigins (дополнено 06.05)

Сегодня компания FTDNA открыла ограниченный доступ к бета-версии своего нового этнокалькулятора, который должен прийти на смену Population Finder. Необходимость замены старой утилиты давно назрела — предикты, выдаваемые этим инструментом, отличались крайней неточностью, и выглядели откровенно неудачно на фоне продукта основного конкурента — Ancestry Composition от 23andMe.

Видимо, после недавнего фиаско с громким анонсом обновленного дерева Y-DNA, в компании решили проявить разумную осторожность и открыли доступ к новому продукту лишь админам проектов, предупредив, что это закрытый бета-тест. На текущий момент можно видеть результаты лишь примерно половины участников (остальные, вероятно, ждут просчета. К сожалению, в этот список попал и я. Дополнение — как выяснилось, «переносы» из 23andMe все же были просчитаны, но не поставлены ссылки  на результат), однако этого достаточно для предварительной оценки нового инструмента.

Видно, что проделана большая работа, и в целом myOrigins (а именно так решили назвать Population Finder 2.0) выглядит гораздо достойнее своего предшественника. Выделен ряд географических зон, к которым может быть отнесен геном тестируемого, полностью либо частично. Зоны, к которым отнесена хотя бы часть его наследственности, выделяются на карте. Чем выше вклад зоны, тем ярче пятно. Похромосомного режима, как в Ancestry Composition, нет. Впрочем, выделяемые им сегменты часто бывают довольно сомнительными, поэтому я не считаю данный факт недостатком myOrigins. Как и следовало ожидать от компании, ориентированной в первую очередь на покупателей из Северной Америки и Западной Европы, наибольшей детализации подверглась Северо-Западная Европа. Она разделена на три близких между собой зоны — «британскую» Coastal Islands, «франко-германскую» Coastal Plain и «скандинавскую» Northlands.

Насколько хорошо получилось произвести разделение, покажет будущее — я в основном обратил внимание на компоненты, важные для восточноевропейцев. Кстати, возникает ощущение, что названия и кое-что в описании зон взято из другой версии программы, поскольку они зачастую плохо стыкуются с картой. Так, «балто-славянское» пятно названо Trans-Ural Peneplain, однако при этом нарисовано на территории Польши, Белоруссии и Украины. Но я забегаю вперед. Итак, две основные зоны, выделенные для Восточной Европы — это «балто-славянская» Trans-Ural Peneplain и «финская» North Circumpolar. Кроме этого, довольно часто проявляется «восточноазиатский» компонент Asian Northeast. Распределение выглядит разумно — украинцы, белорусы, южные русские преимущественно относятся к «балто-славянской зоне», со сдвигом к северу растет вклад «финской» зоны. «Восточноазиатский» компонент, проявляющийся у северян, не удивляет, а то, что он периодически встречается у украинцев, можно отнести на влияние Степи. Впрочем, конкретные соотношения двух основных восточноевропейских компонентов у некоторых участников вызывают подозрение в заметных случайных отклонениях процентовки. Дополнение — подозрения перешли в уверенность.

Тем большее удивление вызывают результаты некоторых представителей народов Поволжья и Урала. У них «найдены» «британский» и «франко-германский» компоненты, причем процент может доходить до 20. Думаю, причина здесь в отсутствии «уральской» зоны. Судя по описанию, ее роль должен был взять на себя «финский» компонент, якобы доходящий вдоль Полярного Круга до самой Гренландии. Частично ему это удается — видно, что у чувашей, марийцев, татар его много. Однако финны очень своеобразны, и не могут полностью отображать все не-азиатское разнообразие Севера Евразии. Как результат — заметную часть генома уральцев алгоритм не может отнести ни к «финскому», ни к «балто-славянскому» компоненту, при этом видно его европейское происхождение. Подозреваю, что такие варианты «на всякий случай» относят к британцам. Логично для алгоритма, рассчитанного в первую очередь на американцев.

Дополнение — как оказалось, «франко-германская» зона довольно часто рисуется и восточным славянам. Видимо, дело здесь не только в отсутствии «уральской» зоны, но и в других особенностях используемого алгоритма. «Британская» зона так и продолжает связываться с «уральцами».

