Анализ древней ДНК – проблемы, их преодоление и результаты

На портале Генофонд.ру размещен реферат важной статьи, подводящей промежуточные итоги изучения древней ДНК. Я позволю себе удовольствие процитировать себе некоторые места этого замечательного обзора, написанного ув. Надеждой Марковой

Термин «древняя ДНК» возник в научной литературе в 1980-х годах в связи с появлением новой области исследований, которая получила название «молекулярная палеонтология». С развитием сначала методов ДНК-амплификации (полимеразной цепной реакции), а потом методов секвенирования нового поколения эта область получила мощный толчок к развитию и сегодня стала основным средством реконструкции эволюции живых организмов, и в том числе реконструкции истории человека.

Революция в эволюционной генетике

Исследование древней ДНК совершило революцию в эволюционной генетике, так как появилась возможность напрямую исследовать прошлое, законсервированное в «капсуле времени» ДНК, пишут авторы статьи. Работы последних десятилетий показали, что древняя ДНК может сохраняться в костях, зубах, мумифицированных и замороженных тканях, и может быть извлечена из этих древних образцов. Впервые древняя ДНК была извлечена в 1984 г. (Higuchi et al.) из высохшей мышцы вымершего родственника зебры. Но ее анализ целиком зависел от развития технологий, поэтому стал возможен с появлением ДНК-амплификации (метод полимеразно-цепной реакции – ПЦР), и вышел на новый уровень с появлением методов секвенирования нового поколения. На рисунке авторы представили основные вехи в истории изучения древней ДНК.

О методологии исследования палео-ДНК

Методы палеогенетики оказались незаменимы, чтобы разобраться в  ключевых этапах человеческой цивилизации. Например, понять, как именно происходила смена обществ охотников-собирателей на первых земледельцев, как распространялось по Европе сельское хозяйство – имела ли место передача технологий от одних популяций другим или же происходила смена самих популяций («циркуляция идей или людей»). Анализ древней ДНК показал, что между периодами 8 и 5 тысяч лет назад Европа не была генетически однородной: первые земледельцы с Ближнего Востока мигрировали в Западную Европу и  смешивались там с местными охотниками-собирателями. В Восточную Европу около  6-5 тыс. лет назад туда пришли группы людей из Анатолии, которые смешавшись с охотниками-собирателями, дали начало популяциям скотоводов, наиболее успешная из которых известна по ямной культуре.  Полагают, что именно миграции ямников из понто-каспийских степей на запад и на восток около 4,5 тыс. лет назад можно связать с распространением технологий и, возможно, языков индоевропейской семьи.

Древняя ДНК может помочь и в изучении развития признаков, характерных только для Homosapiens, таких как речь, подчеркивают авторы статьи. Изучение генетических вариаций, связанных с языком, дает информацию о том, когда мог возникнуть сложный  язык, присущий человеку. Так, было показано, что определенный вариант гена FOXP2 (именно его в первую очередь связывают с развитием речи)  имелся уже у неандертальцев. Вероятно, считают специалисты, этот вариант возник у общих предков неандертальцев и современного человека.

Древняя ДНК помогает в изучении адаптации человека к разным условиям среды. При анализе древних геномов в них были выявлены сигналы отбора, связанных с изменением диеты, чувствительностью к ультрафиолету  и пр. Так, становится ясно, как распространялись по Европе такие черты, как светлая кожа и толерантность  к лактозе (способность переваривать молоко во взрослом возрасте).

Трудности в изучении палео-ДНК и их преодоление

Одна из основных проблем, с которыми сталкиваются исследователи древней ДНК, это ее деградация, которая неизбежно происходит со временем.  Обычно ДНК из древних образцов сильно фрагментирована, загрязнена микробной ДНК и химически модифицирована. Причем степень деградации  в больше степени зависит от условий, в которых находился древних образец (температура, влажность), чем от его возраста. Последние исследования показали, что теоретический предел возраста образца, из которого можно извлечь ДНК, составляет 1-1,5 млн лет. Авторы описывают методы, которыми можно преодолеть трудности, связанные с особенностями древней ДНК.

Фрагментация ДНК может быть частично преодолена с помощью современных протоколов, позволяющих извлекать и анализировать очень короткие фрагменты, длиной 50-70 нуклеотидов. К тому же, методы секвенирования нового поколения ориентированы на анализ коротких фрагментов, длина которых составляет 50-100 нуклеотидов.

Большую проблему составляет контаминация древней ДНК современной ДНК. Преодолеть ее нужно путем строгого соблюдения протоколов, учитывающих правила сбора образов, обработки рабочих помещений, применение методов ДНК-аутентификации, независимой перепроверки результатов и пр. Развиваются также методы механической и химической деконтаминации – авторы их описывают.

Еще одна важная проблема – посмертное изменение ДНК из-за гидролиза и окисления, вызывающее деаминацию нуклеотидов, которая ведет к ложным результатам ПЦР. Авторы описывают несколько молекулярно-генетических и биоинформатичесих подходов для преодоления этой проблемы, с ними можно ознакомиться в тексте статьи.

Инструменты анализа

С увеличением числа образцов древней ДНК ученые получают возможность исследовать древнюю генетическую изменчивость на популяционном уровне и сравнивать ее с современной. Различные методы (PCA, STRUCTURE, ADMIXTURE, SPAMIX, SPA, ADMIXTOOLS, GPS, LAMP, HAPMIX,  reAdmix, MUTLIMIX, mSpectrum, SABER и др.), которые были разработаны для анализа современных популяций, применяются и к древним популяциям. В комбинации с антропологическими данными и историческими  сведениями они позволяют реконструировать пути миграций, определять состав предков той или иной популяции, выяснять географическое  происхождение гаплотипов.

Эпигенетика и палео-ДНК

Фенотипическое проявление генотипической изменчивости зависит не только от изменчивости тех или иных аллелей в геноме, но и от степени экспрессии генов, а она во многом определяется химическими модификациями, не затрагивающими последовательность нуклеотидов в ДНК, то есть эпигенетическими. Это метилирование ДНК, модификация белков-гистонов, спектр некодирующей РНК. Последние исследования показали, что некоторые эпигенетические модификации сохраняются и postmortem. Так, удалось картировать метилирование генома неандертальцев и денисовцев. Выяснилось, что некоторые гены были более метилированы у древних людей, чем у современных. Анализ метилирования позволяет также определить возраст индивида (как современного – что важно для криминалистики, так и древнего).

SNPweights: использование модели калькулятора K16 для анализа главных компонентов происхождения

Ранее я уже отрапортовал о создании двух новых моделей для стандартного этно-популяционного калькулятора, в разработке которых использовались геномы людей, cамостоятельно указавшими свое происхождение (self-reported ancestry).
К сожалению, очень часто субъективная оценка собственного происхождения (указываемого респондентами в опросниках) недостаточно надежна для статистических методов анализа происхождения, поскольку некоторые люди либо сообщают ложные сведения о своей родословной или же просто не знают о своем истинном происхождении. Что еще хуже, — во многих публичных популяционных выборках мы не находим никаких  сведений о точном этническом составе людей в выборке . Как многие из вас знают,  существует множество способов достаточно точной оценки происхождения индивида на основе данных SNP генотипирования.

Самый простой способ сводится к следующему: сначала исследователь объединяет генотипы из своего исследования с генотипами образцов в референсной панели (например: HapMap или 1000 геномов),  затем находит пересечение SNP-ов в каждом наборе данных, а затем запускает программу кластеризации, чтобы увидеть, каким образом образцы исследования группируются с популяциями референсных панелей.  В принципе,  сам процесс несложный, но требует немало времени

К счастью, в 2014 году лабораторией Alkes была предложена программа которая, по сути, значительно облегчает процесс, выполняя большую часть работу за вас. Программа называется SNPWEIGHTS и можно скачать здесь.  Говоря простым языком, программа принимает  в качестве входных данных генотипы SNP-ов, самостоятельно находит пересечение генотипов SNP с генотипами в эталонной выборке , рассчитывает веса SNP-ов на основе предварительно настроенных параметров, чтобы построить первую пару главных компонентов (иначе говоря,  cобственных векторов), а затем вычисляет процентное значение происхождения индивидуума из каждой предковой популяции (кластера).

