Две новые модели для калькулятора DIYDodecad

Закончил на 99% подготовку 2 моделей этно-популяционных калькуляторов ДНК — заточенную под deep ancestry (анализ современных геномов с использование древних геномов) K11 и модель для анализа популяционного происхождения современных популяций K16.

 

В число 16 «предполагаемых предковых» популяций в K16 входят следующие выделенные группы:

Австрало-веддоидная
Палеолитические охотники-собиратели Кавказа
Американские аборигены
Охотники-собиратели скандинавского мезолита
Австронезийцы
Ближневосточные неолитические земледельцы
Сибирские аборигены
Ближне-восточные популяции
Североафриканские популяции
Популяции западной Африки
Северные популяции Индостана
Юго-восточноазиатские популяции
Восточные охотники-собиратели
Неолитическое население Европы
Восточно-африканские популяции
Западноевропейские охотники-собиратели

 

Таблица FST между компонентами K11 (FST — Индекс фиксации Райта Fst, отражающий меру дифференциации популяций)

Кластеризация компонентов модели K11 по степени дифференциации

Таблица FST между компонентами K16

Кластеризация компонентов модели K16 по степени дифференциации

 

На следующем PCA графике отображены 2 группы компонентов — предковые компоненты K16 (полученные в программе ADMIXTURE в ходе анализа современных популяций) и предковые компоненты K11 (они вычислены в той же программе, но на другой выборке аутентичных палеогеномов). Поскольку у пользователей подобных калькуляторов часто возникает вопрос о соотношении компонентов разных моделей калькуляторов, я решил разместить их на одном графике. Методология довольно проста. Сначала я сгенерировал в программе PLINK 220 «синтетических» геномов (20 индивидов в 11 группах). В основу положен предложенный Понтикосом метод популяционных «zombies», в котором используется частоты аллелей снипов, полученных в программе ADMIXTURE. Каждая из 11 групп состоит из 20 «индивидов», геном которых на 100% состоит из одного компонента.
То же самое я сделал с компонентами K16. Затем в целях изучения соотношения компонентов этих двух разных моделей, я пропустил «геномы синтетических индивидов» K16 через калькулятор K11. В итоге выяснилось, что только несколько компонентов K16 полностью совпадают с компонентами K11 (например, Amerindian и African). Остальные компоненты K16 разложились на комбинации компонентов K11. Этот простой эксперимент еще раз подтвердил очевидный факт: предковые компоненты ADMIXTURE, выявленные в ходе анализа современных популяций только в редких случаях соответствуют настоящим предковым компонентам. Большинство подобных компонентов возникают в результате сложного процесса фиксации аллельных частот, например в тех случаях, когда непосредственно после смешивания предковых групп разного происхождения происходит процесс генетического дрейфа. Закон Харди—Вайнберга утверждает, что в теоретической идеальной популяции распределение генов будет оставаться постоянным из поколения в поколение. Так, в популяции растений количество «внуков» с генами высокорослости будет ровно таким же, сколько было родителей с этим геном. Но в реальных популяциях дело обстоит иначе. Из-за случайных событий частота распределения генов из поколения в поколение несколько варьирует — это явление называется дрейфом генов. Рассмотрим крупную размножающуюся популяцию со строго определенным распределением аллелей. Представим, что по той или иной причине часть этой популяции отделяется и начинает формировать собственное сообщество. Распределение генов в субпопуляции может быть нехарактерным для более широкой группы, но с этого момента и впредь в субпопуляции будет наблюдаться именно такое, нехарактерное для нее распределение. Это явление называется эффектом основателя.Дрейф генов сходного типа можно наблюдать и на примере явления с запоминающимся названием эффект бутылочного горлышка. Если по какой-либо причине численность популяции резко уменьшится — под воздействием сил, не связанных с естественным отбором (например, в случае необычной засухи или непродолжительного увеличения численности хищников), быстро появившихся и затем исчезнувших, — то результатом будет случайное устранение большого числа индивидуумов. Как и в случае эффекта основателя, к тому времени, когда популяция вновь будет переживать расцвет, в ней будут гены, характерные для случайно выживших индивидуумов, а вовсе не для исходной популяции.

PCA correlation between K11 and K16 components Вот эта таблица с усредненными значениями «симулянтов» компонентов K16 в калькуляторе K11 (колонки — компоненты K16, столбцы — компоненты K11, их пересечения — проекция компонентов K16 в компоненты K11).

Для облегчения понимания сказанного, приведу немного теории. Начну с основ.

Определение базовых терминов

ADMIXTURE (буквально: примесь) – это компьютерная программа (анализ), позволяющая выявлять смешанность состава некоего набора индивидов на основе данных о генотипах и тем самым строить предположения о происхождении популяции.

Принцип работы ADMIXTURE.

Рассмотрим принцип работы ADMIXTURE на примере образцов и популяций из проекта HapMap.

Всего у нас N = 324 образца/индивида, каждый из которых относится к одной из четырех нижеперечисленных популяций:

АФРИКА (ASW) – Африканские предки из Юго-Западной части США
ЮТА (CEU) – жители штата Юта США с корнями из Северной и Западной Европы
МЕКСИКА (MEX) – Мексиканцы, Лонг-Айленд США
ЙОРУБА (URI) – Йоруба, Нигерия
Для удобства дальнейшего изложения будем называть эти популяции «известными».

Также мы предполагаем, что они произошли от К разных предковых популяций (мы не знаем от каких именно). В дальнейшем будем называть эти предковые популяцие «предполагаемыми предковыми». Этих «предполагаемых предковых» популяций на самом деле не существует, у них нет общепризнанных названий и характеристик. И на этом этапе мы даже не знаем какие образцы к какой из этих К популяций могут быть отнесены. Теоретически возможно, что образцы из одной и той же «известной» популяции могут принадлежать к двум разным «предполагаемым предковым» популяциям.

Пример 1.

Предположим, что К = 3.

ADMIXTURE далее работает с образцами (их генотипами) и заданным нами числом К = 3. Имея сведения о генотипах и предположение о количестве «предполагаемых предковых» популяций (К) ADMIXTURE строит свою модель (предположение) того, каков вклад каждой из «предполагаемых предковых» популяций в каждый индивид. В результате мы имеем для каждого индивида 3 цифры: количественный вклад каждой из трех популяций (или образно говоря, на сколько процентов данный индивид состоит из первой «предполагаемой предковой» популяции, на сколько – из второй и на сколько – из третьей). При этом может быть и такая ситуация, что у конкретного индивида в составе отсутствует какая-то из «предполагаемых предковых» популяций, даже возможно, что он принадлежит только к одной из «предполагаемых предковых» поуляций. Предположим, для индивида №1 эти цифры такие: 0.3, 0.5 и 0.2. Что эти цифры означают? Означают они доли каждой из «предполагаемых предковых» популяций (ППП) в индивиде №1, т.е. индивид состоит на 30% из первой ППП, на 50% — из второй и 20% — из третьей. Чем больше вклад каждой ППП в индивида, тем больше индивид является «носителем» данной популяции и ее представителем.
Так называемый этно-популяционный калькулятор ДНК представляет собой инструмент, позволяющий использовать заранее определенные (вычисленные) компоненты этнического происхождения K для определения той комбинация исходных предковых компонентов дает наилучшее соответствие (аппроксимирует) происхождение носителя тестируемой ДНК.

При создании калькулятора ДНК в основу берется определенная модель (например, задается исходное число компонентов или состав референсной выборки), что неизбежно приводит к определенным уступкам в плане точности и проявлению слабых сторон модели. Например, часто люди критикуют подобные модели калькуляторов за излишнюю европоцентричность и недостаточную представленность геномов из других мест, или же используемые для определения компонентов происхождения выборки данных по отдельным популяциям слишком малы для определения сложной субструктуры генофонда референсной популяции. Наконец, более грамотные люди указывают на отсутствие необходимо инструментария (например, формальной статистики) для проверки статистической значимости определенных компонентов в отдельных моделях калькулятора.
Движок обеих калькуляторов — все та же программа DIYDodecad, После того, как ппрограммма ДНКа калькулятора выдаст первичные результаты — процентное распределение компонентов этно-популяционного происхождения в изучаемом геноме, можно будет перейти к вторичному анализу. Суть его проста — зная процентную комбинацию компонентов происхождения в своем геноме, довольно просто смоделировать свой геном в виде смеси нескольких референсных популяций.

Поэтому, в отличие от предыдущих релизов, K11 и K16 будут включать в себя дополнительный контент:

1) классический Oracle, позволяющий смоделировать анализируемый «геном» (точнее, набор из 100-200 тысяч информативный снипов) в виде комбинации двух референсных популяций, а также установить группу генетически ближайших референсных популяций к геному изучаемого индивида. Однако этот инструмент не может быть использован в случае сложного смешанного происхождения (например, когда изучаемый индивид происходит из более чем двух разных этнических популяций). Иногда программа выдает довольно глупые комбинации, cущественным образом понижая достоверность результатов. Впрочем основное преимущество Oracle и состоит в том, что программа предлагает вместо окончательного «простого» решения список альтернативных вариантов.

Пример: в качестве примера я буду использовать собственные данные.
Исходя из полученных в модели K16 значений компонентов, мой условный наиболее близок к восточнославянским популяциям
«Ukrainian-Center» «2.5884»
«Pole» «3.0962»
«Sorb» «3.1733»
«Polish_West» «3.5992»
«Russian-North-West» «3.7265»
«Russian_Smolensk» «3.834»
«Polish» «4.0348»
«Belarusian_EastBelarus» «4.0852»
«Belarusian_WestBelarus» «4.1216»
«DonKuban_cossack» «4.7769»

В комбинированном варианте двух смешанных популяций распределение предковых компонентов происхождения может быть аппроксимировано следующими комбинациями:

«65.8% Belarusian_EastBelarus + 34.2% Norwegian» «1.1023»
«66.4% Belarusian_EastBelarus + 33.6% Icelandic» «1.1118»
«80.9% Latvian + 19.1% Spanish_Baleares_IBS» «1.1154»
«30% French + 70% Lithuanian» «1.1206»
«29% French + 71% Latvian» «1.1215»
«55% French_West + 45% Lithuanian_Zemajitia» «1.1302»
«28.9% French_East + 71.1% Latvian» «1.1402»
«29% French_Northwest + 71% Latvian» «1.1563»
«72.3% Belarusian_EastBelarus + 27.7% Orcadian» «1.1766»
«57.2% European_Utah + 42.8% Lithuanian_Zemajitia» «1.1825»

Основная часть генома — условно славяно-балтийская (что ожидаемо), но с существенным сдвигом в сторону Скандинавии и западной Европы(примерно 20-30%). Скорее всего, это наследие готов, или контактов балтийских племен с викингами. Интересно, что модель K11 (c использованием современных референсных популяций) дает примерно такой же расклад — разве что древний скандинавско-германский пласт выражен чуть резче чем в модели K16

«Belarusian_West» «2.3841»
«Belarusian» «2.4187»
«Pole_Poland» «2.5278»
«Belarusian_East» «3.7288»
«Russian_Central» «3.7635»
«Swede» «3.9724»
«Russian_cossack» «4.1139»
«Ukrainian» «4.2647»
«Russian_Southern» «4.5204»
«Ukrainian_East» «4.8635»
«66.6% Icelandic + 33.4% Latvian» «1.586»
«41.1% Latvian + 58.9% Orcadian» «1.5898»
«47.9% Lithuanian + 52.1% Orcadian» «1.6007»
«60.2% Icelandic + 39.8% Lithuanian» «1.6082»
«5.7% Basque_Spanish + 94.3% Belarusian» «1.6386»
«5.8% Basque_French + 94.2% Belarusian» «1.6406»
«67.2% Belarusian + 32.8% Swede» «1.659»
«40.2% Lithuanian + 59.8% Norwegian» «1.6876»
«33.7% Latvian + 66.3% Norwegian» «1.689»
«94.1% Belarusian + 5.9% Spanish_Pais_Vasco_IBS» «1.7359