Другие зоны, могущие представлять интерес — «средиземноморская» North Mediterranean, «анатолийско-кавказская» Anatolian Crossroads, «афганско-среднеазиатская» Eurasian Heartland, «америндская» Bering Expansion. Все эти компоненты могут встречаться в небольших количествах у восточноевропейцев, обычно их присутствие вполне оправдано.

На мой взгляд, в целом выделение зон сделано вполне разумно. Основная претензия — отсутствие «уральской» зоны, но честно говоря, сложно ожидать от американской компании внимания к этой тонкости. Излишнее выделение зон в Европе также вполне понятно. Дополнение — к недостаткам я бы отнес и отсутствие варианта «nonspecific» для неопределенных случаев, как сделано в Ancestry Composition. Тогда казусов с неверным разнесением по зонам было бы меньше. На первый взгляд, продукт получился вполне на уровне конкурента, а значит, компания может не беспокоиться еще несколько лет )). После полного просчета результатов всех участников и перехода утилиты в открытый вид мы увидим, действительно ли это так.

Этногеномика беларусов — часть V

Обсуждение результатов и выводы

 

Как отмечалось в введении к нашей статье, главной задачей нашего исследования являлась проверка двух рабочих гипотез, озвученных в предыдущих исследованиях профессиональных попгенетиков. Во-первых, это гипотеза о присутствии трех основных древних компонентов , которая указывает на возможность общего происхождения славян и балтов. Во-вторых, это утверждение о том, что своеобразие аутосомного генофонда беларусов может быть связанно с вкладом балтского субстрата.

После внимательного изучения результатов нашего исследования,можно сказать, что оба из приведенных выше заключений представляют собой крайне упрощеные варианты сложного процесса формирования аутосомного генофонда беларусов. Хотя мы и не можем предоставить окончательных аргументов в пользу или опровержение каждой из этих версий, мы может предоставить более полное и подробное обозрение структуры аутосомного генофонда. В отличие от трех основых компонентов, упомянутых выше, в нашем исследовании мы выделили шесть основных компонентов, типичных для европейцев в целом. Основу генофонда составляет компонент, который мы обозначили как северо-восточно-европейский компонент. Именно этот компонент выделяет беларусов среди других восточных славян, приближая их к современным балтийским популяциям (у литовцев процент компонента составляет 81,9, у латышей — 79,5%, у беларусов -76,4%, у эстонцев — 75,2%). Примечательно, по мере удаления от территории Беларуси на север в с торону Латвии и Эстонии, увеличивается процент северо-европейского генетического компонента (как мы полагаем, этот компонент доминировал в генофонде доисторических жителей Скандинавии в эпоху до распространения финно-угоров и индо-европейцев). С другой стороны, беларусов и других восточных славян отдаляет от балтов и сближает друг к другу более высокий процент так называемого западно-азиатского или кавказского компонента (любопытно, что в этом случае эта закономерность может свидетельствовать в пользу западно-азиатской теории происхождения индо-европейцев).

Далее, как показывает анализ в программе fineStructure, генофонд беларусов характеризируется высокой степенью генетических контактов как с балтами, так и остальными славянами, а также с рядом финно-угорских популяций (например, c эрзя и мокша). О симметричном характере межпопуляционного обмена свидетельствует симметричное расположение популяции беларусов относительно этих трех групп.

Исходяизвышенаписанного,представляетсялогичнымсделатьвыводотом,чтоосновнойкритическийэтапстановленияаутосомногогенофондапришелсянапериодсмешиванияносителейсеверо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента,послечегопредковыйаутосомныйгенофондбеларусовприобрелотносительнуюстабильность.Разумеется,даннаямодельнеисключаетпозднейшиеэпизодысмешиванияпопуляций,ноониоставилименьшийследвструктуреаутосомногогенофондабеларусов.Вэтойсвязивозникаеточевидныйвопрос–вкакойименноисторическийпериодпроизошлосмешениеносителейсеверо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента,иктобылиихносителями?
В начале сентября 2012 года известная американская лаборатория популяционной генетики доктора Райха опубликовала альфа-версию программного продуктаADMIXTOOOLS1.0. Альфа-версия была разработана для внутреннего использования, поэтому modusoperandiэтого продукта вряд ли является кристально понятным для стороннего пользователя. Положительным аспектом на мой взгляд является то, что ADMIXTOOLSпакет обеспечивает полную совместимость с форматом другой очень популярной программыEIGENSOFT, которая была разработана в той же лаборатории. Это немаловажное обстоятельство намного упрощает процесс обучения в ADMIXTOOLS.