Для того, чтобы запустить программу, необходимо убедится в том, что в вашей системе установлен Python, и что ваши данные генотипирования приведены в формате EIGENSTRAT. Краткую инструкции по преобразованию в формат EIGENSTRAT с помощью инструмента convertf можно почитать здесь.  Данные аутосомного генотипирования FTDNA или 23andme можно напрямую преобразовать в формат EIGENSTRAT с помощью утилиты aconv от Феликса Чандракумара (либо любого самописного софта).

Затем необходимо загрузить сам пакет SNPWEIGHTS и референтную панель с весами снипов.

  • Панель весов SNP для популяций Европы и Западной Африки можно скачать здесь.
  • SNP веса для населения Европы, Западной Африки и  Восточной Азии можно скачать здесь.
  • SNP веса для населения Европы, Западной Африки, Восточной Азии и популяций американских индейцев можно скачать здесь.
  • SNP веса для популяций северо-западной, юго-восточной части Европы, ашкеназских евреев и можно скачать здесь.

Затем необходимо создать файл параметров par.SNPWEIGHTS с названиями входных файлов EIGENSTRAT, референтной панели, и файл c результатами. Например:

input_geno: data.geno
input_snp: data.snp
input_ind: data.ind
input_pop: CO
output: ancestry.txt

И, наконец, нужно запустиь программу с помощью команды inferancestry.py —par par.SNPWEIGHTS. Для того чтобы программа работала, убедитесь, что inferancestry.info и  файл референтной панели  находятся в том же каталоге, что и файл inferancestry.py.

Полученные результаты можно использовать для разных целей. Например,  можно сгенерировать два информативные графика.

Первый график — обычный график PCA c двумя первыми компонентами (собственными векторами) и наложенный на график процентный расклад компонентов происхождения:

Второй треугольный график, на каждом отрезке которого , представлен процентный вклад одной из трех исконных групп популяции (например: Европы, Африки и Азии, в случае с нашими данными этот пример можно заменить на европейских охотников-собирателей, земледельцев неолита и степных скотоводов эпохи бронзы).

Вот простой код генерирования этих графиков в R. В программе R нет базовых пакетов для построения триангулярных графиков, поэтому  нужно будет сначала установить пакет plotrix. Ancestry.txt  — это файл полученный на выходе из SNPWEIGHTS:

# EV Plot with Percent Ancestry Overlay
data=read.table("ancestry.txt", as.is=T, header=F)
names(data)
plot(data$EV1, data$EV2, pch=20, col="gray", xlab="EV1", ylab="EV2")
text(data$EV1, data$EV2,labels=round(data$EUR,2)100, cex=0.4, offset=0.1, pos=3)
text(data$EV1, data$EV2,labels=round(data$AFR,2)
100, cex=0.4, offset=0.1, pos=2)
text(data$EV1, data$EV2,labels=round(data$ASN,2)*100, cex=0.4, offset=0.1, pos=1)
#Triangle Plot
data$total=data$EUR+data$AFR+data$ASN # Need to account
data$European=data$EUR/data$total # for slight rounding
data$African=data$AFR/data$total # in the ancestry
data$Asian=data$ASN/data$total # estimation file for
data_p=data[c("European","Asian","African")] # triax.plot to work
library(plotrix)
triax.plot(data_p, pch=20, cc.axes=T, show.grid=T)

 

Разумеется, размещенные на сайте разработчика референтные панели носят ограниченный характер. Поэтому я решил заполнить пробелы, преобразовав аллельные частоты SNP-ов в 16 предковых компонентах в 16 синтетических «чистых» предковых популяций, каждая из которых состояла из 200 синтетических индивидов («симулянтов») состоящих на 100 процентов из одного компонента происхождения в модели K16). Файл с генотипами 3200 «симулянтов» я использовал для вычисления весов снипов в каждом компоненте. Продвинутые пользователи, желающие протестировать модель K16 до ее публичного релизма, могут скачать полученный файл с весами снипов  здесь, а затем, cледуя приведенным выше инструкциям, использовать его в качестве референтной панели (а затем сравнить свои результаты с усредненными результатами разных этнических популяций).

Я протестировал веса снипов в модели K16 (выражаю признательность автору программу Чену за помощь), и обнаружил, что между данными калькулятора и данными SNPWEIGHTS расхождения носят незначительный характер, хотя похоже, что SNPWEIGHTS не так сглаживает минорные компоненты происхождения (что позволяет легче выделить в пространстве главных компонент кластеры):

test (1)

Две новые модели для калькулятора DIYDodecad

Закончил на 99% подготовку 2 моделей этно-популяционных калькуляторов ДНК — заточенную под deep ancestry (анализ современных геномов с использование древних геномов) K11 и модель для анализа популяционного происхождения современных популяций K16.

 

В число 16 «предполагаемых предковых» популяций в K16 входят следующие выделенные группы:

Австрало-веддоидная
Палеолитические охотники-собиратели Кавказа
Американские аборигены
Охотники-собиратели скандинавского мезолита
Австронезийцы
Ближневосточные неолитические земледельцы
Сибирские аборигены
Ближне-восточные популяции
Североафриканские популяции
Популяции западной Африки
Северные популяции Индостана
Юго-восточноазиатские популяции
Восточные охотники-собиратели
Неолитическое население Европы
Восточно-африканские популяции
Западноевропейские охотники-собиратели

 

Таблица FST между компонентами K11 (FST — Индекс фиксации Райта Fst, отражающий меру дифференциации популяций)

Кластеризация компонентов модели K11 по степени дифференциации

Таблица FST между компонентами K16

Кластеризация компонентов модели K16 по степени дифференциации

 

На следующем PCA графике отображены 2 группы компонентов — предковые компоненты K16 (полученные в программе ADMIXTURE в ходе анализа современных популяций) и предковые компоненты K11 (они вычислены в той же программе, но на другой выборке аутентичных палеогеномов). Поскольку у пользователей подобных калькуляторов часто возникает вопрос о соотношении компонентов разных моделей калькуляторов, я решил разместить их на одном графике. Методология довольно проста. Сначала я сгенерировал в программе PLINK 220 «синтетических» геномов (20 индивидов в 11 группах). В основу положен предложенный Понтикосом метод популяционных «zombies», в котором используется частоты аллелей снипов, полученных в программе ADMIXTURE. Каждая из 11 групп состоит из 20 «индивидов», геном которых на 100% состоит из одного компонента.
То же самое я сделал с компонентами K16. Затем в целях изучения соотношения компонентов этих двух разных моделей, я пропустил «геномы синтетических индивидов» K16 через калькулятор K11. В итоге выяснилось, что только несколько компонентов K16 полностью совпадают с компонентами K11 (например, Amerindian и African). Остальные компоненты K16 разложились на комбинации компонентов K11. Этот простой эксперимент еще раз подтвердил очевидный факт: предковые компоненты ADMIXTURE, выявленные в ходе анализа современных популяций только в редких случаях соответствуют настоящим предковым компонентам. Большинство подобных компонентов возникают в результате сложного процесса фиксации аллельных частот, например в тех случаях, когда непосредственно после смешивания предковых групп разного происхождения происходит процесс генетического дрейфа. Закон Харди—Вайнберга утверждает, что в теоретической идеальной популяции распределение генов будет оставаться постоянным из поколения в поколение. Так, в популяции растений количество «внуков» с генами высокорослости будет ровно таким же, сколько было родителей с этим геном. Но в реальных популяциях дело обстоит иначе. Из-за случайных событий частота распределения генов из поколения в поколение несколько варьирует — это явление называется дрейфом генов. Рассмотрим крупную размножающуюся популяцию со строго определенным распределением аллелей. Представим, что по той или иной причине часть этой популяции отделяется и начинает формировать собственное сообщество. Распределение генов в субпопуляции может быть нехарактерным для более широкой группы, но с этого момента и впредь в субпопуляции будет наблюдаться именно такое, нехарактерное для нее распределение. Это явление называется эффектом основателя.Дрейф генов сходного типа можно наблюдать и на примере явления с запоминающимся названием эффект бутылочного горлышка. Если по какой-либо причине численность популяции резко уменьшится — под воздействием сил, не связанных с естественным отбором (например, в случае необычной засухи или непродолжительного увеличения численности хищников), быстро появившихся и затем исчезнувших, — то результатом будет случайное устранение большого числа индивидуумов. Как и в случае эффекта основателя, к тому времени, когда популяция вновь будет переживать расцвет, в ней будут гены, характерные для случайно выживших индивидуумов, а вовсе не для исходной популяции.