В палеокалькуляторе K11 (т.е. с древними геномами) картинка кажется более убедительной

«Unetice_EBA» «2.7065»
«Bell_Beaker_Czech» «5.0633»
«British_AngloSaxon» «5.1998»
«Nordic_LN» «5.6157»
«Corded_Ware_Proto_Unetice_Poland» «6.3751»
«Nordic_MN_B» «6.3865»
«Halberstadt_LBA» «6.4422»
«BenzigerodeHeimburg_LN» «7.4695»
«Nordic_IA» «7.5404»
«Corded_Ware_Estonia» «7.7635»

Из всех палеогеномов наиболее близок к моему геном представителя унетицкой культуры. Происхождение унетицкой культуры до сих пор не выяснено. Между позднейшими энеолитическими культурами и унетицкой культурой существует типологический и хронологический разрыв. Наибольшее признание в результате последних исследований получило предположение, согласно которому в ее возникновении главную роль сыграли культура колоколовидных кубков и надиревская культура, распространенная в Венгрии (см. ниже). У культуры колоколовидных кубков и унетицкой имеется сходство в керамике, в погребальном обряде и в орудиях труда. Небольшую роль могла сыграть культура шнуровой керамики, хотя в целом они очень различаются. Закономерно, что следующими — хотя и с большим отрывом — близкими к моему геному группами палеогеномов являются геномы древних англосаксов (которые близки к древним скандинавам) и представителей чешского ареала культуры колоковидных кубков).
Аналогично, в режиме смешенных популяций хорошо заметны две тенденции. Во-первых, мой геном может быть представлен в виде комбинации палеогенома представителя позднебронзового века (Хальберштадт) и палеогеномов восточных охотников-собирателей эпохи энеолита, во-вторых как смесь 23.4% генома представителей балтийской позднебронзовой эпохи и все того же позднебронзового палеогенома из Хальберштадта

«86.4% Halberstadt_LBA + 13.6% Karelia_HG» «2.139»
«74.1% Bell_Beaker + 25.9% LesCloseaux13_Mesolithic» «2.1574» «35.9% Hungary_BA + 64.1% Poltavka_MBA_outlier» «2.319»
«65.7% Halberstadt_LBA + 34.3% Poltavka_MBA_outlier» «2.4387»
«83.2% Alberstedt_LN + 16.8% Karelia_HG» «2.443»
«23.4% Baltic_LBA + 76.6% Halberstadt_LBA» «2.4846»
«16.7% Europe_MN + 83.3% Poltavka_MBA_outlier» «2.4897»
«83.4% Halberstadt_LBA + 16.6% Samara_Eneolithic» «2.536»
«12.9% Halberstadt_LBA + 87.1% Unetice_EBA» «2.5603»
«16.1% Bell_Beaker_Czech + 83.9% Unetice_EBA» «2.5747»

2) файлы модели K11 и K16 для более сложной программы 4Admix (разработанной Александром Бурнашевом). Вторым инструментом вторичного анализа является 4Mix. Он работает по методу brute-force, шаг за шагом перебирая все возможные комбинации, а по окончанию цикла программа возвращает результат с наименьшим евклидовым расстоянием (по выбору можно использовать гауссово сглаживание, снижающее случайный статистический шум результатов). Как и в классическом Oracle, комбинация cмешиваемых этнических групп не может содержать более 4 популяций, хотя в отличие от классического Oracle, программа может моделировать комбинации из 3 и 4 этнических групп.

Пример. Приведу пример этих 3- и 4-членных аппроксимаций. В принципе, все то же самое, c той лишь разницей что теперь программа выделяет в комбинациях балтийскую и славянскую составляющую. Интересно, что скандинавская составляющая никуда не исчезла, оставаясь в пределах 20-25%
Using 3 populations approximation:
1 50% Belarusian_EastBelarus +25% English_Kent_GBR +25% Latvian @ 0.973956
2 50% Belarusian_EastBelarus +25% English_Kent_GBR +25% Lithuanian @ 0.988467
3 50% Latvian +25% French +25% Balt @ 1.036492
4 50% Lithuanian_Zemajitia +25% French +25% Irish_Connacht @ 1.05259
5 50% Lithuanian +25% Sorb +25% French_West @ 1.059638
6 50% Belarusian +25% Icelandic +25% French_West @ 1.06158
7 50% Lithuanian_Zemajitia +25% French +25% Irish_Cork_Kerry @ 1.074796
8 50% Lithuanian_Aukstajtia +25% French_East +25% Irish_Connacht @ 1.076771
9 50% Lithuanian_Zemajitia +25% French +25% Irish_Ireland @ 1.078576
10 50% Belarusian +25% Norwegian +25% French_West @ 1.079741
11 50% European_Utah +25% Lithuanian_Zemajitia +25% Balt @ 1.084317
12 50% Dane +25% Belarusian_EastBelarus +25% Lithuanian_Aukstajtia @ 1.090086
13 50% Lithuanian_Zemajitia +25% French +25% Scottish_Highlands @ 1.093951
14 50% Lithuanian +25% North_European +25% Sorb @ 1.103744
15 50% Lithuanian_Aukstajtia +25% English_GBR +25% French_Northwest @ 1.105369
16 50% Lithuanian_Zemajitia +25% French +25% Scottish_Grampian @ 1.106616
17 50% Lithuanian_Aukstajtia +25% French_Northwest +25% Irish_Connacht @ 1.106771
18 50% Lithuanian_Aukstajtia +25% French_Northwest +25% Scottish_Dumfries_Galloway @ 1.108261
19 50% Lithuanian +25% French_West +25% Polish_West @ 1.113695
20 50% Latvian +25% North_European +25% Sorb @ 1.115164
31501779 iterations.
Using 4 populations approximation:
1Belarusian_EastBelarus+Lithuanian_Zemajitia+Swede+French_West @ 0.947002
2Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Sorb @ 0.971605
3Belarusian_EastBelarus+Belarusian_EastBelarus+English_Kent_GBR+Latvian @ 0.973956
4Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Polish_East @ 0.986863
5Belarusian_EastBelarus+Belarusian_EastBelarus+English_Kent_GBR+Lithuanian @ 0.988467
6 French+Lithuanian_Zemajitia+Swede+Balt @ 0.98916
7Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Polish @ 0.996302
8 Belarusian+Lithuanian_Aukstajtia+Shetlandic+French_West @ 1.010485
9 Belarusian+Lithuanian_Zemajitia+Irish_Ulster+French_West @ 1.01227
10 Belarusian+Lithuanian_Zemajitia+French_West+Irish_Ulster @ 1.012977
11 Belarusian_EastBelarus+Lithuanian_Aukstajtia+Swede+Welsh @ 1.013043
12Belarusian_EastBelarus+European_Utah+Lithuanian_Aukstajtia+Swede @ 1.013805
13Belarusian_EastBelarus+Lithuanian_Aukstajtia+Swede+French_West @ 1.018296
14German_NorthGermany+Lithuanian_Aukstajtia+Balt+French_West @ 1.026503
15 Lithuanian_Aukstajtia+Sorb+Ukrainian-Center+French_West @ 1.027473
16 Belarusian+Lithuanian_Zemajitia+French_West+Irish_Connacht @ 1.031967
17Belarusian+Lithuanian_Zemajitia+French_West+Irish_Cork_Kerry @ 1.035716
18 French+Latvian+Latvian+Balt @ 1.036492
и т.д.
То же самое, но в модели K11
Using 3 populations approximation:
1 50% Poltavka_MBA_outlier +25% Halberstadt_LBA +25% Hungary_BA @ 2.031302
2 50% Poltavka_MBA_outlier +25% Bell_Beaker_Czech +25% Hungary_BA @ 2.072453
3 50% British_AngloSaxon +25% Halberstadt_LBA +25% Poltavka_MBA_outlier @ 2.125791
4 50% Bell_Beaker +25% Bell_Beaker +25% LesCloseaux13_Mesolithic @ 2.209118
5 50% Halberstadt_LBA +25% British_AngloSaxon +25% Poltavka_MBA_outlier @ 2.244371
6 50% Halberstadt_LBA +25% Hungary_BA +25% Samara_HG @ 2.270667
7 50% Halberstadt_LBA +25% Poltavka_MBA_outlier +25% Unetice_EBA @ 2.291406
8 50% Poltavka_MBA_outlier +25% British_AngloSaxon +25% Hungary_BA @ 2.30791
9 50% Bell_Beaker_Czech +25% Hungary_BA +25% Samara_HG @ 2.356281
10 50% Halberstadt_LBA +25% Nordic_BA +25% Poltavka_MBA_outlier @ 2.358744
11 50% Bell_Beaker +25% Hungary_BA +25% Karelia_HG @ 2.369978
12 50% Bell_Beaker_Czech +25% Nordic_BA +25% Poltavka_MBA_outlier @ 2.385823
13 50% Halberstadt_LBA +25% Corded_Ware_Germany +25% Nordic_BA @ 2.490915
14 50% Poltavka_MBA_outlier +25% Hungary_BA +25% Unetice_EBA @ 2.503754
15 50% British_AngloSaxon +25% Bell_Beaker_Czech +25% Poltavka_MBA_outlier @ 2.53217
16 50% Halberstadt_LBA +25% Baltic_LBA +25% Halberstadt_LBA @ 2.540751
17 50% Hungary_BA +25% Poltavka_MBA_outlier +25% Samara_HG @ 2.551414
18 50% Poltavka_MBA_outlier +25% Alberstedt_LN +25% Hungary_BA @ 2.561557
19 50% British_AngloSaxon +25% Poltavka_MBA_outlier +25% Unetice_EBA @ 2.575398
20 50% Bell_Beaker_Czech +25% British_AngloSaxon +25% Poltavka_MBA_outlier @ 2.575919
1127348 iterations.
Using 4 populations approximation:
1 Halberstadt_LBA+Hungary_BA+Poltavka_MBA_outlier+Poltavka_MBA_outlier @ 2.031302
2 Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier+Unetice_EBA @ 2.03713
3 Bell_Beaker_Czech+Hungary_BA+Poltavka_MBA_outlier+Poltavka_MBA_outlier @ 2.072453
4 British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier+Unetice_EBA @ 2.088049
5 British_AngloSaxon+British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.125791
6 British_AngloSaxon+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.131526
7 Bell_Beaker_Czech+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.14648
8 Bell_Beaker+Bell_Beaker+Bell_Beaker+LesCloseaux13_Mesolithic @ 2.209118
9 Bell_Beaker_Czech+Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier @ 2.209365
10 Bell_Beaker_Germany+British_AngloSaxon+Hungary_BA+Samara_HG @ 2.212982
11 Bell_Beaker_Czech+Bell_Beaker_Germany+Hungary_BA+Samara_HG @ 2.232922
12 British_AngloSaxon+Halberstadt_LBA+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.244371
13 British_AngloSaxon+Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier @ 2.254756
14 Alberstedt_LN+British_AngloSaxon+Hungary_BA+Samara_HG @ 2.255589
15 Bell_Beaker_Czech+British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.256027
16 Halberstadt_LBA+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.270667

3) новым инструментом в релизе будет R программа nMonte, разработанная голландцем Гером Гизбертом. В отличие от двух предыдущих инструментов (ограниченных в числе используемых для моделирования этнических групп), nMonte позволяет использовать для моделирования (аппроксимации) генмоа все референсные грппы. Программа использует алгоритм эволюционного моделирования по методу Монте-Карло.
После пошагового добавления новой популяции программа определяет уменьшается ли евклидово расстояние; если да, то шаг сохраняется, в противном случае шаг отклоняется. Алгоритм завершает свою работу после выполнения примерно миллиона шагов. Как и два предыдущих инструмента программа стремится к минимализации евклидова расстония; но похоже за счет использования метода Монте-Карло, алгоритм гораздо более эффективен. И, также, как и в других инструментах, в nMonte «наилучшая комбинация» определяется как комбинация с наименьшим расстоянием. Недостаток же nMonte состоит в том, что она выдает только наилучшее подходящее решение, в то время как Oracle представляет альтернативные варианты.
Пример. Посмотрим, сколько потенциальных предковых популяций выдаст nMonte при аппроксимации моего генома.
При первом запуске программа выдала комбинацию (в cкобках процентный вклад референсной популяции) следующих 65 популяций. Также как и в других инструментах, тон задают балтийские популяции, а также белорусы, сорбы и поляки.