Вышеупомянутый пакет включает в себя 6 приложений, среди которых я считаю наиболее полезнойqp3Popи утилиты для вычисления частотной характеристики аллелей. Впрочем, я не собираюсь обсуждатьqp3popво всех деталях и в контексте данной заметки достаточно отметить, что эта программа реализует тест three_pop(F_3), подробно описанный в известной статье Рейха и соавт. 2009.

Однако другой имплементированный в пакете метод, – метод rolloff– нуждается в более пристальном внимании. Этот метод позволяет производить математическую оценку как времени, так как и уровня адмикса. Оценка производится на основании анализа неравновесия по сцеплению между SNP-ами. Тут необходимо вспомнить стандартное определение неравновесия по сцеплению.Неравновесием по сцеплению (часто используется английская аббревиатураLD) называется неслучайная связь между двумя аллелями, в силу которой определенные комбинации аллелей встречаются наиболее часть. В теории, чем дальше друг от друга находятся SNP-ы ,тем меньше будет уровень LD. Темп угасания снижения LDв адмиксе напрямую связана с числом поколений, прошедших с момента адмикса, так как cвозрастанием числа поколений увлечивается число рекомбинаций произошедших между двумя отдельными SNP-ами. Проще говоря: Rolloffсоответствует экспоненциальной кривой угасания уровня LDот расстояния, и эта скорость экспоненциального снижения как раз и используется для оценки числа поколений, так и уровня адмикса в анализируемой популяии. Учитывая, что одно поколение примерно равно 29 лет, можно преобразовать число поколений в года.

Этот метод открывает интересные перспективы. Для целей этого анализа, я создал специальный набор SNP-данных, который включает в себя около 750 000 cнипов, частично или полностью в 250 различных популяциях человека. Далее, я разбил популяции 3 * 62 000 трио в следующем виде (X, Y, Z), где X и Y – пара рефренсных групп, а Z – белорусы из коллекцииBehar et al.2010. После этого я провел q3Pop анализ этих трио.

Результаты изложены в нижеприведенной таблице

Indian Polish Belarusian -0.000736 0.000251 -2.935
Polish Indian Belarusian -0.000736 0.000251 -2.935
Karitiana Sardinian Belarusian -0.001278 0.000517 -2.471
Sardinian Karitiana Belarusian -0.001278 0.000517 -2.471
Otzi North_Amerind Belarusian -0.002556 0.001126 -2.271
Cirkassian Polish Belarusian -0.000488 0.000231 -2.113
Polish Cirkassian Belarusian -0.000488 0.000231 -2.113
Pima Otzi Belarusian -0.002727 0.00137 -1.99
Pima Sardinian Belarusian -0.000794 0.000431 -1.843
Sardinian Pima Belarusian -0.000794 0.000431 -1.843
Otzi Surui Belarusian -0.002938 0.001931 -1.522
Surui Otzi Belarusian -0.002938 0.001931 -1.522

 

На первый взгляд, результаты нашего эксперимента с 3qPop, кажется, неплохо согласуются с выводами, содержащимися в работеПаттерсон и др. 2012: “Самый поразительный вывод состоит в обнаружени четкого сигнала адмикса в северной Европе, один из элементов которого связан с предками населения наиболее близкого по своей генетике к баскам и жителям Сардинии, а другой – с предками современного населения северо-восточной Азии и Америки. Этот явный сигнал, вероятно, отражает историю смешивания неолитических мигрантов с коренным населением Европы, что подтверждается недавним генетическим анализом древних костей Швеция и секвенированием полного генома Отци Тирольца”. Что касается собственно белорусов, то источники сигнала смешивания с посторонними популяцими менее ясны и расплывчаты. Как было показано ранее, с точки зрения формального анализа примесей (f3 статистики), белорусы могут быть представлены в виде популяционного микса поляков и индусов / черкессов. Первый компонент смеси может быть связан с носителями культуры шнуровой керамики/боевых топоров и культуры колоковидных кубков; второй, в соответствии с результатами, должен быть общим для индусов и черкесов.