PCA correlation between K11 and K16 components Вот эта таблица с усредненными значениями «симулянтов» компонентов K16 в калькуляторе K11 (колонки — компоненты K16, столбцы — компоненты K11, их пересечения — проекция компонентов K16 в компоненты K11).

Для облегчения понимания сказанного, приведу немного теории. Начну с основ.

Определение базовых терминов

ADMIXTURE (буквально: примесь) – это компьютерная программа (анализ), позволяющая выявлять смешанность состава некоего набора индивидов на основе данных о генотипах и тем самым строить предположения о происхождении популяции.

Принцип работы ADMIXTURE.

Рассмотрим принцип работы ADMIXTURE на примере образцов и популяций из проекта HapMap.

Всего у нас N = 324 образца/индивида, каждый из которых относится к одной из четырех нижеперечисленных популяций:

АФРИКА (ASW) – Африканские предки из Юго-Западной части США
ЮТА (CEU) – жители штата Юта США с корнями из Северной и Западной Европы
МЕКСИКА (MEX) – Мексиканцы, Лонг-Айленд США
ЙОРУБА (URI) – Йоруба, Нигерия
Для удобства дальнейшего изложения будем называть эти популяции «известными».

Также мы предполагаем, что они произошли от К разных предковых популяций (мы не знаем от каких именно). В дальнейшем будем называть эти предковые популяцие «предполагаемыми предковыми». Этих «предполагаемых предковых» популяций на самом деле не существует, у них нет общепризнанных названий и характеристик. И на этом этапе мы даже не знаем какие образцы к какой из этих К популяций могут быть отнесены. Теоретически возможно, что образцы из одной и той же «известной» популяции могут принадлежать к двум разным «предполагаемым предковым» популяциям.

Пример 1.

Предположим, что К = 3.

ADMIXTURE далее работает с образцами (их генотипами) и заданным нами числом К = 3. Имея сведения о генотипах и предположение о количестве «предполагаемых предковых» популяций (К) ADMIXTURE строит свою модель (предположение) того, каков вклад каждой из «предполагаемых предковых» популяций в каждый индивид. В результате мы имеем для каждого индивида 3 цифры: количественный вклад каждой из трех популяций (или образно говоря, на сколько процентов данный индивид состоит из первой «предполагаемой предковой» популяции, на сколько – из второй и на сколько – из третьей). При этом может быть и такая ситуация, что у конкретного индивида в составе отсутствует какая-то из «предполагаемых предковых» популяций, даже возможно, что он принадлежит только к одной из «предполагаемых предковых» поуляций. Предположим, для индивида №1 эти цифры такие: 0.3, 0.5 и 0.2. Что эти цифры означают? Означают они доли каждой из «предполагаемых предковых» популяций (ППП) в индивиде №1, т.е. индивид состоит на 30% из первой ППП, на 50% — из второй и 20% — из третьей. Чем больше вклад каждой ППП в индивида, тем больше индивид является «носителем» данной популяции и ее представителем.
Так называемый этно-популяционный калькулятор ДНК представляет собой инструмент, позволяющий использовать заранее определенные (вычисленные) компоненты этнического происхождения K для определения той комбинация исходных предковых компонентов дает наилучшее соответствие (аппроксимирует) происхождение носителя тестируемой ДНК.

При создании калькулятора ДНК в основу берется определенная модель (например, задается исходное число компонентов или состав референсной выборки), что неизбежно приводит к определенным уступкам в плане точности и проявлению слабых сторон модели. Например, часто люди критикуют подобные модели калькуляторов за излишнюю европоцентричность и недостаточную представленность геномов из других мест, или же используемые для определения компонентов происхождения выборки данных по отдельным популяциям слишком малы для определения сложной субструктуры генофонда референсной популяции. Наконец, более грамотные люди указывают на отсутствие необходимо инструментария (например, формальной статистики) для проверки статистической значимости определенных компонентов в отдельных моделях калькулятора.
Движок обеих калькуляторов — все та же программа DIYDodecad, После того, как ппрограммма ДНКа калькулятора выдаст первичные результаты — процентное распределение компонентов этно-популяционного происхождения в изучаемом геноме, можно будет перейти к вторичному анализу. Суть его проста — зная процентную комбинацию компонентов происхождения в своем геноме, довольно просто смоделировать свой геном в виде смеси нескольких референсных популяций.

Поэтому, в отличие от предыдущих релизов, K11 и K16 будут включать в себя дополнительный контент:

1) классический Oracle, позволяющий смоделировать анализируемый «геном» (точнее, набор из 100-200 тысяч информативный снипов) в виде комбинации двух референсных популяций, а также установить группу генетически ближайших референсных популяций к геному изучаемого индивида. Однако этот инструмент не может быть использован в случае сложного смешанного происхождения (например, когда изучаемый индивид происходит из более чем двух разных этнических популяций). Иногда программа выдает довольно глупые комбинации, cущественным образом понижая достоверность результатов. Впрочем основное преимущество Oracle и состоит в том, что программа предлагает вместо окончательного «простого» решения список альтернативных вариантов.

Пример: в качестве примера я буду использовать собственные данные.
Исходя из полученных в модели K16 значений компонентов, мой условный наиболее близок к восточнославянским популяциям
«Ukrainian-Center» «2.5884»
«Pole» «3.0962»
«Sorb» «3.1733»
«Polish_West» «3.5992»
«Russian-North-West» «3.7265»
«Russian_Smolensk» «3.834»
«Polish» «4.0348»
«Belarusian_EastBelarus» «4.0852»
«Belarusian_WestBelarus» «4.1216»
«DonKuban_cossack» «4.7769»

В комбинированном варианте двух смешанных популяций распределение предковых компонентов происхождения может быть аппроксимировано следующими комбинациями:

«65.8% Belarusian_EastBelarus + 34.2% Norwegian» «1.1023»
«66.4% Belarusian_EastBelarus + 33.6% Icelandic» «1.1118»
«80.9% Latvian + 19.1% Spanish_Baleares_IBS» «1.1154»
«30% French + 70% Lithuanian» «1.1206»
«29% French + 71% Latvian» «1.1215»
«55% French_West + 45% Lithuanian_Zemajitia» «1.1302»
«28.9% French_East + 71.1% Latvian» «1.1402»
«29% French_Northwest + 71% Latvian» «1.1563»
«72.3% Belarusian_EastBelarus + 27.7% Orcadian» «1.1766»
«57.2% European_Utah + 42.8% Lithuanian_Zemajitia» «1.1825»

Основная часть генома — условно славяно-балтийская (что ожидаемо), но с существенным сдвигом в сторону Скандинавии и западной Европы(примерно 20-30%). Скорее всего, это наследие готов, или контактов балтийских племен с викингами. Интересно, что модель K11 (c использованием современных референсных популяций) дает примерно такой же расклад — разве что древний скандинавско-германский пласт выражен чуть резче чем в модели K16

«Belarusian_West» «2.3841»
«Belarusian» «2.4187»
«Pole_Poland» «2.5278»
«Belarusian_East» «3.7288»
«Russian_Central» «3.7635»
«Swede» «3.9724»
«Russian_cossack» «4.1139»
«Ukrainian» «4.2647»
«Russian_Southern» «4.5204»
«Ukrainian_East» «4.8635»
«66.6% Icelandic + 33.4% Latvian» «1.586»
«41.1% Latvian + 58.9% Orcadian» «1.5898»
«47.9% Lithuanian + 52.1% Orcadian» «1.6007»
«60.2% Icelandic + 39.8% Lithuanian» «1.6082»
«5.7% Basque_Spanish + 94.3% Belarusian» «1.6386»
«5.8% Basque_French + 94.2% Belarusian» «1.6406»
«67.2% Belarusian + 32.8% Swede» «1.659»
«40.2% Lithuanian + 59.8% Norwegian» «1.6876»
«33.7% Latvian + 66.3% Norwegian» «1.689»
«94.1% Belarusian + 5.9% Spanish_Pais_Vasco_IBS» «1.7359