Lithuanian_Zemajitia 10.1
Latvian 7.85
Lithuanian_Aukstajtia 7.85
Belarusian_SouthBelarus 6.55
Lithuanian 6.5
Pole 5.45
Belarusian_WestBelarus 4.8
Balt 4.35
Sorb 3.35
Belarusian 3.05
Belgian 3
Norwegian 2.95
Czech 2.75
Dane 2.5
Slovak 2.4
Icelandic 1.9
Swede 1.9
French_SouthFrance 1.5
Slovenian 1.5
Basque_Spanish 1.3
Frisian 1.15
German_NorthGermany 1.1
Sardinian 1.1
Polish_East 1.05
Ukrainian_WestUkraina 1
Polish 0.95
Basque_French 0.9
Orcadian 0.7
Spanish_Pais_Vasco_IBS 0.7
Hungarian 0.65
Irish_Connacht 0.65
DonKuban_cossack 0.6
Dutch 0.6
Ukrainian_EastUkraina 0.6
Scottish_Argyll_Bute_GBR 0.55
European_Utah 0.5
English_GBR 0.45
Croatian 0.4
Russian-Pskov 0.4
French_South 0.4
Welsh 0.35
Irish_Ulster 0.35
Scottish_Fife 0.3
German_SouthGermany 0.25
Scottish_Dumfries_Galloway 0.25
Belarusian_CentralBelarus 0.2
Datog 0.2
English_Cornwall_GBR 0.2
North_European 0.2
Ukrainian 0.2
Russian_Orjol 0.15
Afar 0.1
Belarusian_EastBelarus 0.1
English_Kent_GBR 0.1
Irish 0.1
Kambera 0.1
Russian_Smolensk 0.1
Vindija 0.1
Belarusian-East 0.1
Spanish_Canarias_IBS 0.1
Spanish_Cantabria_IBS 0.1
Spanish_Cataluna_IBS 0.1
Peruvian 0.05
Russian_Voronezh 0.05

В K11 показаны следующие палеогеномы (или их группы). По-прежнему, основа генома 40% моделируется как геном представителя культуры колоколовидных кубков.

«Bell_Beaker» 40.3
«Halberstadt_LBA» 31.6
«Samara_HG» 8.5
«Tyrolean_Iceman_EN» 2.05
«Esperstedt_MN» 1.95
«Swedish_Mesolithic» 1.95
«BerryAuBac_Mesolithic» 1.85
«Swedish_Motala_Mesolithic» 1.7
«Bichon_Azillian» 1.6
«Continenza_Paleolithic» 1.5
«Hungary_BA» 1.5
«LaBrana_Mesolithic» 1.35
«Bell_Beaker_Germany» 1.05
«Hungary_HG» 0.85

4) следующим новым инструментом будет 4mix, более упрощенный вариант 4Admix. Он разработан тем же Г. Гизбертом. Основное отличие от 4Admix — если 4Admix перебирает все возможные комбинации из 4 популяций, то в 4mix можно эксплицитно задавать отдельные комбинации и определять евклидову дистанции между этой комбинацией и аппроксимируемым геномом в пространстве моделей
5) карты компонентов с аннотацией. Аннотации компонентов будут чуть позже, а вот карты уже готовы

Карты распространения некоторых компонентов K16 и K11  в ряде географических ареалов

6) я включил в релиз модифицированный скрип GPS лаборатории Элхайка для определения географического ареала происхождения предков человека, чей геном является предметом изучения. Я включил пару строчек кода для проецирования вычисленных географических координат на географическую карту.
Пример. Ниже показаны две карты, на которые спроецированы географические координаты вычисленной алгоритмом GPS (GPS DNA tool ) точки «этнического происхождения».
Я проверил работоспособность алгоритма на обеих моделях.
В модели K16 (современные популяции) GPS-координаты точки моего «происхождения» 49.7648663288835 32.4345922625112 (примерно 49 градусов северной широты и 32 градуса восточной долготы), т.е где-то на левом берегу Днепра в Украине. Как утверждают разработчики программы, она позволяет определить место происхождения с радиусом погрешности в 500 км. Я вычислил расстояние от полученной точки до настоящего места жительства предков (южная часть Брестской области) и получилось 470 км. Т.е точка попадает в радиус, хотя и с некоторым трудом.

Rplot

Что касается модели K11 (древние геномы), то в этой модели мой «Urheimat» локализуется — весьма ожидаемо — на землях древней унетицкой и лужицких культур (51.1254133094371 13.2336209988448)

Rplot

 

 

О «ближневосточном компоненте» палеолитических охотников-собирателей Европы

Сергей Козлов

О «ближневосточном компоненте» палеолитических охотников-собирателей Европы

Описание
Рассмотрена статья Qiaomei Fu et al. «The genetic history of Ice Age Europe». Проведен анализ европейских палеогеномов возрастом от 37 до 8 тысяч лет из данной статьи и более ранних работ. Аутосомный компонент западных охотников-собирателей (WHG) — преимущественно результат генетического дрейфа, гипотеза авторов о его формировании в результате однократной миграции в Европу около 14 тысяч лет назад носителей ближневосточных аутосомных компонентов несостоятельна. Вместе с тем, обмен генофондом с ближневосточными популяциями несомненно происходил, однако для прояснения его истории необходимы палеогеномы с Ближнего Востока. Подтверждаются выводы из более старых работ о наличии ближневосточного («базального») компонента у образца Костенки-14 (человек с Маркиной Горы), отрицаемые в рассматриваемой статье. Вероятно, он связан с компонентом охотников-собирателей Кавказа (CHG). Опровергается вывод авторов о восточноазиатском влиянии на поздних WHG. Проведено моделирование ряда возможных событий смешения и построено дерево вероятных взаимосвязей аутосомных компонентов с размещением на нем имеющихся палеогеномов.

Обсуждение работы Qiaomei Fu et al на форуме «Молекулярная генеалогия».

Новые палеогеномы из статьи
В рассматриваемой статье впервые произведен временной срез геномов жителей Европы верхнего палеолита. Конечно, единичные геномы у нас были и раньше (Костенки-14, Oase1), однако не хватало системности для построения целостной картины изменений в генофонде европейцев на протяжении этого периода. Статья частично решает эту проблему — прочтено несколько десятков новых геномов. К сожалению, остался неохваченным период 19-28 тысяч лет назад (а с учетом лишь геномов приемлемого качества — 19-30 тлн), но и имеющиеся образцы позволяют сделать ряд интересных выводов.

Коротко о содержании рассматриваемой работы, критика
Авторы подтверждают выводы из более ранних работ об угасании вклада неандертальцев в генофонд современных европейцев с ходом времени (предположительно, на неандертальские участки ДНК действовал отрицательный отбор). Далее они касаются нескольких интересных мелочей (присутствие Y-гаплогруппы R1b в палеолитической Европе — образец Villabruna возрастом 14 тысяч лет, появление «мутации светлоглазости» почти одновременно в Европе и на Кавказе (разумеется, это не отменяет вероятности нахождения более древних образцов с этой мутацией впоследствии) и необычные для региона в наши дни митогаплогруппы). После этого авторы переходят к объединению образцов в кластеры и попытке реконструкции их взаимоотношений. По сути, здесь все просто — европейские палеогеномы из одной эпохи объединяются в один кластер. Классические европейские WHG выступают под псевдонимом «кластер Villabruna», их непосредственные предшественники — el Miron, и ряд геномов возрастом 30 тысяч лет (из них лишь один заслуживающего рассмотрения качества) — кластер Vestonice. Чуть более старые GoyetQ116-1 и костенковец не вошли ни в один кластер. Далее делается очень странный вывод, что с появлением кластера Villabruna (в дальнейшем я буду называть их «WHG» согласно общепринятой терминологии), произошло резкое изменение генофонда в результате вливания компонента, связанного с современными ближневосточными популяциями. Формально приводится и альтернативное объяснение — результат нормальной изменчивости среди охотников-собирателей, и группы с меньшей общностью с Ближним Востоком были замещены группами, изначально имевшими большую общность. Однако в abstract статьи попал лишь первый вариант.

Мое объяснение
Даже из диаграммы, которая должна иллюстрировать точку зрения авторов, следует прямо противоположный ей вывод — изменения, относимые к появлению классических WHG, начались задолго до этого и происходили постепенно. «Ближневосточное влияние» (зеленые ромбики) появляется в заметных масштабах уже в предшествующем кластере el Miron, на пять тысячелетий ранее. Но перед этим кластером находится разрыв в девять тысячелетий, где, вполне возможно, мы тоже могли бы увидеть это влияние. Однако на картинке разрыв закрыт и создается впечатление резкого перехода.
Исходное изображение:

ИсходнаяСхема
Отмасштабированная пропорционально реальной временной шкале картинка:
Безымянный-3
Как я покажу в дальнейшем, общность палеообразцов с классическими WHG и современными северными европейцами (которые являются преимущественно потомками WHG) с ходом времени росла постоянно — от костенковца и GoyetQ116-1 к el Miron, Villabruna и Loschbour. По моим предположениям, основной механизм здесь — дрейф генов. Не надо думать, что это был некий целенаправленный процесс — наоборот, дрейф генов во многом случаен (хотя и отбор наверняка сыграл свою роль), но именно то, что получилось в его результате, и стало европейскими охотниками-собирателями мезолита. Поэтому естественно, что чем ближе к нашему времени, тем выше сходство с итоговым результатом процесса.
Вместе с тем, с ходом времени мы наблюдаем и относительное повышение общности с ближневосточными популяциями, хотя и в заметно меньшем масштабе. Однако трудно сказать, кто, когда, сколько раз и на кого влиял. Допустим в качестве модели, что несущие компонент WHG группы повлияли на ближневосточников в относительно недавнем прошлом. Тогда повышение сходства палеогеномов с WHG автоматически будет немного повышать сходство и с ближневосточниками пропорционально доле WHG в их генофонде, даже если в ту эпоху на Ближнем Востоке о WHG и не слыхали. С другой стороны, небольшие равномерные вливания с Ближнего Востока в Европу могли дать такой же эффект. Или же третья группа, вроде CHG, могла повлиять как на WHG, так и на ближневосточников (необязательно одновременно). Словом, точку здесь поставит лишь хорошая выборка палеогеномов с Ближнего Востока -сравнение с современными популяциями всегда оставит место гаданиям.
Что касается восточноазиатского влияния на часть WHG (внимательные читатели критикуемой работы могли заметить, что оно «проявляется» и у одного из древнейших образцов — GoyetQ116-1), то оно объясняется ошибочностью принятия основой для сравнения образца Kostenki-14. Далее я еще коснусь этого.