 

Белорусы = ((неолитические культуры Европы) + “носители культуры колоковидных кубков”) + (мезолитическое население Европы) + компонент носителей культуры шнуровой керамики)) + скифо-сарматский тип

 

Для оценки дата события базового адмикса в белорусской популяции, мы использовали в качестве референсных популяций поляков и индусов (Примечание: мы снизили порог генетических дистанции в параметрах Rolloff для снижения уровня шума от более поздних адмиксов).

 

rolloff

Как вы можете видеть, сигнал присутствия адмикса обнаруживается гораздо хуже, и в силу этого, погрешности в оценке временного промежутка высоки:

154,158 + -87,024 поколений назад (или, 4470 + -2523 года до настоящего времени / 2510 – +2523 лет до н.э.).

 

Исходя из этого, мы решили модифицировать Rolloff-анализ генофонда белорусов, используя на этот раз в качестве референсов литовцев и пуштунов. Следуя этому совету, я решил предпринять вторую попытку формального анализа адмикса в двух имеющихся у нас выборках беларусов ( выборка беларусов из статьи Behar et al. 2011), и выборка беларусов, собранная в нашем проекте.Ниже приведены результаты эксперимента с двумя этими группам (в отличие результатов нашей предыдущей попытки, результаты данного эксперимента менее “зашумленные”):

rolloff2

 

Интервал числа поколений, прошедших со времен анализируемого адмикса (105.086+-52.59) или 3069 +- 1525 лет до настоящего времени, что соответствует временном интервалу 2 тыс. до нашей эры – 6 век нашей эры. Принимая во внимание эти выводы, мы можем предположить, что основной аутосомный эпизод смешивания предковых популяций беларусов произошел в течении довольно таки продолжительного времени, охватывающего несколько тысяч лет. В этой связи, вопрос о том, кто именно был носителями северо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента, остается открытым.

О новых профессиях связанных с генетикой и молекулярной биологией

17 февраля известное российское Агентство стратегических инициатив и Московской школы управления «СКОЛКОВО» разродилось примечательным изданием — атласом новых профессий. Я не буду останавливаться на отдельных моментах этого издания (благо, что он находится в открытом доступе), и процитирую те фрагменты атласа, в которых описываются новые потенциальные области трудовой занятости, так или иначе связанных с генетикой

Генетический консультант. Проводит первичный и плановый генетический анализ в диагностических центрах, обрабатывает данные с диагностических устройств, дает заключение и рекомендации по дальнейшей схеме лечения (выявление наследственных заболеваний, онкомаркеров и т.д.
Сегодня генетические консультации нам известны, преимущественно благодаря компании 23andMe, которая предлагает частным заказчикам генетический анализ генома. Компания любопытна не столько даже тем, что предлагает за разумные деньги целый ворох прелюбопытной информации (посмотреть можно, например, тут) или тем, что основательница компании – супруга Сергея Брина, или тем, что одним из инвесторов в компанию является Юрий Мильнер, совладелец Mail.ru Group. Интересно, что сейчас компания проходит тот путь внешнего сопротивления регулирующих органов, который, вероятно, отражает общую судьбу новых технологий: в ноябре 2013 года FDA (Агентство Минздрава США по надзору за качеством продуктов и медикаментов) предписала 23andMe приостановить продажи тестов, поскольку компания нарушает закон, говоря, что на основе ее тестов можно определить более 250 заболеваний. Как авторитетно говорит агентство, утверждать это можно, только основываясь на медицинских тестах, одобренных FDA. Посмотрим, что будет дальше, но ясно, что запрос на первичный генетический анализ в ближайшее время будет расти, а значит, будут нужны генетические консультанты.