В палеокалькуляторе K11 (т.е. с древними геномами) картинка кажется более убедительной

«Unetice_EBA» «2.7065»
«Bell_Beaker_Czech» «5.0633»
«British_AngloSaxon» «5.1998»
«Nordic_LN» «5.6157»
«Corded_Ware_Proto_Unetice_Poland» «6.3751»
«Nordic_MN_B» «6.3865»
«Halberstadt_LBA» «6.4422»
«BenzigerodeHeimburg_LN» «7.4695»
«Nordic_IA» «7.5404»
«Corded_Ware_Estonia» «7.7635»

Из всех палеогеномов наиболее близок к моему геном представителя унетицкой культуры. Происхождение унетицкой культуры до сих пор не выяснено. Между позднейшими энеолитическими культурами и унетицкой культурой существует типологический и хронологический разрыв. Наибольшее признание в результате последних исследований получило предположение, согласно которому в ее возникновении главную роль сыграли культура колоколовидных кубков и надиревская культура, распространенная в Венгрии (см. ниже). У культуры колоколовидных кубков и унетицкой имеется сходство в керамике, в погребальном обряде и в орудиях труда. Небольшую роль могла сыграть культура шнуровой керамики, хотя в целом они очень различаются. Закономерно, что следующими — хотя и с большим отрывом — близкими к моему геному группами палеогеномов являются геномы древних англосаксов (которые близки к древним скандинавам) и представителей чешского ареала культуры колоковидных кубков).
Аналогично, в режиме смешенных популяций хорошо заметны две тенденции. Во-первых, мой геном может быть представлен в виде комбинации палеогенома представителя позднебронзового века (Хальберштадт) и палеогеномов восточных охотников-собирателей эпохи энеолита, во-вторых как смесь 23.4% генома представителей балтийской позднебронзовой эпохи и все того же позднебронзового палеогенома из Хальберштадта

«86.4% Halberstadt_LBA + 13.6% Karelia_HG» «2.139»
«74.1% Bell_Beaker + 25.9% LesCloseaux13_Mesolithic» «2.1574» «35.9% Hungary_BA + 64.1% Poltavka_MBA_outlier» «2.319»
«65.7% Halberstadt_LBA + 34.3% Poltavka_MBA_outlier» «2.4387»
«83.2% Alberstedt_LN + 16.8% Karelia_HG» «2.443»
«23.4% Baltic_LBA + 76.6% Halberstadt_LBA» «2.4846»
«16.7% Europe_MN + 83.3% Poltavka_MBA_outlier» «2.4897»
«83.4% Halberstadt_LBA + 16.6% Samara_Eneolithic» «2.536»
«12.9% Halberstadt_LBA + 87.1% Unetice_EBA» «2.5603»
«16.1% Bell_Beaker_Czech + 83.9% Unetice_EBA» «2.5747»

2) файлы модели K11 и K16 для более сложной программы 4Admix (разработанной Александром Бурнашевом). Вторым инструментом вторичного анализа является 4Mix. Он работает по методу brute-force, шаг за шагом перебирая все возможные комбинации, а по окончанию цикла программа возвращает результат с наименьшим евклидовым расстоянием (по выбору можно использовать гауссово сглаживание, снижающее случайный статистический шум результатов). Как и в классическом Oracle, комбинация cмешиваемых этнических групп не может содержать более 4 популяций, хотя в отличие от классического Oracle, программа может моделировать комбинации из 3 и 4 этнических групп.

Пример. Приведу пример этих 3- и 4-членных аппроксимаций. В принципе, все то же самое, c той лишь разницей что теперь программа выделяет в комбинациях балтийскую и славянскую составляющую. Интересно, что скандинавская составляющая никуда не исчезла, оставаясь в пределах 20-25%
Using 3 populations approximation:
1 50% Belarusian_EastBelarus +25% English_Kent_GBR +25% Latvian @ 0.973956
2 50% Belarusian_EastBelarus +25% English_Kent_GBR +25% Lithuanian @ 0.988467
3 50% Latvian +25% French +25% Balt @ 1.036492
4 50% Lithuanian_Zemajitia +25% French +25% Irish_Connacht @ 1.05259
5 50% Lithuanian +25% Sorb +25% French_West @ 1.059638
6 50% Belarusian +25% Icelandic +25% French_West @ 1.06158
7 50% Lithuanian_Zemajitia +25% French +25% Irish_Cork_Kerry @ 1.074796
8 50% Lithuanian_Aukstajtia +25% French_East +25% Irish_Connacht @ 1.076771
9 50% Lithuanian_Zemajitia +25% French +25% Irish_Ireland @ 1.078576
10 50% Belarusian +25% Norwegian +25% French_West @ 1.079741
11 50% European_Utah +25% Lithuanian_Zemajitia +25% Balt @ 1.084317
12 50% Dane +25% Belarusian_EastBelarus +25% Lithuanian_Aukstajtia @ 1.090086
13 50% Lithuanian_Zemajitia +25% French +25% Scottish_Highlands @ 1.093951
14 50% Lithuanian +25% North_European +25% Sorb @ 1.103744
15 50% Lithuanian_Aukstajtia +25% English_GBR +25% French_Northwest @ 1.105369
16 50% Lithuanian_Zemajitia +25% French +25% Scottish_Grampian @ 1.106616
17 50% Lithuanian_Aukstajtia +25% French_Northwest +25% Irish_Connacht @ 1.106771
18 50% Lithuanian_Aukstajtia +25% French_Northwest +25% Scottish_Dumfries_Galloway @ 1.108261
19 50% Lithuanian +25% French_West +25% Polish_West @ 1.113695
20 50% Latvian +25% North_European +25% Sorb @ 1.115164
31501779 iterations.
Using 4 populations approximation:
1Belarusian_EastBelarus+Lithuanian_Zemajitia+Swede+French_West @ 0.947002
2Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Sorb @ 0.971605
3Belarusian_EastBelarus+Belarusian_EastBelarus+English_Kent_GBR+Latvian @ 0.973956
4Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Polish_East @ 0.986863
5Belarusian_EastBelarus+Belarusian_EastBelarus+English_Kent_GBR+Lithuanian @ 0.988467
6 French+Lithuanian_Zemajitia+Swede+Balt @ 0.98916
7Belarusian_EastBelarus+English_Kent_GBR+Lithuanian_Aukstajtia+Polish @ 0.996302
8 Belarusian+Lithuanian_Aukstajtia+Shetlandic+French_West @ 1.010485
9 Belarusian+Lithuanian_Zemajitia+Irish_Ulster+French_West @ 1.01227
10 Belarusian+Lithuanian_Zemajitia+French_West+Irish_Ulster @ 1.012977
11 Belarusian_EastBelarus+Lithuanian_Aukstajtia+Swede+Welsh @ 1.013043
12Belarusian_EastBelarus+European_Utah+Lithuanian_Aukstajtia+Swede @ 1.013805
13Belarusian_EastBelarus+Lithuanian_Aukstajtia+Swede+French_West @ 1.018296
14German_NorthGermany+Lithuanian_Aukstajtia+Balt+French_West @ 1.026503
15 Lithuanian_Aukstajtia+Sorb+Ukrainian-Center+French_West @ 1.027473
16 Belarusian+Lithuanian_Zemajitia+French_West+Irish_Connacht @ 1.031967
17Belarusian+Lithuanian_Zemajitia+French_West+Irish_Cork_Kerry @ 1.035716
18 French+Latvian+Latvian+Balt @ 1.036492
и т.д.
То же самое, но в модели K11
Using 3 populations approximation:
1 50% Poltavka_MBA_outlier +25% Halberstadt_LBA +25% Hungary_BA @ 2.031302
2 50% Poltavka_MBA_outlier +25% Bell_Beaker_Czech +25% Hungary_BA @ 2.072453
3 50% British_AngloSaxon +25% Halberstadt_LBA +25% Poltavka_MBA_outlier @ 2.125791
4 50% Bell_Beaker +25% Bell_Beaker +25% LesCloseaux13_Mesolithic @ 2.209118
5 50% Halberstadt_LBA +25% British_AngloSaxon +25% Poltavka_MBA_outlier @ 2.244371
6 50% Halberstadt_LBA +25% Hungary_BA +25% Samara_HG @ 2.270667
7 50% Halberstadt_LBA +25% Poltavka_MBA_outlier +25% Unetice_EBA @ 2.291406
8 50% Poltavka_MBA_outlier +25% British_AngloSaxon +25% Hungary_BA @ 2.30791
9 50% Bell_Beaker_Czech +25% Hungary_BA +25% Samara_HG @ 2.356281
10 50% Halberstadt_LBA +25% Nordic_BA +25% Poltavka_MBA_outlier @ 2.358744
11 50% Bell_Beaker +25% Hungary_BA +25% Karelia_HG @ 2.369978
12 50% Bell_Beaker_Czech +25% Nordic_BA +25% Poltavka_MBA_outlier @ 2.385823
13 50% Halberstadt_LBA +25% Corded_Ware_Germany +25% Nordic_BA @ 2.490915
14 50% Poltavka_MBA_outlier +25% Hungary_BA +25% Unetice_EBA @ 2.503754
15 50% British_AngloSaxon +25% Bell_Beaker_Czech +25% Poltavka_MBA_outlier @ 2.53217
16 50% Halberstadt_LBA +25% Baltic_LBA +25% Halberstadt_LBA @ 2.540751
17 50% Hungary_BA +25% Poltavka_MBA_outlier +25% Samara_HG @ 2.551414
18 50% Poltavka_MBA_outlier +25% Alberstedt_LN +25% Hungary_BA @ 2.561557
19 50% British_AngloSaxon +25% Poltavka_MBA_outlier +25% Unetice_EBA @ 2.575398
20 50% Bell_Beaker_Czech +25% British_AngloSaxon +25% Poltavka_MBA_outlier @ 2.575919
1127348 iterations.
Using 4 populations approximation:
1 Halberstadt_LBA+Hungary_BA+Poltavka_MBA_outlier+Poltavka_MBA_outlier @ 2.031302
2 Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier+Unetice_EBA @ 2.03713
3 Bell_Beaker_Czech+Hungary_BA+Poltavka_MBA_outlier+Poltavka_MBA_outlier @ 2.072453
4 British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier+Unetice_EBA @ 2.088049
5 British_AngloSaxon+British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.125791
6 British_AngloSaxon+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.131526
7 Bell_Beaker_Czech+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.14648
8 Bell_Beaker+Bell_Beaker+Bell_Beaker+LesCloseaux13_Mesolithic @ 2.209118
9 Bell_Beaker_Czech+Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier @ 2.209365
10 Bell_Beaker_Germany+British_AngloSaxon+Hungary_BA+Samara_HG @ 2.212982
11 Bell_Beaker_Czech+Bell_Beaker_Germany+Hungary_BA+Samara_HG @ 2.232922
12 British_AngloSaxon+Halberstadt_LBA+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.244371
13 British_AngloSaxon+Halberstadt_LBA+Nordic_BA+Poltavka_MBA_outlier @ 2.254756
14 Alberstedt_LN+British_AngloSaxon+Hungary_BA+Samara_HG @ 2.255589
15 Bell_Beaker_Czech+British_AngloSaxon+Halberstadt_LBA+Poltavka_MBA_outlier @ 2.256027
16 Halberstadt_LBA+Halberstadt_LBA+Hungary_BA+Samara_HG @ 2.270667