Использованные для анализа методы и палеообразцы, причины их выбора
В этой заметке я не стал применять свой излюбленный метод — подсчет сумм общих (IBD) сегментов. Хотя качество некоторых образцов вполне позволяет его применить, трудно понять, как при этом надежно сравнить между собой образцы из эпох, разделенных десятками тысячелетий? Ведь сегменты со временем уменьшаются в размерах, при этом скорость процесса сильно зависит от популяционной истории — в одной выборке быстрее, в другой медленнее… Добавим к этому резко различающееся качество прочтения палеогеномов, и за корректность сравнения поручиться становится совершенно невозможно.
Поэтому я решил пойти путем подсчета доли общих снипов (IBS), как простого и объективного показателя. Чем больше значений снипов совпадает, тем выше генетическая близость. Я не согласен с мнением, что учитывать надо лишь производные (derived) аллели — ведь если оба варианта закрепились в популяции, то для дрейфа генов уже безразлично, какой из них предковый. Для того, чтобы поставить геномы разного качества в одинаковые условия, я случайным образом выбрал для каждого аллеля одно из прочтений и оставил лишь его, то есть создал искусственную гаплоидность, как часто делается с палеогеномами от лаборатории Райха. Обычно я ругаю этот подход, как разрушающий IBD-сегменты, но в данном случае он приносит пользу. Далее я ограничил набор снипов пересечением трех множеств — снипы, используемые мной для сравнения с современными выборками и снипы, прочитанные у образцов Villabruna и GoyetQ116-1. Более логично было бы выбрать в качестве базового образца WHG прочитанный наиболее качественно из всех Loschbour, однако носитель R1b Villabruna в любом случае будет вызывать интерес общественности и подозрения в отличиях от других WHG, поэтому решение было принято в его пользу. Что касается GoyetQ116-1, то из всех древних образцов он наиболее связан с «промежуточным» между палеолитическими европейцами и WHG el-Miron, за что и был выбран в качестве второй опоры. Итоговый набор составил около 107 тысяч снипов. Для сравнения Villabruna и Goyet с el Miron было проведено отдельное уменьшение набора до присутсвующих у всех троих 65 тысячи снипов.
Среди остальных использованных палеообразцов хорошо прочитанные Loschbour, Ust-Ishim, Kostenki, NE1, Kotias отмасштабировались практически без потерь в количестве снипов, Mota1 и Motala12 — с незначительными потерями. Несколько хуже отмасштабировались Vestonice16, «карел» c Оленьего острова I0061, «мальтинец» и один из наиболее ранних геномов неолитчических земледельцев Анатолии I0707, но они также были включены в сравнение, поскольку представляют явный интерес. Судя по сравнению результатов I0707 и его близкого аналога из Европы NE1, подсчеты сохранили корректность.

Таблица результатов и ее применение
Результаты сравнения сведены в таблицу, с которой желающие могут ознакомиться по ссылке. Кроме современных выборок, приведены и выборки из имеющихся палеогеномов (конец таблицы), хотя их качество очень разное. Впрочем, интересующие нас в первую очередь западные охотники-собиратели WHG и ранние неолитические земледельцы Анатолии AEF представлены вполне неплохо, хотя по Анатолии пока, к сожалению, охвачена лишь крайняя западная часть. Наиболее древние европейцы — Kostenki14, GoyetQ116-1, Vestonice16 объединены в выборку pre-WHG. Число в каждой ячейке — доля совпадающих аллелей для текущего образца с этой выборкой — допустим, 65 означает 65% общих снипов (на данном наборе снипов — число сильно зависит от набора).
Несмотря на все ухищрения, призванные поставить геномы в равные условия, прямое сравнение результатов оказалось невозможным — у некоторых образцов чуть больше совпадающих снипов со всеми выборками, у некоторых — чуть меньше. Разница невелика, но в этом методе играют роль даже доли процента. Возможно, причина — в разном качестве прочтения, возможно — индивидуальные особенности образцов или что-то еще. Однако решение проблемы существует. Поскольку увеличение или уменьшение доли совпадающих снипов примерно пропорционально для всех выборок, можно взять соотношение этой доли с выборкой, равно удаленной от всех («outgroup»). В качестве подобного ориентира я решил взять объединение всех четырех используемых мной выборок из Африки южнее Сахары — представителей пигмеев мбути и бьяка, кенийских банту, нигерийского племени йоруба. На графике ниже приведена доля общих снипов для каждого из палеогеномов с соответствующей выборкой (Balt, Druze, WHG и т.д.) после приведения доли общих снипов с африканцами к одинаковому с другими образцами значению путем домножения на коэффициент. Для проверки корректности метода на график помещены другие outgroups, которые в исследуемый период явно не могли участвовать в обмене генами ни с африканцами, ни с исследуемыми палеообразцами — выборка папуасов. Как интерпретировать их результат, я опишу чуть ниже.
График1
Палеогеномы (kya означает тысяч лет назад):
Ust-Ishim — усть-ишимский человек, наиболее древний приемлемо прочитанный геном человека современного типа.
Kostenki-14, GoyetQ116-1, Vestonice16 — древние геномы из Европы
el-Miron — предшественники WHG
Villabruna, Loschbour — WHG
Motala12 — охотник-собиратель из Швеции, представитель группы SHG (охотники-собиратели Скандинавии)
Karelian — образец с Оленьего Острова, так называемый EHG (восточный охотник-собиратель). Malta — древний «сибиряк» со стоянки Мальта, образец аутосомного компонента ANE — предковые северные евразийцы
EHG находятся в промежутке между WHG и ANE и, вероятно, являются их смесью.
I0707 — ранний неолитический земледелец с запада Анатолии
NE1 — ранний неолитический земледелец с территории Венгрии
Kotias — мезолитический охотник-собиратель с Кавказа

Ради интереса я также поместил на график результаты современного восточноевропейца с предками из трех восточнославянских народов (Modern EE).

Левая часть графика иллюстрирует изменения в генофонде европейцев с течением времени (усть-ишимский человек добавлен для сравнения, хотя он и не из Европы), правая — другие представляющие интерес геномы.
При сравнениях палеогеномов с палеовыборками сравнение «сам с собой» пропускалось.

Интерпретация сравнения с выборкой папуасов
Как мы видим, соотношение «родство с папуасами»/»родство с африканцами» для палеоевропейцев представляет собой почти горизонтальную линию. Это значит, что с какой скоростью европейцы «отдрейфовывали» от папуасов, примерно с такой же они отдалялись и от суб-сахарцев. Выглядит логично. Усть-ишимец выше всех, и это тоже логично — ведь он находится наиболее близко во времени к моменту расхождения папусов, восточноазиатов и WHG/ANE — значит, он и должен иметь относительно больше общего с папуасами. С другой стороны, для образца Kotias, имеющего много «базального» компонента, логично иметь заметно более низкое значение этого соотношения — момент расхождения «базальников» и предков остальных не-африканцев (включая папуасов) был очень давно. Ранние земледельцы, как смесь «базальников» и WHG, закономерно находятся в промежутке между WHG и Kotias. Даже неравномерности в графике охотников-собирателей находят свое объяснение — как я покажу позже, у костенковца вероятно небольшое влияние «базальников», и он проваливается на графике. Также я предполагаю небольшое базальное влияние у WHG и el Miron — соответственно, они находятся чуть ниже Goyet, мальтинца и оленеостровца. Итак, контрольная проверка показала применимость метода.

Важная ремарка — когда я в дальнейшем буду писать о росте доли общих снипов (график с течением времени идет вверх), надо понимать, что этот рост относительный. Есть некий базовый «уровень разбегания» — это скорость, с которой мы с каждым поколением отдаляемся от африканцев и папуасов из-за дрейфа генов и других факторов. Если в относительных значениях общность с друзами растет, это не значит, что она точно растет в абсолютных значениях — возможно, она тоже падает, но из-за обмена генами с нами падает медленнее, чем могла бы. А может, с друзами общность медленно растет, но с отстающими от них йеменцами медленно падает. Все зависит от соотношения скорости дрейфа генов, который нас растаскивает, и скорости обмена генами, который объединяет. В данном случае нас интересует, что удается увидеть наличие факта этого обмена.

Интерпретация графика
В первую очередь бросается в глаза пунктирная красная линия вверху — доля общих снипов с выборкой WHG. Как легко заметить, рост был почти непрерывен в течение всего времени, лишь, немного споткнувшись на образце Vestonice (возможно, поэтому в статье отнесли этот кластер к «тупиковой ветви». Впрочем, на сравнении с балтской выборкой такого не происходит, а современные выборки все же качеством на порядок выше — значит, доверия им больше). Ниже сплошной красной линией приведено сравнение с наиболее близкой к WHG выборкой наших современников — жителями восточного побережья Балтики (выборка Balt состоит из 11 литовских образцов, 6 латышских, 2 из Латгалии и одного с российско-латышской границы). Здесь картина аналогична — каждый следующий во времени образец ближе к балтам, чем предыдущий, включая даже Vestonice16. Очевидно, что объяснить это монотонное приближение единоразовой миграцией невозможно, а вот процессы генетического дрейфа укладываются в модель замечательно. Зеленые линии — аналогичная пара для неолитических земледельцев (пунктир) и считающихся (по результатам аутосомного анализа) наряду с армянами их наиболее сохранившимися представителями на Ближнем Востоке друзами Палестины. Здесь мы тоже видим рост, но более медленный по сравнению с ростом сходства с WHG. Если учесть, что порядка четверти генофонда AEF считается полученным от WHG, то примерно половину роста необходимо отнести на этот фактор. Оставшаяся половина и будет искомым обменом генами между «базальниками» и WHG. Для моделирования «базальников» зачастую применяют выборку из Йемена, как наиболее отдаленную от европейцев среди ближневосточников. Неизвестно, насколько это моделирование корректно, однако я включил их в сравнение (голубая линия). Родство с ними также растет, хотя и медленнее, чем с AEF или друзами. Однако, начав заметно ниже папуасов, ближе к нашему времени йеменцы успешно обгоняют их и становятся более близкими к WHG. Ведь обмен генами с йеменцами гораздо менее затруднен географически, чем с папуасами.

Несколько слов о правой половине графика
Представитель сестринской к WHG клады — ANE, мальтинец (24 тлн), обладает относительным сродством с WHG примерно на уровне европейских образцов 30-37 тысяч лет назад. Можно предположить, что момент расхождения был не слишком задолго до этого времени. При этом сродство с «балтской» выборкой относительно выше — поскольку в Восточной Европе присутствует не только WHG, но и доля ANE. У «карела» EHG связь с WHG закономерно выше (поскольку он и сам частично WHG), соответственно выросла и связь с ближневосточниками. То же самое, но в еще большей степени можно сказать про образец из Швеции Motala12 (скандинавские охотники-собиратели — SHG считаются WHG с примесью ANE). На паре AEF/NE1 можно пронаблюдать, как при продвижении в Европу у неолитчиков вырос вклад WHG, зато упал «ближневосточный» компонент. У «палеокавказца» Kotias по сравнению с ними резко падает связь с восточноевропейцами, и менее резко, но тоже падает — с ближневосточниками.

Определенный интерес представляет и сравнение с некоторыми другими современными выборками. Я не стал помещать их на основной график, чтобы избежать его перегруженности, но размещаю более полный вариант ниже.
График2
Сардинцы добавлены, как наиболее яркие современные представители неолитических земледельцев, удмурты — как связанные с EHG, корнцы — с более западным вариантом WHG, калаши — за «калашский» кластер, кеты и южноамериканские индейцы каритиана — за связь с ANE.