Клинический биоинформатик. В случае нестандартного течения болезни строит модель биохимических процессов болезни, чтобы понять первопричины заболевания (выявляет нарушения на клеточном и субклеточном уровне)
Клиническая биоинформатика на западе также существует не первый год. Сегодня на Западе клиническая биоинформатика (или трансляционная биоинформатика) направлена на то, чтобы по максимуму использовать весь багаж накопленной информации – генетической, биологической и медицинской – может быть применен для того, чтобы разработать персонализированную терапию и траектории лечения пациента. В основе клинической биоинформатики лежит использование IT-методов для анализа фундаментальной биомедицинской и генетической научной информации для применения в клинической медицине. Трансляционная медицина есть и в России, и специалисты прогнозируют появление большого количества рабочих мест в этой области (подробнее можно узнать в рассказе Сергея Румянцева для ПостНауки)

Возможна ли оценка вероятного возраста ближайшего общего предка по размеру одиночного аутосомного IBD-сегмента?

В последние годы среди людей, интересующихся генеалогией, приобрели заметную популярность сервисы, производящие поиск генетических родственников по всем линиям, а не только по прямой мужской и прямой женской. В качестве примера можно привести Family Finder от FTDNA и DNA relatives от 23andMe. Участник получает достаточно длинный список так называемых «совпаденцев» — людей, имеющих с ним один или более участок половинного совпадения (УПС) на аутосомах (неполовых хромосомах). Если участок достаточно длинный (а его длина измеряется в сантиморганидах, обозначающих вероятность разрыва участка при каждой передаче в следующее поколение), то это говорит о наличии общего предка (от которого участок и получен).

При этом большинство совпаденцев имеет с вами один, реже два или три одиночных сегмента диапазоном 8-15 или около того сМ. Предсказанная степень родства — от пяти-шести-юродности до неопределенно далекого. Интуитивно кажется, что более вероятно близкое родство, а далекие родственники пришли из так называемого «хвоста распределения» — по теории вероятности, часть сегментов должна сохраниться дольше, чем ожидается.

Так ли это? Поскольку я предполагаю, что придется еще не раз давать ссылку на этот пост людям, ищущим ответа на вопрос о возрасте ближайшего общего предка по одному сегменту, помещу этот ответ в самом начале:

В растущей популяции количество IBD-сегментов размером до 10-20 сМ (верхняя граница зависит от скорости роста) с каждым поколением только увеличивается.

Это значит, что более дальнее родство с совпаденцем из 23andMe или FTDNA вероятнее ближнего (по крайней мере, пока мы не добираемся до предков, живших в эпоху стагнации или уменьшения численности популяции). Грубо говоря, сегменты успевают размножиться быстрее, чем они разрываются.

Этот вывод был для меня неожиданным, однако он отлично согласуется с наблюдаемой практикой. Собственно, то, что большинство подобных сегментов являются весьма древними, было ясно мне и раньше, однако в качестве объяснений приходили на ум различные причины замедления распада (например, высокая гомозиготность в популяции). Инерция мышления не позволяла увидеть процесс в динамике.

Взявшись за решение задачи оценки вероятного возраста общего предка, я решил промоделировать процесс, постаравшись учесть ряд факторов. В модели просчитывается потомство от одного предка на протяжении 10-13 поколений (В зависимости от количества детей на семью. Пойти далее не позволила мощность компьютера). При этом для каждого потомка учитывается его пол (частота рекомбинации различается у мужчин и женщин), случайным образом определяется количество детей и просчитываются общие сегменты с одной, выделенной веткой древа, имитирующей нашу родовую линию. Использовалась генетическая карта от Rutgers University, согласно которой общая длина аутосом составляет примерно 3600 сМ. Для простоты Х-хромосома в моделировании не участвовала. Модель прогонялась 10000 раз, результат усреднялся. Далее для каждого следующего поколения результат умножался на степень двойки, чтобы учесть возрастание количества предков.