3) новым инструментом в релизе будет R программа nMonte, разработанная голландцем Гером Гизбертом. В отличие от двух предыдущих инструментов (ограниченных в числе используемых для моделирования этнических групп), nMonte позволяет использовать для моделирования (аппроксимации) генмоа все референсные грппы. Программа использует алгоритм эволюционного моделирования по методу Монте-Карло.
После пошагового добавления новой популяции программа определяет уменьшается ли евклидово расстояние; если да, то шаг сохраняется, в противном случае шаг отклоняется. Алгоритм завершает свою работу после выполнения примерно миллиона шагов. Как и два предыдущих инструмента программа стремится к минимализации евклидова расстония; но похоже за счет использования метода Монте-Карло, алгоритм гораздо более эффективен. И, также, как и в других инструментах, в nMonte «наилучшая комбинация» определяется как комбинация с наименьшим расстоянием. Недостаток же nMonte состоит в том, что она выдает только наилучшее подходящее решение, в то время как Oracle представляет альтернативные варианты.
Пример. Посмотрим, сколько потенциальных предковых популяций выдаст nMonte при аппроксимации моего генома.
При первом запуске программа выдала комбинацию (в cкобках процентный вклад референсной популяции) следующих 65 популяций. Также как и в других инструментах, тон задают балтийские популяции, а также белорусы, сорбы и поляки.

Lithuanian_Zemajitia 10.1
Latvian 7.85
Lithuanian_Aukstajtia 7.85
Belarusian_SouthBelarus 6.55
Lithuanian 6.5
Pole 5.45
Belarusian_WestBelarus 4.8
Balt 4.35
Sorb 3.35
Belarusian 3.05
Belgian 3
Norwegian 2.95
Czech 2.75
Dane 2.5
Slovak 2.4
Icelandic 1.9
Swede 1.9
French_SouthFrance 1.5
Slovenian 1.5
Basque_Spanish 1.3
Frisian 1.15
German_NorthGermany 1.1
Sardinian 1.1
Polish_East 1.05
Ukrainian_WestUkraina 1
Polish 0.95
Basque_French 0.9
Orcadian 0.7
Spanish_Pais_Vasco_IBS 0.7
Hungarian 0.65
Irish_Connacht 0.65
DonKuban_cossack 0.6
Dutch 0.6
Ukrainian_EastUkraina 0.6
Scottish_Argyll_Bute_GBR 0.55
European_Utah 0.5
English_GBR 0.45
Croatian 0.4
Russian-Pskov 0.4
French_South 0.4
Welsh 0.35
Irish_Ulster 0.35
Scottish_Fife 0.3
German_SouthGermany 0.25
Scottish_Dumfries_Galloway 0.25
Belarusian_CentralBelarus 0.2
Datog 0.2
English_Cornwall_GBR 0.2
North_European 0.2
Ukrainian 0.2
Russian_Orjol 0.15
Afar 0.1
Belarusian_EastBelarus 0.1
English_Kent_GBR 0.1
Irish 0.1
Kambera 0.1
Russian_Smolensk 0.1
Vindija 0.1
Belarusian-East 0.1
Spanish_Canarias_IBS 0.1
Spanish_Cantabria_IBS 0.1
Spanish_Cataluna_IBS 0.1
Peruvian 0.05
Russian_Voronezh 0.05

В K11 показаны следующие палеогеномы (или их группы). По-прежнему, основа генома 40% моделируется как геном представителя культуры колоколовидных кубков.