Карты для палеогеномов

Теперь перейдем к рассмотрению каждого из палеогеномов отдельно. Для начала несколько слов об усть-ишимце. Хотя он и наиболее близок к общему корню, но все же, судя по всему, в его времена расхождение неафриканского человечества на основные ветви уже состоялось. Ближайшими к усть-ишимцу выборками оказались меланезийцы и папуасы, далее идут жители юго-восточной Азии, тамилы и восточноазиаты.

Каждая карта нормируется отдельно — ярко-красным выделяется наиболее хорошо связанная с этим геномом выборка из представленных, ярко-зеленым — наименее связанная. Не представленные на карте выборки (четыре африканские, две америндские, папуасы и меланезийцы) в нормировании не участвуют, по сравнению с африканцами все неафриканцы были бы просто разными оттенками красного. Карты в этой статье построены согласно доле общих снипов (IBS), по тем же таблицам, что и предыдущий график. Это не IBD-анализ. В более хорошем качестве карты можно загрузить отсюда
UstIshim.png
Хотя европейцы и среднеазиаты чуть ближе к усть-ишимцу, чем североафриканцы и ближневосточники, разница сравнительно невелика. Частично удаление европейцев от усть-ишимца следует отнести на влияние «базальников», но думаю, WHG и сами по себе успели хорошо удалиться от восточной ветви человечества. Поэтому на роль представителя общей для всех базы усть-ишимец не годится.

GoyetQ116-1
По причинам, описанным мной в разделе «Использованные для анализа методы и палеообразцы», из наиболее древних европейских геномов на роль «базового» был выбран GoyetQ116-1. И, как показывает карта, уже 35 тысячелетий назад европейские аутосомы начали приобретать свои основные черты. На первом месте по схожести — уже упоминавшаяся выборка «Balt», она будет попадаться нам вновь и вновь. Родство с остальными европейцами выражено вполне отчетливо. Однако интересно обратить внимание на другие регионы. Во-первых, родство с североафриканскими и ближневосточными популяциями находится на том же уровне, что и родство с восточноазиатами. Видимо, мы поймали тот момент, когда протоевропейцы были равноудалены от этих двух стволов. В дальнейшем родство с восточноазиатами будет ослабевать, а с ближневосточниками — усиливаться. Как говорится, «география-это судьба».

GoyetQ116-1.png
Еще раз повторюсь, что речь идет о современных ближневосточниках. Насколько они репрезентативны по сравнению с населением региона 10, 20, 50 тысяч лет назад — совершенно непонятно.
Очень интересно «вторичное пятно» в Индии. Вероятно, оно было бы соединено яркой полосой с европейским ареалом, если бы не размывшие ее миграции «базальников» с юго-запада и восточноазиатов с северо-востока. При этом в юго-восточной Индии и Бирме ареал связи с прото-WHG перекрывается с ареалом хорошей связанности с усть-ишимцев. Не отсюда ли когда-то разошлись две наших ветки? Я не являюсь специалистом по Y-гаплогруппам, но кажется, с максимумом разнообразия макрогаплогруппы K, включающей в себя в качестве ветвей такие известные гаплогруппы, как N, O, R, Q, это соотносится хорошо (в таком случае, «базальников» можно связать с IJ). Разумеется, сюда также относится оговорка о возможной несхожести современного и древнего населения.

Vestonice16
Картина для Vestonice16 довольно схожа с картой GoyetQ116-1.

Vestonice16.pngПри сравнении видно, что связь с восточной (и в первую очередь Юго-Восточной) Азией несколько ослабла, а связь с западными выборками (как европейскими, так и ближневосточными) слегка усилилась. Однако разница невелика и из-за этого сравнительная карта выглядит некрасиво. Чтобы избежать загромождения излишними иллюстрациями, ее не привожу.

Kostenki14
Как и Вестонице, костенковец весьма схож с GoyetQ116-1. В данном случае мне хочется привести именно карту разницы со вторым палеогеномом, чтобы продемонстрировать его «южный» компонент. Зеленое — больше общего с костенковцем, красное — с Goyet.
GoyetQ116-1VsKostenki14Merged.png
Из-за схожести двух геномов карта очень зашумлена, однако противоположности проявляются хорошо. Ярко-зеленое прекрасно совпадает с областью распространения компонента кавказских охотников-собирателей CHG (ниже будет приведена карта и для них). Видны его максимумы на Кавказе и у калашей, на Балканах, и даже (хотя это может быть погрешностью) замечавшееся при анализе «ямных» геномов пятно в северо-западной Европе. Красное же в юго-восточной Азии — район максимальной «небазальности». Оттенки бурого и близкие к ним разглядывать нет смысла, также, как и отдельные «выбросы».
Как будет показано далее, костенковец наиболее успешно моделируется, как смесь 86% GoyetQ116-1 и 14% Kotias. Строго говоря, мы не можем утверждать, что GoyetQ116-1 представляет чистых прото-WHG, а костенковец является смесью с южанами. Не исключено, что «южный» компонент присутствует и у GoyetQ116-1, просто его меньше. В конце концов, смешение могло произойти еще по пути в Европу.

el Miron
Закончив с наиболее древними геномами, мы можем перейти к рассмотрению динамики европейского генофонда во времени (впрочем, до момента прибытия неолитических земледельцев она довольно однообразна). Поэтому ближайшие карты будут только сравнительными. Итак, красное — выборки, сходство с которыми у образца el Miron (19 тлн) усилилось по сравнению с образцом GoyetQ116-1 (35 тлн). зеленое — выборки, сходство с которыми ослабло. Бурое — возможно, слегка усилилось, возможно, ослабло, но не так сильно, как с зеленым. Об этом я написал в разделе «важная ремарка» после графика.

elMironVsGoyetQ116-1.png

Villabruna

VillabrunaVsElMiron.pngКак видите, прибытие Villabruna никакого переворота не произвело. Как и раньше, с ходом времени сходство с циркумбалтийцами усиливалось, с восточноазиатами — ослабевало, с ближневосточниками — то ли слегка усиливалось, то ли медленно ослабевало, но медленнее, чем с восточноазиатами.

Loschbour
Этот образец настолько схож с предыдущим (см график), что разностная карта показывает один шум. Поэтому я приведу конечный итог — вот к чему пришли WHG спустя 29 тысячелетий:
LoschbourVsGoyetQ116-1.png
А также сравнение — где произошли наибольшие изменения
Сравнение Loschbour и GoyetQ116-1

LoschbourVsGoyetQ116-1.png
Дальше всего «убежали» от протоевропейцев жители юго-восточной Азии, далее идут Индия, Восточная Сибирь и Северная Африка. За пределами основного региона меньше всего «скорость убегания» на Северном Кавказе, у ираноязычных памирцев, греков-киприотов и кетов (везде можно предположить контакты с носителями WHG).

Теперь перейдем к Кавказу и Анатолии. Уже упоминавшийся в пояснениях к карте для костенковца кавказский охотник-собиратель Kotias:

Kotias.png

Интересно попытаться расщепить этот компонент на составляющие. В значительной части он несомненно связан общим корнем с прото-WHG (хорошо выделяются оба значимых для этого компонента региона — Европа и Индия). Попробуем вычленить не-WHG часть путем сравнения с GoyetQ116-1.

KotiasVsGoyetQ116-1.png

В первую очередь закономерно выделяются зоны наибольшего распространения CHG — Кавказ и Афганистан (калаши)/Пакистан/Иран. Однако кроме этого, проявляется и связь с Ближним Востоком, Анатолией, Балканами — регионами распространения ранненеолитических земледельцев. Таким образом, можно предположить, что у CHG имеется связь с ближневосточным аутосомным компонентом (знаменитые «базальники»), который впоследствии стал основой генофонда неолитических земледельцев и через них повлиял на современных европейцев. Потому-то Европа и выглядит на этой карте в целом нейтрально — на юго-востоке персиливает влияние «базальников», на северо-востоке — WHG. И наоборот, Восточная Азия, куда базальники не добрались, оказалась ярко-зеленой — это говорит о том, что время их расхождения с восточноазиатами древнее, чем время расхождения восточноазиатов и WHG.

Тот же самый эффект, но с противоположной стороны мы можем наблюдать, сравнив Kotias и геном ранненеолитического земледельца из Анатолии:KotiasVsAEF.png

Поскольку теперь Kotias менее «базальный», на этот раз Восточная Азия оказалась красной. Хотя наиболее выражен «не-базальный» компонент Kotias в Индии. Поэтому я считаю, что компонент CHG следует считать смешанным между «ближневосточным» (предковым к AEF) и «индийским» (предковым к WHG) компонентом.

Раз уж я неоднократно упомянул AEF, приведу карту и для представителя этой выборки I0707.

AEF.png

Среди наших современников наиболее схожими с ним являются жители острова Сардиния, находящемся в западной части Средиземного Моря. Можно сказать, что компонент ранних земледельцев сохранился там, словно в заповеднике. В целом он лучше представлен в южной Европе, чем на Ближнем Востоке. Хотя не стоит забывать — для анализа у нас есть лишь палеогеномы с крайнего запада Анатолии, на границе с Европой. Вполне возможно, что ближневосточные геномы оказались бы ближе к современным выборкам с Ближнего Востока. Пока же мы можем сказать, что в регионе наиболее схожими с имеющимися образцами неолитчиков оказались армяне, друзы и греки-киприоты.

Наконец, последними я хочу привести две карты для образца возрастом в 24 тысячелетия со стоянки Мальта в Прибайкалье. На основе его анализа в свое время было выдвинуто предположении о существовании «популяции-призрака» — ANE, предковых северных евразийцев, которые повлияли на многих соседей, в том числе на американских индейцев, но сами к нашему времени исчезли. ANE считаются родственной к WHG веткой и не несут восточноазиатского или ближневосточного влияния. В схожести картин можно легко убедиться:

MaltaIBDext.png

Если WHG это западный вариант, то у ANE основная тяжесть приходится на выборки из Западной Сибири (кеты), Урала (манси) и недавных мигрантов из этого же региона (саами). Очевидно, в прошлом ареал ANE простирался заметно восточнее, но к нашим дням они оказались вытеснены мигрантами с юга, из Восточной Азии. Интересно сравнить, каковы же основные отличия ANE от прото-WHG:

MaltaVsGoyetQ116-1.png

Пятно в западной Сибири вполне ожидаемо. Меня более заинтересовало пятно вокруг выборки калашей в средней Азии. Если вспомнить о связи этого же региона с кавказскими охотниками-собирателями, то уместно предположить, что здесь мы нащупали корень не-ближневосточной части CHG. При анализе Admixture мальтинец показывал наличие около 30% CHG, поэтому я долго ломал голову, как связать этот факт с явной не-ближневосточностью мальтинца. Теперь все становится на свои места — взаимосвязь идет через «калашский» компонент.
Что касается отличий прото-WHG от ANE, то они чуть ближе к восточноазиатам (может, их точка отделения чуть юго-восточнее, чем у ANE?), и ближе к «базальникам», что вновь заставляет меня думать о «базальном» влиянии уже у GoyetQ116-1. В конце концов, если у двух других образцов оно есть, может быть и у этого. Но пока более «чистых» образцов у нас нет, сравнить не с кем. С другой стороны, мальтинский образец на одиннадцать тысячелетий моложе — возможно, за это время он сильнее отдрейфовал от остальных веток.