Для начала я запустил модель для стабильной популяции — среднее количество детей у каждого человека составляло 2, то есть рост отсутствовал. На графике показано суммарное количество общих с нашей веткой сегментов из каждой размерной категории (но не более 50 сМ) для каждого поколения. Видно, что для многих категорий количество сегментов поначалу увеличивалось, однако постепенно рост сменялся падением.
IBD_Diag01
Дольше всего держалась категория 1-5 сМ, стабилизировавшая свою численность к 12 поколению. Откуда же брался этот рост?
Более мелкие сегменты «подпитывались» распадом крупных. Например, при разрыве сегмента 14 сМ на 6 и 8, мог появиться 8 сМ сегмент (второй исчезал, так как по наследству передавался лишь один). Категория наиболее мелких сегментов при этом находилась на вершине пищевой цепочки, поэтому продержалась дольше всех. Однако к 12 поколению крупных сегментов для ее подпитки просто не осталось. Поэтому в каждом поколении количество сегментов, переданных от конкретного предка, уменьшалось вдвое, однако и количество предков увеличивалось в той же пропорции. Итого — практическая стабилизация численности. Медленный распад сегментов в пределах нескольких процентов на поколение практически незаметен. А вот у более крупных сегментов процесс распада идет быстрее, поэтому их количество заметно снижается. На следующем графике изображена доля, занимаемая по количеству данной категорией сегментов (исключая из общего числа сегменты крупнее 50 сМ). Доля мелких сегментов неизбежно растет с каждым поколением.

IBD_Diag02

Казалось бы, результаты моделирования полностью подтверждают интуитивные представления. Можно рассчитать и наиболее вероятное время жизни общего предка. Например, при наличии сегмента 11-15 сМ медиана находится между 7 и 8 поколением.

Однако следующая модель, предполагающая рост популяции на 25% за поколение (среднее количество детей — 2.5 на человека), дала заметно отличающийся график.

Как видно, с каждым поколением растет не только количество мелких сегментов, но и число сегментов вплоть до категории 20-25 сМ! В предыдущей модели их количество росло лишь до 4 поколения, а далее начало снижаться. Я попробовал проверить модель независимым расчетом. Допустим, у нас есть два человека, разделяющих общий сегмент 15 сМ. У одного из них два потомка в следующем поколении, у другого — 3 (примерно, как во второй модели). Если я правильно рассчитал вероятности, матожидание наличия неповрежденного сегмента между их потомками, составляет 111%. Если у нас была 1000 таких пар, в следующем поколении пар уже будет 1110. Чем больше сегмент, тем выше вероятность его разрыва и ниже матожидание передачи. Граница для выбранных условий проходит примерно по 20 сМ — для этого сегмента матожидание около 100% . Рост количества сегментов из категории 21-25 сМ, видимо, объясняется подпиткой от более крупных. Их число стабилизируется к 11-12 поколению и в дальнейшем должно начать падать. Количество же мелких сегментов при этом растет прямо-таки как на дрожжах, формируя экспоненциальный график.

Процентное соотношение разных категорий сегментов схоже с предыдущей моделью, однако доля категорий выше 10 сМ вполне ощутима.

При более быстром росте населения верхняя граница устойчивости сегментов должна сдвигаться в сторону увеличения. Чем больше детей у каждого родителя, тем больше крупных сегментов перейдет потомкам. Ради интереса, я запустил и вариант со средним количеством детей на семью, равным трем. Здесь эффект еще более выражен. А ведь при заселении новых пространств такое количество детей — далеко не предел.

IBD_Diag05

IBD_Diag06

Обнаруженный эффект естественным образом объясняет факты наличия большого количества общих сегментов внутри популяций ашкенази, финнов, американцев Юга США. Взрывной рост численности неизбежно ведет к данному итогу. То же самое относится и к славянам — большую часть их истории численность славян быстро росла. Думаю, это объясняет многие общие сегменты, к примеру, между русскими и поляками.

Теперь мне стали понятны некоторые моменты из прошлогодней заметки, часть которой была посвящена работе Ralph&Coop на схожую тему:

2. Второй момент связан напрямую с проблемой определения времени жизни последнего общего предка от которого был унаследован сегмент. Понятно, что ответ на этот вопрос будет иметь важное значение для тех людей, кто покупал услуги 23andme исключительно в генеалогических целях. На первый взгляд, все просто. Допустим, если я и Вы разделяем IBD блок генома размеров в 10 сантиморганов , то встает вопрос — когда же именно жил наш последний общий предок?
По теоретическим расчетам, средняя длина блока IBD унаследованного общего предка жившего пяти поколений назад, составляет 10 сантиморганид; поэтому мы могли бы ожидать, что средняя дистанция до общего предка составляет всего пять поколений.