«Bell_Beaker» 40.3
«Halberstadt_LBA» 31.6
«Samara_HG» 8.5
«Tyrolean_Iceman_EN» 2.05
«Esperstedt_MN» 1.95
«Swedish_Mesolithic» 1.95
«BerryAuBac_Mesolithic» 1.85
«Swedish_Motala_Mesolithic» 1.7
«Bichon_Azillian» 1.6
«Continenza_Paleolithic» 1.5
«Hungary_BA» 1.5
«LaBrana_Mesolithic» 1.35
«Bell_Beaker_Germany» 1.05
«Hungary_HG» 0.85

4) следующим новым инструментом будет 4mix, более упрощенный вариант 4Admix. Он разработан тем же Г. Гизбертом. Основное отличие от 4Admix — если 4Admix перебирает все возможные комбинации из 4 популяций, то в 4mix можно эксплицитно задавать отдельные комбинации и определять евклидову дистанции между этой комбинацией и аппроксимируемым геномом в пространстве моделей
5) карты компонентов с аннотацией. Аннотации компонентов будут чуть позже, а вот карты уже готовы

Карты распространения некоторых компонентов K16 и K11  в ряде географических ареалов

6) я включил в релиз модифицированный скрип GPS лаборатории Элхайка для определения географического ареала происхождения предков человека, чей геном является предметом изучения. Я включил пару строчек кода для проецирования вычисленных географических координат на географическую карту.
Пример. Ниже показаны две карты, на которые спроецированы географические координаты вычисленной алгоритмом GPS (GPS DNA tool ) точки «этнического происхождения».
Я проверил работоспособность алгоритма на обеих моделях.
В модели K16 (современные популяции) GPS-координаты точки моего «происхождения» 49.7648663288835 32.4345922625112 (примерно 49 градусов северной широты и 32 градуса восточной долготы), т.е где-то на левом берегу Днепра в Украине. Как утверждают разработчики программы, она позволяет определить место происхождения с радиусом погрешности в 500 км. Я вычислил расстояние от полученной точки до настоящего места жительства предков (южная часть Брестской области) и получилось 470 км. Т.е точка попадает в радиус, хотя и с некоторым трудом.

Rplot

Что касается модели K11 (древние геномы), то в этой модели мой «Urheimat» локализуется — весьма ожидаемо — на землях древней унетицкой и лужицких культур (51.1254133094371 13.2336209988448)

Rplot

 

 

Вторая фаза нового проекта

Две недели назад я сообщил об окончании первой фазы своего нового проекта (на первом этапе работы удалось собрать надежную выборку из более чем 5000 образцов более чем 250 различных этно-популяционных групп людей по всему миру.

Как я уже рапортовал ранее, самой сложной из запланированных на втором этапе задач являлась импутирование (импутация) отсутствующих генотипов.  Читатели моего блога помнят, что две предыдущие экспериментальные попытки импутирования больших выборок     — в 2013  и в 2015  — закончились неудачно (или, если говорить точнее, качество импутированных генотипов не оправдало моих завышенных ожиданий). В предыдущих опытах я задействовал мощную комбинацию программ ShapeIT и IMPUTE и  метод импутирования снипов за счет использования большой референсной панели аутосомных гаплотипов (из 1000 genomes),  гарантирующей более аккуратное определение генотипов.

На этот раз, я решил не повторять ошибок, и обратился к использованию других программ — в частности , к  Minimac3, хорошо зарекомендовавшую себя в работе с геномами 1000G.  К моему счастью, я набрел на недавно появившиеся публичные сервера, работающие с «облачным» сервисом импутирования Cloudgene. геномов.
Серверы импутирования геномов позволяют использовать полную референсную панель гаплотипов для точного определения недостающих генотипов в анализируемых данных. Пользователи подобных серверов могут загружать (предварительно фазированные или несфазированные) данные генотипов на сервер. Процедура импутирования  будет осуществляться на удаленном сервере, и по окончанию этого процесса рассчитанные данные доступны пользователю для скачивания. Наряду с импутированием, подобные сервисы позволяют провести процедуру контроля качества (QC) и фазировки данных в качестве предварительного этапа процесса импутирования генотипов.

Прототипы серверов импутирования уже доступны в институте Сангера и Мичиганского университета. В дополнение к вышеназванным серверам, можно упомянуть прототип сервера поэтапной полномасштабной  фазировки генотипов анализируемых образцов (прототип создан биоинформатиками Оксфордского университета). На мой взгляд, самое простое и доступное решение задачи импутирования на удаленном сервере было разработано сотрудниками   Мичиганского университета. Дополнительное преимущество этому решению дает грамотная документация по использованию сервиса.

Основная рабочая лошадка сервиса — это комбинация двух или трех программ — две програмы для фазирования диплоидных генотипов в гаплоидную фазу  ShapeIT и Hapi-UR , а в качестве основного ПО для самого процесса импутирования (определения) недостающих генотипов — вышеупомянутую программу Minimac3.

Описание эксперимента с импутированием генотипов на удаленном сервере

В самом начале,  я разбил свою выборку на пять когорт (т.к. референсные панели на сервере также разбиты на «этнографические группы»):

  1. европейцы (европейцы + кавказцы) — 1715 образцов -87169 снипа
  2. азиаты (+американские аборигены и аборигены островов Тихого Океана) — 2356 образцов — 87044 снипа
  3. африканцы — 1054 образца — 86754 снипов
  4. палеогеномы древних жителей Евразии, Африки и Америки -340 — 594500 снипов
  5. смешанные группы — преимущественно мозабиты, пуэрто-риканцы и др.
QC-Report
На рисунке показана корреляция между частотами аллелей в изучаемоей выборке (здесь: европейская когорта) и частотами аллелей в референсной панели

К моему вящему неудовльствию,  некоторые образцы в сводной выборке не прошли контроль качества — в первую очередь это касается образцов европейцев из базы данных POPRES, а также выборок статьи  Xing et al. (2010). Скорее всего, их нужно будет импутировать отдельно.

Несмотря на значительную скорость обработки генотипов на удаленном сервере, к настоящему времени эксперимент еще не доведен до конца.  Пока я планирую ограничиться импутированием генотипов в 3 первых когортах (т.к. импутирование палеогеномов с помощью современных референсных панелей гаплотипов вероятнее всего приведет к искажению истинного разнообразия палеогеномов за счет проекции на современные группы населения, хотя авторы статьи Gamba et al. 2014 в сопроводительном материале к своей статье утверждают обратное).

После окончания фазирования и последующей обработки генотипов европейской когорты в программе Plink (были отсеяны все варианты с вероятностью ниже 0.9) ,  я получил выборку из 1715 европейцев с 25 215 169 снипами против изначальных 87169, т.е число снипов в выборке увеличилось в 290 раз!
В азиатской когорте соотношение импутированных генотипов к исходным составило чуть меньшую величину 19 048 308 / 87044 = 219.

Проверка результатов

Разумеется, все полученные результаты нуждались в дополнительной проверке качества генотипирования.
Cначала я объединил импутированную европейскую когорту с когортой палеогеномов (которая не была импутирована) и рассчитал в программе PLINK 1.9 матрицу IBS (т.е. сходства образцов в выборке между собой, эта метрика отдаленно напоминает Global Similarity в клиентских отчетах 23andme), а затем усреднил данные по популяциям и произвел по усредненным значениям иерархическую кластеризацию по признакам сходства (IBS, identity by state). Результат превзошел все мои пессимистические ожидания

 

 

Как становится очевидно из приведенной выше кластерограммы,  в целом взаимное расположение популяций в кластерах соответствует (в общих чертах) взаимному географическому положению. Присутствуют, правда, и некоторые огрехи. Так, например, венгры очутились в одном кластере с русскими из Курска,  норвежцы — с русскими из Смоленска, а усредненные «русские» — с американцами европейского происхождения из штата Юта и французами. Трудно сказать, в чем здесь причина, тем более что матрица была составлена по значениям IBS (идентичности по состоянию), а не IBD (идентичности по происхождению).  Более подробные данные о попарных значениях IBS между популяциями выборки можно посмотреть в этой таблице

Импутированная азиатская когорта (несмотря на расширение географии за счет включения образцов коренного населения Америки и аборигенов бассейна Тихого океана)  тоже  оказалась на удивление надежной. Я пока не буду останавливаться на подробностях изучения этой когорты, вместо этого я размещаю здесь результаты MDS- мультдименсионального шкалирования образцов выборки, образованной в ходе слияния 2 импутированных когорт (европейской и азиатской) с 1 неимпутированной (палеогеномы). Цветовое обозначение точек соответствует определенным кластерам, выявленных в выборке с помощью алгоритма MCLUST (cледуя рекомендациям Диенека Понтикоса). Всего этих кластеров 15 и они обозначены последовательностью чисел от 1 до 15, и каждый из этих кластеров имеет свою четкую географическую привязку:

  • 1 — кластер популяций ближнего Востока и  Анатолии
  • 2 — кластер популяций северного Кавказа
  • 3 — «индоевропейский» кластер древних популяций Синташта, шнуровой культуры, Ямной культуры и т.д.
  •  4 — кластер аборигенных жителей Америки (эскимосов и индейцев)
  • 5 — суперкластер популяций средиземноморского и восточноевропейского региона
  • 6 — сибирский кластер алтайских и самодийских популяций
  • 7 — кластер популяций западной и северной Европы
  • 8 — кластер палеосибирских популяций (таких как чукчи, ительмены и коряки)
  • 9 — кластер аборигенных (австронезийских и тай-кадайских) популяций юго-восточной Азии (даи, атаяла и ами)
  • 10 — кластер неолитических популяций
  • 11 — еще один ближневосточно-средиземноморский кластер (ашкеназим, сардинцы и так далее)
  • 12 — кластер североиндийских популяций
  • 13 — кластер центральноазиатских популяций
  • 14 — поволжские популяции
  • 15 — разные групп индусов

 

Обновление проекта: окончание первой фазы

После нескольких лет практически полного пассивного бездействия в области изучения генетической вариативности популяций населения Восточной Европы, я решил продолжить свои скромные изыскания в этом вопросе. Примерно год ушел на пересборку и соединение различных выборок популяций (выборки разных исследований содержат разное количество частично перекрывающихся снипов, и это обстоятельство существенно влияет на качество и значимость получаемыых в анализе таких выборок результатов). К сожалению, разница в частотах минорных снипов в выборках одних и тех же этнических групп, но генотипированных на разных платформах Illumina и Affy,  приводит к существенному снижению качества импутирования недостающих маркеров. Это очень плохо, так как во многих из разработанных методик анализа генетического разнообразия,  надежность результатов напрямую зависит от полноты генотипирования, т.е. в идеале во всех популяциях должны быть равномерно представлены все снипы, т.е маркеры из полного объединенного набора.  Вопреки моим ожиданиям, у этой проблемы не существует тривиального решения, поэтому я решил отложить задачу импутации отсутствующих генотипов в образцах выборки на дальнейшее (чуть позже я поделюсь своими соображениями о том, как сделать результат импутирования более точным).

Ровно год назад я сообщил о том, что в основу (базу) новой выборки будут положены полный публичный кураторский набор контрольных популяционных групп лаборатории Райха, что и было выполнено частично, хотя запланированную процедуру импутирования так и не удалось завершить в силу огромной компьютерной ресурсозатратности задачи.

Все же, с учетом тяжелых уроков всех предыдущих ошибок (в том числе и при работе с палеогеномами человека), мне все же удалось собрать набор из примерно 6500 сэмплов из более чем 250 этно-популяционных групп со всего земного шара. На этом можно считать первую фазу законченной.

В качестве предварительной иллюстрации надежности результатов можно привести график PCA (анализа главных компонентов генетической вариативности в западноевразийских популяциях из описанной выше сводной выборки, после применения соответствующих фильтров контроля качества снипов).

West-Eurasia (modern and ancient samples)

Как мне кажется, получился неплохой график PC (анализа главных компонент) древних и современных групп народонаселения, причем  хорошо видно на какие современные группы накладываются палеогеномы.
Но теперь другая проблема — я не могу сохранить этот график в формате PDF (видимо, разработчики Plotly отключили эту опцию в бесплатной версии). Можно выгрузить графику в файл png, но в отличие от векторного формата pdf, png — формат растровый, и улучшить качество графики уже не получится.

Поэтому я сделал альтернативные варианты (без использования пакета Plotly) графика с изображением положения популяций в пространстве двух главных компонентов генетического разнообразия Евразии.

После несколько лет практически полного отсутствия активности в области изучения генетической вариативности популяций населения Восточной Европы, я решил продолжить свои скромные изыскания в этом вопросе. Примерно год ушел на пересборку и соединение различных выборок популяций (выборки разных исследований содержат разное количество частично перекрывающихся снипов, и это обстоятельство существенно влияет на статистическое качество). К сожалению, разница в частотах минорных снипов в выборках одних и тех же этнических групп, но генотипированных на разных платформах Illumina и Affy,  приводит к существенному снижению импутирования недостающих маркеров. Это очень плохо, так как во многих из предложенных методик анализа генетического разнообразия,  надежность результатов напрямую зависит от полноты генотипирования, т.е. в идеале во всех популяциях должны быть равномерно представлены все снипы, т.е маркеры из полного объединенного набора.  Вопреки моим ожиданиям, у этой проблемы не существует тривиального решения, поэтому я решил отложить задачу импутации отсутствующих генотипов в образцах выборки на дальнейшее (чуть позже я поделюсь своими соображениями о том, как сделать результат импутирования более точным).

Ровно год назад я сообщил о том, что в основу (базу) новой выборки будут положены полный публичный кураторский набор контрольных популяционных групп лаборатории Райха, что и было выполнено частично, хотя запланированную процедуру импутирования так и не удалось завершить в силу огромной компьютерной ресурсозатратности задачи.

Все же, с учетом тяжелых уроков всех предыдущих ошибок (в том числе и при работе с палеогеномами человека), мне все же удалось собрать набор из примерно 6500 сэмплов из более чем 250 этно-популяционных групп со всего земного шара. На этом можно считать первую фазу законченной.

В качестве предварительной иллюстрации надежности результатов можно привести график PCA (анализа главных компонентов генетической вариативности в западноевразийских популяциях из описанной выше сводной выборки, после применения соответствующих фильтров контроля качества снипов).

West-Eurasia (modern and ancient samples)

Как мне кажется, получился неплохой график PC (анализа главных компонент) древних и современных групп народонаселения, причем  хорошо видно на какие современные группы накладываются палеогеномы.
Но теперь другая проблема — я не могу сохранить этот график в формате PDF (видимо, разработчики Plotly отключили эту опцию в бесплатной версии). Можно выгрузить графику в файл png, но в отличие от векторного формата pdf, png — формат растровый, и улучшить качество графики уже не получится.

Поэтому я сделал альтернативные варианты (без использования пакета Plotly) графика с изображением положения популяций в пространстве двух главных компонентов генетического разнообразия Евразии.

Книга Животовского о Лысенко

Полистал я скандальную книгу Льва Животовского о Тромфиме Лысенко, вызвавшую бурную негативную реакцию в русскоязычных научных и околонаучных кругах. Честно говоря, в книге уделяется большое внимание вопросам научного вклада Лысенко в далекие от меня (и поэтому не столь интересные области знания) — ботанику, агрономию, cелекционирование и сельское хозяйство. Я не являюсь специалистом не в одной из перечисленных областей, поэтому вряд ли могу смогу озвучить критические замечания в адрес лысенковских представлений о «яровизации» и «фотопериодизме». Достаточно того, что с крайне резкой и порой даже жесткой критикой освещения этих вопросов в книге Животовского выступил целый ряд профессиональных специалистов в области ботанки и молекулярной генетики растений.
Как всем известно, Животовский довольно известен в популяционной генетике своими статьями о микросателлитной изменчивости. Именно он разработал (или точнее развил) аппарат датировки возраста гаплогрупп и расчитал скорости мутации для STR-гаплотипов, и эти скорости долгое время — вплоть до недавнего времени — использовались в качестве стандартных скоростей (молекулярных часов) в статьях ведущих специалистов в области Y-хромосомной изменчивости. По этой причине, Лев Животовский (в качестве «идеального» популяционного генетика) был — и остается — любимым объектом пасквильных сочинений и наветов псевдоученого Клесова. Сами же генетики более сдержаны в оценках уровня познаний Животовского в области классической генетике, признавая при этом значимость разработанного Животовским математико-статистического аппарата для решения определенных задач популяционной генетики. Поэтому для многих книга о Лысенко оказалась неожиданным сюрпризом. Известный российский биоинформатик Гельфанд заявил: «Он не сказал прямой лжи, не сказал и правды – это была полуправда, то есть наихудшая ложь» (Леонид Соловьев «Очарованный принц», второй роман про Ходжу Насреддина). «Книжка Л.А. – пример этой полуправды. … Лев Анатольевич искажает правду, путем применения риторических приемов, в частности, черри-пикинга. Цитаты, которые Л.А. использовал в лекции, очень хорошо выведены из контекста». Другие участники недавней презентации книги были столь же категоричны в своих суждениях.