Численная оценка доли вклада каждого компонента в некоторые из адмиксов.
В процессе работы над сравнительными картами у меня возникла мысль, не попробовать ли сделать численную оценку на основе все тех же таблиц общности IBS с современными выборками. Действительно, если я предполагаю, что не-WHG компонент костенковца очень похож на результаты кавказского охотника-собирателя Kotias, то я могу проверить, насколько близка к костенковцу будет комбинация 1% Kotias + 99% GoyetQ116-1, 2% Kotias + 98% GoyetQ116-1 и так далее, проверив сумму среднеквадратичных отклонений по всем столбцам. Для того, чтобы исключить влияние уже упоминавшегося в начале статьи эффекта, для каждой тройки сравниваемых геномов производилось нормирование. Таким образом, суммы IBS с современными выборками по каждому геному совпадали.

Для проверки модели я решил использовать геном, смешанное происхождение которого достоверно известно. Как мы знаем, по мере продвижения в Европу и с ходом тысячелетий исходный генофонд неолитических земледельцев постепенно размывался благодаря влиянию местных охотников-собирателей. Следовательно, геном семитысячелетней давности земледельца из Венгрии NE1 должен хорошо моделироваться, как смесь земледельца из Анатолии AEF (возраст генома на тысячу лет больше) и WHG. Так и получается — если в роли представителя WHG выступает более ранний геном Villabruna, модель предсказывает соотношение 11% WHG на 89% AEF, для более позднего Loschbour соотношение почти такое же — 10% WHG на 90% AEF. Среднеквадратичное отклонение при этом меньше единицы — в дальнейшем будем считать такое значение признаком того, что смешение моделируется хорошо.
Ряд результатов для заинтересовавших меня вариантов моделирования приведен на изображениях ниже:
Оракул01.png
Кратко прокомментирую. При попытке смоделировать NE1, как смесь WHG и CHG отклонение резко возрастает, что говорит о неудачности такой модели по сравнению с предыдущим вариантом. Родственные WHG охотники-собиратели ANE могут частично служить заменой Villabruna, однако результат хуже. Таким образом, результаты моделирования полностью соответствуют здравому смыслу. Я решил попробовать сделать еще один шаг и ввести в модель искусственный образец «базальника», полученный вычитанием из геномов неолитических земледельцев 15-20 процентов вклада WHG. Конечно, точная доля компонента WHG в геномах неолитчиков нам неизвестна, однако это лучше, чем применять в качестве «базального» образца геном AEF.
Результат костенковца действительно лучше всего моделируется, как смесь 86% прото-WHG и 14% CHG (Kotias), что мы и наблюдали на сравнительной карте. Чуть хуже вариант 94% прото-WHG на 6% базальников. Для другого древнего образца из Европы, Vestonice16, картина противоположная — базальники лучше подходят в качестве второй стороны, чем кавказцы. Интересно, что наиболее старые образцы Y-гаплогруппы I пока что найдены именно у представителей кластера Вестонице — возможно, это не случайное совпадение и вливание «базального» компонента связано с приходом носителей этой гаплогруппы.
«Опорный» прото-WHG GoyetQ116-1 не моделируется, как смесь кого-либо из двух других представителей группы и южан. Однако он может быть относительно неплохо смоделирован, как 88% костенковца и 12% мальтинца. Вероятно, это связано с отсутствием «базального» компонента у образца со стоянки Мальта.

Оракул02.png
Носитель R1b Villabruna может быть смоделирован, как смесь одного из своих предшественников и базальников, однако отклонение при этом слишком велико, чтобы считать моделирование успешным.
CHG Kotias плохо моделируется, как смесь каких-либо двух других образцов. Наиболее удачный вариант — 48% Мальта и 52% базальники (что еще раз говорит о его промежуточном положении между двумя кладами).
«Оленеостровец» EHG наиболее хорошо моделируется, как  смесь 51% SHG (Motala12) и 49% ANE (мальтинец), отклонение великовато.

Оракул03.png
«Скандинав» Motala12 хорошо моделируется, как смесь 72% WHG и 28% EHG
Промежуточный между прото- и классическими WHG образец el Miron оптимально моделируется именно как смесь первых (GoyetQ116-1) и вторых (Villabruna). Однако при этом он оказывается ближе к более древним родственникам, хотя расстояние по времени до них гораздо больше. Возможно, это объясняется ускорением дрейфа в эпоху 19-14 тлн, но мне кажется более правдоподобным другое объяснение — WHG это потомки сестринской к el Miron ветви, поэтому часть дрейфа у них прошла отдельно.

Дерево вероятных взаимосвязей
Попытавшись максимально подробно и непротиворечиво свести вместе как данные, полученные в результате вышеописанных исследований, так и информацию из других работ, я изобразил дерево возможных взаимодействий палеообразцов и аутосомных компонентов. Схема достаточно условна, поэтому размещать на ней датировки далее 40 тысяч лет назад не имеет смысла. Гипотетический общий компонент «мальтинца» и охотников собирателей-кавказа я обозначил «Kalash», но надо понимать, что под этим вовсе не подразумеваются современные калаши — просто неким образом связанная с ними древняя предковая популяция. Серыми стрелками между «базальниками» и CHG, «базальниками» и WHG обозначено, что взаимодействия, по-видимому, были, но обозначить их одиночной линией на схеме тяжело. «Уральский» компонент — это часть генофонда народов Урала и западной Сибири, которую можно отнести к европейской ветви, для получения картины современного состояния необходимо объединить ее с восточноазиатским влиянием.

Дерево08.png

Думаю, что на самом деле все гораздо сложнее и запутаннее, чем изображено здесь )) Будем ждать новых расшифровок древних геномов для дальнейшего развития схемы.

Предварительный обзор нового этнокалькулятора от FTDNA myOrigins

Предварительный обзор нового этнокалькулятора от FTDNA myOrigins (дополнено 06.05)

Сегодня компания FTDNA открыла ограниченный доступ к бета-версии своего нового этнокалькулятора, который должен прийти на смену Population Finder. Необходимость замены старой утилиты давно назрела — предикты, выдаваемые этим инструментом, отличались крайней неточностью, и выглядели откровенно неудачно на фоне продукта основного конкурента — Ancestry Composition от 23andMe.

Видимо, после недавнего фиаско с громким анонсом обновленного дерева Y-DNA, в компании решили проявить разумную осторожность и открыли доступ к новому продукту лишь админам проектов, предупредив, что это закрытый бета-тест. На текущий момент можно видеть результаты лишь примерно половины участников (остальные, вероятно, ждут просчета. К сожалению, в этот список попал и я. Дополнение — как выяснилось, «переносы» из 23andMe все же были просчитаны, но не поставлены ссылки  на результат), однако этого достаточно для предварительной оценки нового инструмента.

Видно, что проделана большая работа, и в целом myOrigins (а именно так решили назвать Population Finder 2.0) выглядит гораздо достойнее своего предшественника. Выделен ряд географических зон, к которым может быть отнесен геном тестируемого, полностью либо частично. Зоны, к которым отнесена хотя бы часть его наследственности, выделяются на карте. Чем выше вклад зоны, тем ярче пятно. Похромосомного режима, как в Ancestry Composition, нет. Впрочем, выделяемые им сегменты часто бывают довольно сомнительными, поэтому я не считаю данный факт недостатком myOrigins. Как и следовало ожидать от компании, ориентированной в первую очередь на покупателей из Северной Америки и Западной Европы, наибольшей детализации подверглась Северо-Западная Европа. Она разделена на три близких между собой зоны — «британскую» Coastal Islands, «франко-германскую» Coastal Plain и «скандинавскую» Northlands.

Насколько хорошо получилось произвести разделение, покажет будущее — я в основном обратил внимание на компоненты, важные для восточноевропейцев. Кстати, возникает ощущение, что названия и кое-что в описании зон взято из другой версии программы, поскольку они зачастую плохо стыкуются с картой. Так, «балто-славянское» пятно названо Trans-Ural Peneplain, однако при этом нарисовано на территории Польши, Белоруссии и Украины. Но я забегаю вперед. Итак, две основные зоны, выделенные для Восточной Европы — это «балто-славянская» Trans-Ural Peneplain и «финская» North Circumpolar. Кроме этого, довольно часто проявляется «восточноазиатский» компонент Asian Northeast. Распределение выглядит разумно — украинцы, белорусы, южные русские преимущественно относятся к «балто-славянской зоне», со сдвигом к северу растет вклад «финской» зоны. «Восточноазиатский» компонент, проявляющийся у северян, не удивляет, а то, что он периодически встречается у украинцев, можно отнести на влияние Степи. Впрочем, конкретные соотношения двух основных восточноевропейских компонентов у некоторых участников вызывают подозрение в заметных случайных отклонениях процентовки. Дополнение — подозрения перешли в уверенность.

Тем большее удивление вызывают результаты некоторых представителей народов Поволжья и Урала. У них «найдены» «британский» и «франко-германский» компоненты, причем процент может доходить до 20. Думаю, причина здесь в отсутствии «уральской» зоны. Судя по описанию, ее роль должен был взять на себя «финский» компонент, якобы доходящий вдоль Полярного Круга до самой Гренландии. Частично ему это удается — видно, что у чувашей, марийцев, татар его много. Однако финны очень своеобразны, и не могут полностью отображать все не-азиатское разнообразие Севера Евразии. Как результат — заметную часть генома уральцев алгоритм не может отнести ни к «финскому», ни к «балто-славянскому» компоненту, при этом видно его европейское происхождение. Подозреваю, что такие варианты «на всякий случай» относят к британцам. Логично для алгоритма, рассчитанного в первую очередь на американцев.

Дополнение — как оказалось, «франко-германская» зона довольно часто рисуется и восточным славянам. Видимо, дело здесь не только в отсутствии «уральской» зоны, но и в других особенностях используемого алгоритма. «Британская» зона так и продолжает связываться с «уральцами».

Другие зоны, могущие представлять интерес — «средиземноморская» North Mediterranean, «анатолийско-кавказская» Anatolian Crossroads, «афганско-среднеазиатская» Eurasian Heartland, «америндская» Bering Expansion. Все эти компоненты могут встречаться в небольших количествах у восточноевропейцев, обычно их присутствие вполне оправдано.

На мой взгляд, в целом выделение зон сделано вполне разумно. Основная претензия — отсутствие «уральской» зоны, но честно говоря, сложно ожидать от американской компании внимания к этой тонкости. Излишнее выделение зон в Европе также вполне понятно. Дополнение — к недостаткам я бы отнес и отсутствие варианта «nonspecific» для неопределенных случаев, как сделано в Ancestry Composition. Тогда казусов с неверным разнесением по зонам было бы меньше. На первый взгляд, продукт получился вполне на уровне конкурента, а значит, компания может не беспокоиться еще несколько лет )). После полного просчета результатов всех участников и перехода утилиты в открытый вид мы увидим, действительно ли это так.

Этногеномика беларусов — часть V

Обсуждение результатов и выводы

 

Как отмечалось в введении к нашей статье, главной задачей нашего исследования являлась проверка двух рабочих гипотез, озвученных в предыдущих исследованиях профессиональных попгенетиков. Во-первых, это гипотеза о присутствии трех основных древних компонентов , которая указывает на возможность общего происхождения славян и балтов. Во-вторых, это утверждение о том, что своеобразие аутосомного генофонда беларусов может быть связанно с вкладом балтского субстрата.