Тем не менее, прямая экспликация результатов в обсуждаемой работе говорит о том, что средний возраст блока (10 cM) общего по происхождению у двух лиц с территории Соединенного Королевства составляет от 32 до 52 поколений (в зависимости от типа используемого распределения). Такое расхождение с теоретическими прогнозами видимо связано с тем, что априори гораздо более вероятно, что общий генетический предок жил в более отдаленном прошлом, и эта априорная вероятность сильно искажает результаты нашего наивной ожидания. И хотя с учетом действия рекомбинации представляется маловероятным, что блок 10 сM унаследован от конкретного общего предка жившего примерно 40 поколений назад, существует большое количество таких древних общих предков.

Именно так — маловероятна передача от каждого конкретного древнего предка, но в целом передача от древних предков как раз более вероятна, чем от близких.

Это также означает, что расчетные возраста зависят также и от разделенной популяционной историей ‘: например, возраст аналогичного блока (10 cM) разделяемого кем-то из Соединенного Королевства с кем-то из Италии еще старше, как правило, примерно 60 поколений до общего предка.

Впрочем, это правило не применяется в том случае если предки из совсем недавнего прошлого (не более чем восемь поколений) . Обычно в таком случае от общего предка наследуется сразу несколько длинных сегментов (часто на разных хромосомах), и в данном случае, мы можем надеяться сделать вывод о конкретном генеалогическом родстве с достаточной степенью достоверность, хотя даже в этом случае следует соблюдать осторожность, чтобы исключить возможность того, что эти несколько блоков не были унаследованы от общих удаленных предков.

Скорее даже меньше — пять-шесть поколений.

Но все же, в некоторых случаях оценка возраста общего предка по одиночному сегменту должна быть возможна. Я сделал прикидку для использованных трех моделей. Поколения 1-4 исключались — для этих случаев вариант получения лишь одного сегмента чересчур маловероятен. Не рассматривались совпаденцы старшего возраста — в модели участвовали лишь люди примерно нашего поколения. Впрочем, понятно, что оценка для отцов и дедов наших ровесников должна несколько отличаться в сторону уменьшения количества поколений до общего предка.

IBD_Diag07

Сегменты 46-50 сМ во всех моделях получились около пяти поколений. По сути, это нулевая отметка, поскольку поколения до четырех отрезаны. Получить такой одиночный сегмент очень маловероятно, но если уж вы его получили, общий предок не может быть давно. Противоположный конец — сегменты, возраст которых настолько велик, что не поддается оценке в рамках модели. В варианте нулевого роста это сегменты примерно до 10 сМ, для роста 25% на поколение — до 25 сМ (можно предположить для 21-25 сМ что-то в районе 12-20 поколений), для роста 50% на поколение — до 40 сМ

В реальности мы не наблюдаем большого количества совпаденцев с сегментами 15, 20, 25 сМ. Думаю, это объясняется тем, что в истории любой популяции периоды роста сменялись периодами уменьшения численности. В это время сравнительно крупные сегменты разрушались. Однако в целом за последние тысячелетия численность европейцев только росла.

Подытожу. Я доволен, что удалось снять противоречие между наблюдаемыми фактами и теоретическими ожиданиями. Получается, что если мы и наш совпаденец с одиночным сегментом происходим из непрерывно растущей популяции, то с наибольшей вероятностью наш ближайший общий предок жил в момент начала этого роста, либо в ближайшие поколения перед ним. С чуть меньшей вероятностью — в следующем поколении, и так далее с понижением вероятности к нашему времени. Количество поколений при этом не ограничено вообще — хоть 50. Многочисленные польские, финские, немецкие совпаденцы получают разумное объяснение. Ну а уж ашкенази ложатся сюда просто идеально.
Ясно, что это упрощение (непрерывный рост в течение 50 поколений навряд ли где-то был), но упрощение более близкое к реальности, чем предыдущие представления. Конечно, в модели не учтен ряд факторов. Однако и составные УПсы, и инбридинг, и отбор, и повышенная гомозиготность только удревняют сегменты. Если считать эти факторы весомыми, предикт возраста одиночного УПСа должен быть еще выше. Допустим, составной УПС выглядит, как полученный от сравнительно близкого предка, а на самом деле — от двух более далеких. А это как раз то, что я хочу доказать.