После внимательного изучения результатов нашего исследования,можно сказать, что оба из приведенных выше заключений представляют собой крайне упрощеные варианты сложного процесса формирования аутосомного генофонда беларусов. Хотя мы и не можем предоставить окончательных аргументов в пользу или опровержение каждой из этих версий, мы может предоставить более полное и подробное обозрение структуры аутосомного генофонда. В отличие от трех основых компонентов, упомянутых выше, в нашем исследовании мы выделили шесть основных компонентов, типичных для европейцев в целом. Основу генофонда составляет компонент, который мы обозначили как северо-восточно-европейский компонент. Именно этот компонент выделяет беларусов среди других восточных славян, приближая их к современным балтийским популяциям (у литовцев процент компонента составляет 81,9, у латышей — 79,5%, у беларусов -76,4%, у эстонцев — 75,2%). Примечательно, по мере удаления от территории Беларуси на север в с торону Латвии и Эстонии, увеличивается процент северо-европейского генетического компонента (как мы полагаем, этот компонент доминировал в генофонде доисторических жителей Скандинавии в эпоху до распространения финно-угоров и индо-европейцев). С другой стороны, беларусов и других восточных славян отдаляет от балтов и сближает друг к другу более высокий процент так называемого западно-азиатского или кавказского компонента (любопытно, что в этом случае эта закономерность может свидетельствовать в пользу западно-азиатской теории происхождения индо-европейцев).

Далее, как показывает анализ в программе fineStructure, генофонд беларусов характеризируется высокой степенью генетических контактов как с балтами, так и остальными славянами, а также с рядом финно-угорских популяций (например, c эрзя и мокша). О симметричном характере межпопуляционного обмена свидетельствует симметричное расположение популяции беларусов относительно этих трех групп.

Исходяизвышенаписанного,представляетсялогичнымсделатьвыводотом,чтоосновнойкритическийэтапстановленияаутосомногогенофондапришелсянапериодсмешиванияносителейсеверо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента,послечегопредковыйаутосомныйгенофондбеларусовприобрелотносительнуюстабильность.Разумеется,даннаямодельнеисключаетпозднейшиеэпизодысмешиванияпопуляций,ноониоставилименьшийследвструктуреаутосомногогенофондабеларусов.Вэтойсвязивозникаеточевидныйвопрос–вкакойименноисторическийпериодпроизошлосмешениеносителейсеверо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента,иктобылиихносителями?
В начале сентября 2012 года известная американская лаборатория популяционной генетики доктора Райха опубликовала альфа-версию программного продуктаADMIXTOOOLS1.0. Альфа-версия была разработана для внутреннего использования, поэтому modusoperandiэтого продукта вряд ли является кристально понятным для стороннего пользователя. Положительным аспектом на мой взгляд является то, что ADMIXTOOLSпакет обеспечивает полную совместимость с форматом другой очень популярной программыEIGENSOFT, которая была разработана в той же лаборатории. Это немаловажное обстоятельство намного упрощает процесс обучения в ADMIXTOOLS.

Вышеупомянутый пакет включает в себя 6 приложений, среди которых я считаю наиболее полезнойqp3Popи утилиты для вычисления частотной характеристики аллелей. Впрочем, я не собираюсь обсуждатьqp3popво всех деталях и в контексте данной заметки достаточно отметить, что эта программа реализует тест three_pop(F_3), подробно описанный в известной статье Рейха и соавт. 2009.

Однако другой имплементированный в пакете метод, – метод rolloff– нуждается в более пристальном внимании. Этот метод позволяет производить математическую оценку как времени, так как и уровня адмикса. Оценка производится на основании анализа неравновесия по сцеплению между SNP-ами. Тут необходимо вспомнить стандартное определение неравновесия по сцеплению.Неравновесием по сцеплению (часто используется английская аббревиатураLD) называется неслучайная связь между двумя аллелями, в силу которой определенные комбинации аллелей встречаются наиболее часть. В теории, чем дальше друг от друга находятся SNP-ы ,тем меньше будет уровень LD. Темп угасания снижения LDв адмиксе напрямую связана с числом поколений, прошедших с момента адмикса, так как cвозрастанием числа поколений увлечивается число рекомбинаций произошедших между двумя отдельными SNP-ами. Проще говоря: Rolloffсоответствует экспоненциальной кривой угасания уровня LDот расстояния, и эта скорость экспоненциального снижения как раз и используется для оценки числа поколений, так и уровня адмикса в анализируемой популяии. Учитывая, что одно поколение примерно равно 29 лет, можно преобразовать число поколений в года.

Этот метод открывает интересные перспективы. Для целей этого анализа, я создал специальный набор SNP-данных, который включает в себя около 750 000 cнипов, частично или полностью в 250 различных популяциях человека. Далее, я разбил популяции 3 * 62 000 трио в следующем виде (X, Y, Z), где X и Y – пара рефренсных групп, а Z – белорусы из коллекцииBehar et al.2010. После этого я провел q3Pop анализ этих трио.

Результаты изложены в нижеприведенной таблице

Indian Polish Belarusian -0.000736 0.000251 -2.935
Polish Indian Belarusian -0.000736 0.000251 -2.935
Karitiana Sardinian Belarusian -0.001278 0.000517 -2.471
Sardinian Karitiana Belarusian -0.001278 0.000517 -2.471
Otzi North_Amerind Belarusian -0.002556 0.001126 -2.271
Cirkassian Polish Belarusian -0.000488 0.000231 -2.113
Polish Cirkassian Belarusian -0.000488 0.000231 -2.113
Pima Otzi Belarusian -0.002727 0.00137 -1.99
Pima Sardinian Belarusian -0.000794 0.000431 -1.843
Sardinian Pima Belarusian -0.000794 0.000431 -1.843
Otzi Surui Belarusian -0.002938 0.001931 -1.522
Surui Otzi Belarusian -0.002938 0.001931 -1.522

 

На первый взгляд, результаты нашего эксперимента с 3qPop, кажется, неплохо согласуются с выводами, содержащимися в работеПаттерсон и др. 2012: “Самый поразительный вывод состоит в обнаружени четкого сигнала адмикса в северной Европе, один из элементов которого связан с предками населения наиболее близкого по своей генетике к баскам и жителям Сардинии, а другой – с предками современного населения северо-восточной Азии и Америки. Этот явный сигнал, вероятно, отражает историю смешивания неолитических мигрантов с коренным населением Европы, что подтверждается недавним генетическим анализом древних костей Швеция и секвенированием полного генома Отци Тирольца”. Что касается собственно белорусов, то источники сигнала смешивания с посторонними популяцими менее ясны и расплывчаты. Как было показано ранее, с точки зрения формального анализа примесей (f3 статистики), белорусы могут быть представлены в виде популяционного микса поляков и индусов / черкессов. Первый компонент смеси может быть связан с носителями культуры шнуровой керамики/боевых топоров и культуры колоковидных кубков; второй, в соответствии с результатами, должен быть общим для индусов и черкесов.

 

Белорусы = ((неолитические культуры Европы) + “носители культуры колоковидных кубков”) + (мезолитическое население Европы) + компонент носителей культуры шнуровой керамики)) + скифо-сарматский тип

 

Для оценки дата события базового адмикса в белорусской популяции, мы использовали в качестве референсных популяций поляков и индусов (Примечание: мы снизили порог генетических дистанции в параметрах Rolloff для снижения уровня шума от более поздних адмиксов).

 

rolloff

Как вы можете видеть, сигнал присутствия адмикса обнаруживается гораздо хуже, и в силу этого, погрешности в оценке временного промежутка высоки:

154,158 + -87,024 поколений назад (или, 4470 + -2523 года до настоящего времени / 2510 – +2523 лет до н.э.).

 

Исходя из этого, мы решили модифицировать Rolloff-анализ генофонда белорусов, используя на этот раз в качестве референсов литовцев и пуштунов. Следуя этому совету, я решил предпринять вторую попытку формального анализа адмикса в двух имеющихся у нас выборках беларусов ( выборка беларусов из статьи Behar et al. 2011), и выборка беларусов, собранная в нашем проекте.Ниже приведены результаты эксперимента с двумя этими группам (в отличие результатов нашей предыдущей попытки, результаты данного эксперимента менее “зашумленные”):

rolloff2

 

Интервал числа поколений, прошедших со времен анализируемого адмикса (105.086+-52.59) или 3069 +- 1525 лет до настоящего времени, что соответствует временном интервалу 2 тыс. до нашей эры – 6 век нашей эры. Принимая во внимание эти выводы, мы можем предположить, что основной аутосомный эпизод смешивания предковых популяций беларусов произошел в течении довольно таки продолжительного времени, охватывающего несколько тысяч лет. В этой связи, вопрос о том, кто именно был носителями северо-восточно-европейскогогенетическогокомпонентасносителямизападно-азиатского(кавказского)генетическогокомпонента, остается открытым.

Географическое распространение компонентов нового калькулятора проекта MDL K27

Не успела бета-версия моего нового этно-популяционного калькулятора и сопутствующего ему геномного оракула (Dodecad oracle) пойти в массы, как один талантливый россиянин Сергей Козлов из Новосибирска (о котором я уже много раз упоминал в блоге) написал программу, позволяющую довольно точно проецировать/предсказывать ареал происхождения анализируемого человека по мере степени увеличения или убывания  процентов предковых компонентов (или аллельных частот)  в отношении к априори заданым точкам на контурным картам (эти точки на контурной карте соответствуют контрольным группам референсных популяций).

Отклоняясь в сторону от темы, хочу отметить что два года назад, когда я начал работу над проектом MDL, я не надеялся найти активных последователей среди русскоговорящего населения, хотя задекларированный в анонсе ареал проекта частично охватывал часть современной западной европейской части России.  Причина моего пессимизма была очевидна — современные русские (впрочем как и 90% прочего человеческого населения) ленивы, глупы и любят бесплатно паразитировать на результатах труда других людей.  К началу 2011 года можно было по пальцам пересчитать тех русскоязычных людей, которые занимались  практическим изучением аутосомного родства и изучения происхождения, или создавали соответствующее программное обеспечение. По прошествии 2 лет,  я должно признать, что в своих мрачных прогнозах немного ошибался.   К счастью, не перевелись еще в известных российских IT-селениях вроде Новосибирска энтузиасты-кулибины.  А это означает, что надежда на пробуждение массового  интереса к ДНК-генеалогии в РФ, так же как это произошло уже в США, где уже сейчас можно наблюдать геномную революцию  во всей ее динамике.

Но вернемся к теме.

Итак,  уважаемый Сергей Козлов разработал интересное программное решение для визуализации пространственного расположения индивида, исходя исключительно из аллельных чистот снипов в геноме:

Я написал программу для совмещения данных этно-калькулятора с географической картой. Чем краснее область, тем более похож протестированный на ее жителей. И наоборот, чем зеленее, тем дальше от них. Черным цветом надписаны популяции, основанные на данных реальных людей, серым — частично или полностью основанные на предположениях.

В связи  с этим, нужно отметить два важных нюанса.
Во-первых,  число реперных точек (т.е «реперных» популяций) по европейской части РФ у Сергея  гораздо выше, чем в оригинальной бета-версии моего калькулятора K27 . Число точек в модификации Сергея было увеличено за счет включения фиксирующих дополнительных групп народонаселения РФ.
Во-вторых, cама идея визуализации  геномных данных на географической карте далеко не нова.  Весной этого года, в своей большой обзорной статье о принципах созданиях этно-популяционных калькуляторов на примере MDL World K22,  я указал на возможность визуализации коэффициентов адмикса в географическом пространстве:

… я решил визуализировать компоненты на поверхности земного шара путем отображения коэффициентов адмикса. Избегая излишних премудростей, я воспользовался готовым рецептом Франсуа Оливье, который предложал  использовать графическую библиотеку статистического программного обеспечения R для отображения пространственной интерполяции  коэффициентов адмикса (Q матрица) в двух измерениях (где пространственные координаты записываются как географические долгота и широта).

При вдумчивом прочтении подобных методов, встает неизбежный вопрос — почему градиенты аллельных частот в геноме людей являются крайне информативными при определении места их происхождения?   Частичный ответ на этот вопрос можно найти в другой моей заметке «О новых перспективах геномной геногеографии: SPA анализ участников проекта MDL«. В этой заметке я обсуждал перспективу расширения традиционных геногеографических методов, так как эксплицитное пространственное моделирования частот аллелей позволяет достаточно точно локализовать положение отдельно взятого человеческого индивида  на географической карте только на основании генетической информации. Если географическое происхождение лиц известно априори, то можно использовать эту информацию для определения функции частот аллелей в каждом SNP. Однако, если таковая информация отсутствует, то наша модель позволяет определить географическое происхождение физических лиц, используя только их генетические данные аналогично более известному методу  многомерного скалирования , основанному на определении пространственных координат статистических параметров.
Это заключение подтверждается в независимом исследовании компании 23andme, согласно которому анализ главных компонентов генетического разнообразия в геноме человека позволяет точно определить его место происхождения в Европе.

К сожалению, в отличии от авторов программы SPA, Cергей Козлов пока не счел нужным опубликовать формальное описание своего метода. Вместо этого, он обкатал программу на данных живых людей и привел их результаты. Вот результаты самого Сергея

Легенда

Результаты «типичного русского»

Результаты карпатского русина

Кроме этого, программа  Сергея умеет визуализировать частоты компоненты калькулятора в мировом масштабе. Ниже приведены все 27 компонентов калькулятора в алфавитном порядке:

Ancestral-South-Indian Ancestral-Yayoi Arabic Australo-Melanesian Austronesian Baltic-Finnic Bantu Bushmen Caucasian-Near-Eastern Central-African-Hunter-Gatherers Central-African-Pygmean Congo-Pygmean Cushitic East-Siberean Gedrosia-Caucasian Kalash Nilo-Saharian Nilotic-Omotic North-African North-Amerindian North-Circumpolar North-European-Baltic Papuan-Australian South-Meso-Amerindian South-West-European Tibeto-Burman Uralic

О так называемом «эффекте калькулятора»

Уважаемый Сергей Козлов написал короткую заметку посвященную так называемому эффекту калькулятора.

«Эффект калькулятора» и его влияние на результаты оракулов аутосомных этно-калькуляторов.

«Эффект калькулятора» и его влияние на результаты оракулов аутосомных этно-калькуляторов.

На Молгене и других форумах периодически всплывает тема несоответствия результатов реальных людей и предсказаний встроенных в этно-калькуляторы оракулов. Недоброжелатели обычно приводят в качестве объяснений плохие исходные выборки либо неправильность самого подхода. Я же считаю, что многие аутосомные калькуляторы работают отлично. Проблема кроется в оракулах — а именно, в «эффекте калькулятора».

Понятие «Calculator effect», которое принято переводить на русский язык, как «эффект калькулятора», было введено известным геномным блоггером Polako. На почве этого у него возникла длительная перепалка с не менее известным блоггером Dienekes Pontikos .
Суть эффекта в том, что результаты людей, включенных в расчет для выделения предковых компонентов (то есть участников его проекта), отличались от результатов людей, которые в проекте не участвовали.
На этом основании он отказывался делать оракулы на базе своих калькуляторов, так как их результат должен был неизбежно искажаться. Однако позже он все-таки выложил новый парный калькулятор Eurogenes JTest/EUtest (14 и 13 компонентов соответственно) вместе с оракулом, который давал хорошие предсказания для большинства европейцев. Чтобы добиться этого, Поляко использовал для расчета предковых компонентов исключительно научные выборки, а таблицы эталонов для оракула строил на основании данных участников своего проекта. Таким образом, ключ к решению проблемы — разделение выборок,
использованных для выделения компонентов, и выборок, использованных для построения таблицы эталонов.

В чем же причина «эффекта калькулятора»? Изучая таблицы эталонов разных калькуляторов и сравнивая их с данными реальных людей, я пришел к выводу, что различия между исходными выборками («эталонами») показываются более резкими, чем они есть между представляемыми популяциями на самом деле.
Содержание главного компонента в эталонах завышается, а содержание второстепенных, особенно близких к главному — занижается. Это естественно, если вспомнить, что сами различия выводятся на основании этих выборок. Приведу в пример один из лучших калькуляторов: MDLP World-22. Содержание основных европейских компонентов North-East European и Atlantic-Mediterranean Neolithic в эталонах и у реальных русских (в среднем):

Русские центра эталон 70,4 16
Русские центра реальные 63 19
Северные русские эталон 63,5 11,8
Северные русские реальные 60 15
Украинцы эталон 64,2 19,7

Реальные русские не могут достичь показателей своего эталона и показываются более удаленными украинцами. В смешанном режиме оракул может показать их, к примеру, на 2/3 русскими и на 1/3 немцами — у немцев North-East European ниже, а Atlantic-Mediteranean выше.
Аналогично, например, у финнов специфически финский компонент North-European mesolithic по таблице эталонов должен достигать 24-37 (в зависимости от местности), обычно же у финнов он в районе 16-18.

В некоторых случаях «эффект калькулятора» способен принести и пользу. У людей смешанного происхождения одна из сторон может выделиться благодаря ему более четко. Конечно, противоположная сторона тогда уедет подальше для компенсации отклонения.

Мной был проведен эксперимент с бета-версией нового 27-компонентного калькулятора Вадима Веренича, который идеологически заменяет его предыдущий этно-калькулятор World-22. Были собраны данные по восточноевропейцам, не участвовавшим в исходном расчете — в общей сложности использованы результаты 68 человек. В основном это были русские из разных регионов, также собраны результаты эрзя, чувашей, балтов, беларусов, ашкенази, бойко, поляка, финнов, норвежцев, турок.
Закономерности полностью подтвердились. Протестированные со схожим происхождением оказались близки друг к другу по содержанию основных компонентов. Популяции уверенно выделяются и каждый попадает в нужный кластер. Некоторое исключение составляют сложно-смешанные случаи — там результат искажается либо неравномерной передачей генов, либо играют роль какие-то другие эффекты. Несколько хуже других группируются также жители Юга России — очевидно, из-за того, что регион был заселен сравнительно недавно и переселенцы происходили из разных местностей.

Таким образом, «эффект калькулятора» хорошо поддается устранению и в будущем, как я надеюсь, исчезнет из оракулов.

Несмотря на то, что данная заметка написана в стиле позитивной и хорошо продуманной критике,  к сожалению автор допустил ряд неточностей, cвязанных с несколько неточным представлением о принципах работы инструментов Диенека Понтикоса (в первую очередь геномного калькулятора и так называемых оракулов.

В целях более полного освещения проблемы, необходимо изложить предысторию вопроса.  Известный геномный блоггер Давид Polako Веселовский в свой записи на блоге Eurogenes (май 2012 года) указывает на то обстоятельство, что  при использовании геномных калькуляторов и оракулов на основе инструментов Диенека Понтикоса, многие люди получают искаженные результаты, несмотря на то, что все делается по инструкции. Например, пользователи из Великобритании часто оказываются в этих калькуляторах гораздо ближе к выходцам из континентальной Европы, чем  этого следовало бы ожидать. Некоторые из них на самом деле полагали, что эта странная картина обусловлена  тем, что они генетически гораздо более похожи на «норманнов» или англосаксов, нежели средний британец. Polako полагает, что истинная причина кроется в том, что он называл «эффектом калькулятора». Эффект калькулятора  состоит в том, когда результаты  людей, которые входят в состав выборки использованной в анализе Admixture при определении частот аллелей калькулятора значительно отличаются от аналогичных результатов людей, которые не были включены в первоначальную выборку, несмотря на то, что обе группы пользователей имеют одинаковое происхождение, и следовательно в обеих случаях можно ожидать идентичные результаты.

В своей ответной статье-апологии «On the so called «Calculator Effect»» (август 2012 года), автор программы — Диенек Понтикос — приводит сокрушительную аргументацию против негативных и поверхностных замечаний Polako. Во-первых, он убедительно показывает, что хотя эффект отклонения результатов сторонних людей от эталонных результатов и имеет место быть, однако он не имеет никакого отношения к алгоритмам калькулятора и оракула. Поэтому, в корне неверно полагать, что расхождение результатов между описанными выше группами является артефактом алгоритма программа. Из этого вытекает очевидное заключение о неверном описании проблемы как следствия работы программы.  Следовательно, сам термин эффект калькулятора неправилен.

Далее Диенек, c присущей ему убедительной и взвешенной аргументацией, показывает что эта проблема или аномалия была описана им задолго до Polako, в заметке «Further caution on admixture estimates: at the edges of variation», датированной октябрем 2011 года (!).

В ходе анализа причин сильного расхождения результатов выборки армян из статьи Юнусбаева и др. (2011) и результатов армян-участников-проекта и армян из выборки в статье Дорона Бехара (2011),  Понтикос использует наглядную геометрическую визуализацию вариации в виде клинов.

Диенек приходит к очевидным заключениям.

При определении относительного  (в отношению к другим индивидам, в том числе и индивидам из референсных выборок) положения индивида на клиньях (clines)  необходимо помнить, что положение  индивида наиболее точно определяется в тех случаях когда края клина надежно «закреплены». На практике это означает,  что при анализе населения определенного региона необходимо использовать как можно больше групп популяций и отдельных лиц по всему периметру изучаемого региона. Далее, позиция  индивида наиболее точно определяется в тех случаях, когда «клин» длинный, т.е небольшие отклонения из-за дрейфа или неполноты выборки по краям  пренебрежимо малы в сравнении с длиной «клина». Наконец,  компоненты маркирующие значительные меж- и внутриконтинентальные расстояния на (например, европейские компоненты по отношению компонентов из  восточной Азии) оцениваются более точно, чем те,  которые маркируют короткие расстояния (например, южноевропейский и западно-азиатские компоненты). От себя могу добавить к выводам Диенека одно важное наблюдение:  точность результатов Admixture (и основанных на этих результатах входных данных соответствующих калькуляторов и оракулов) сильно зависит от двух факторов — степени (Fst)  дивергенции компонентов и числа снипов, использованных при анализе.  Авторы Admixture отмечают, что для компонентов со значительной степенью относительной дивергенции достаточно 10 000 снипов для выявления генетической структуры выборки, для компонентов с относительно низкой дивергенцией (то есть с короткой дистанцией или, в терминах Диенека, коротким «клином») необходимое число снипов должно быть значительно выше (минимум 100 000 снипов). Значительное влияние на величину оказывает и присутствие в изучаемых выборках так называемых редких вариантов, то есть одиночных нуклеотидных вариантов, с частотой распространения менее 1 процента (смотри статью Estimating and interpreting FST: The impact of rare variants).

 

Решение проблемы.

Как справедливо отмечает Понтикоса, у этой проблемы нет простого решения. Для коротких клинов (например, между популяциями в Европе), которые не надежно закреплены ( так как каждая популяция представлена несколькими людьми из отдаленных групп), можно ожидать относительно большие систематические ошибки. Понтикос считает, что самое доступное в ближайшее время решение — это увеличение числа и качества выборок. Другого обходного пути не существует. Хотя общие детали генетического ландшафта (например,  основные континентальные группы-компоненты генетического разнообразия) уже сейчас легко вывести, но детали всегда можно будет улучшить.

Решение, предложенное Сергеем Козловым, является подтверждением наблюдений Понтикоса, в частности о том,  что при анализе населения определенного региона необходимо использовать как можно больше групп популяций и отдельных лиц по всему периметру изучаемого региона.