Было бы ошибочно считать, что книга Животовского о Лысенко это биография. Скорее, она написана в стиле апологии. Автор ставил перед собой задачу реабилитации Лысенко по всем фронтам — как ученого-теоретика, так и ученого-практика. Однако лично меня он не убедил — возможно потому, что я изначально был враждебно настроен к фигуре Лысенко, который для меня является архетипическим образцом псевдоученого. Любопытно, что Лев Анатольевич в своей книге очень поверхностно (несмотря на то что этому вопросу посвящен целый раздел книги — целых 5 страниц! )) ) затрагивает важный аспект деятельности Лысенко как идеолога (а на мой взгляд в его деятельности политико-идеологический аспект является самым главным). Хорошо известно, что «мичуринец» Лысенко (наряду с «биологом» Презентом, а также «марксистскими языковедами» Марром и Мещериновым) входил в число тех, кто был обласкан (по-крайней мере, некоторое время) сталинской властью, и имел значительный административный ресурс в виде репрессивно-карательного аппарата для расправы с инакомыслящими. К сожалению, Лев Анатольевич предпочел осторожно обойти вопрос о влиянии идеологии на научную деятельность Лысенко.

Что касается меня, то меня прежде всего интересовал вопрос о том, можно ли считать Лысенко одним из предтеч триумфа эпигенетики, который мы наблюдаем в наше время. В случае положительного ответа на этот вопрос, можно было бы задаться вопросом — насколько глубоко он понимал и предвидел важность эпигенетики?
Сейчас некоторые деятели заявляют о гениальности Лысенко, открывшего механизмы эпигенетического наследования. При этом лысенковщина объявляется новейшим этапом развития ламаркизма — т.н. неоламаркизма. Якобы Лысенко открыл то, что «запрещалось» генетической теорией 1930–40-х, а именно: прямое влияние среды на проявление гена и наследование этих измене-
ний.

К сожалению, в книге отсутствует какой-либо ответ на эти вопросы. Да, слово «эпигенетика» упоминается в книге примерно десяток раз. В одном месте академик ссылается на работу американских генетиков 1993 года, в которой особенности метода «яровизации» объясняется метилированием генов растений. Затем Лев Животовскиий ссылается на статью 2006 года: «Эпигенетика доказывает, что мы в определенной степени ответственны за целостность нашего генома. Раньше мы думали, что только гены предопределяют то, кем мы станем. Сейчас же мы понимаем: всё, что мы делаем — все, что едим или курим, — может изменить проявление наших генов и генов следующих поколений». К сожалению, Животовский не приводит при этом ссылок на статьи Лысенко, сравнение с которыми позволило бы сделать вывод о том, насколько Лысенко был в действительности близок к подобным представлениям. На стр. 63, Животовский пишет о том, что Лысенко разделял взгляды Ламарка. Однако при этом, опять-таки, не приводиться ссылки на те фрагменты работ Лысенко, в которых Лысенко излагает свое понимание сути ламаркизма. Да, разумеется можно найти некоторые общие места в мичуринской агробиологии (лысенковщине), ламаркизме, эпигенетике. Однако многие догматы лысенковщине являются сугубо специфичными: например, cчиталось путём сознательного изменения условий жизни — «воспитания» — растений и животных человек может получать направленные изменения их наследуемых признаков. Этот идеологически важный момент (созвучный сталинистской идеи «воспитания советского человека») отсутствует в ламаркизме, также как и современных представлениях о эпигенетике.

Строго говоря, эпигенетика не сводится только к одному метилированию (существуют другие модификации прионов, гистонов, а также например, геномный импринтинг). Эпигенетическое влияние работает посредством временного приглушения определённых генов, но не их модифицирования. Углеводородные соединения, приводимые в действие группой метилов, могут подавлять проявление генов. Гистоны сужают и ослабляют ДНК, изменяя их доступность. Бесполезные фенотипы или физические характеристики могут быть временно подавлены, но не так, как предполагал Лысенко. Эпигенетические метки обновляются в следующем поколении, хотя как показывают последние статьи о влиянии голода на экспрессию генов у потомства, иногда эти метки могут переходить и к более отдаленному потомству. К сожалению, массовые исследования эпигенетических факторов начались сравнительно недавно, а возраст выборок у людей (плохих модельных организмов) ограничен 2-3, максимум 4 поколениями. Я думаю, что дальнейшее развитие научного знания в этой области покажет, что внешнее сходство лысенковщины и эпигенетики носит случайный характер.

Скрытые возможности клиентских данных 23andme в плане молекулярной диагностики.

Компания 23andme не нуждается в особом представлении читателям этого блога. Вплоть до конца прошлого года компанию занимало существенный сегмент рынка персональной геномики, ориентированного на предоставление  клиентам информации о генетических медицинских рисках (genetic risks) и генетической генеалогии (genetic origin). Информация о медико-генетических рисках содержалась в ряде сервисов портала компании, а также в доступном для скачивания отчета о генетических рисках и, разумеется, в первичных данных генетического отчета, в котором содержались значимые с точки зреемя медико-генетического диагностирования генетические полиморфизмы (SNP).

Всвязи с известными событиями и последующим за ними предписанием USA Food and Drug Administration (FDA) компании 23andme о запрете выпуска на рынок услуг персонального геномического диагностирования своего «медицинского девайза» (т.е интерпретации медико-генетических рисков развития заболеваний), компании пришлось сузить свою сферу деятельности до оказания генетико-генеалогических услуг.

Несмотря на это досадное обстоятельство, сказавшееся нелучшим образом на динамике увеличения клиентской базы компании,  нужно помнить, что все клиенты сохранили доступ к своим первичным данным тестирования (т.е списку снипов с генотипами). И при вдумчивом, творческом подходе любой человек может не только «вытащить» из этих «cырых данных» важную с точки зрения медицины информацию, но и заменить спомощью полученной информацией результаты более традиционных тестов.

Каковы могут быть варианты использования данных 23andmе не в привычных генеалогических целях, а скажем для получения сведений, который могут впоследствии пригодится для молекулярного диагностирования?

Я приведу пару примеров такого использования.

Определение HLA-фенотипа.

На мембране клеток организма присутствуют продукты генов всех локусов, размещенных на обеих нитях 6-й хромосомы.

 

bsl-hla1

 

Это означает, что HLA-гены наследуются по кодоминантному типу, т. е. одну хромосому ребенок наследует от матери, а другую – от отца. Как уже упоминалось, совокупность генов, расположенных на одной хромосоме, составляет гаплотип. Таким образом, у человека два гаплотипа и каждая клетка организма несет на себе диплоидный набор антигенов системы HLA, один из которых кодируется HLA-генами матери, а другой – отца. Исключение составляют половые клетки (яйцеклетка и сперматозоид), каждая из которых содержит в своем ядре только по одному гаплотипу.

Антигены гистосовместимости, выявляемые на клетках конкретного человека, составляют HLA-фенотип. Для его определения необходимо произвести фенотипирование клеток индивида. Как правило, “типируются” лимфоциты периферической крови. До настоящего времени в большинстве лабораторий HLA-A. В, С и DR-антигены определяют при помощи серологических методов, в частности, лимфоцитотоксического теста. тот тест основан на способности анти-НLА-антител в присутствии комплемента разрушать лимфоциты, несущие соответствующие антигенные детерминанты. Гибель клеток демонстрируется при помощи добавления трипанового синего. При этом мертвые поврежденные клетки окрашиваются, и под микроскопом учитывается их количество.

Эти тесты часто требуются в ходе стандартных медицинских процедур обследования во время начала беременности, или для изучения этологии аутоимунных заболеваний. Еще более важно определение гистосовеместимости в транплантологии, где типирование HLA-фенотипа  донора является обязательным условием.

Однако, с приходом новых микроматричных технологий опеределния нуклеотидов ДНК и биоинформатических методов рутинной обработки последовательности человеческих геномов , появился дешевая и относительно простая альтернатива классическим серологическим тестам (которые стоят в интервале от 100 до 500 долларов).

Я не буду останавливаться на принципиальном описании процедур, с помощью которых на основании данных 23andme можно с помощью метода «импутирования» определить HLA-фенотип, так как в прошлом году я уже разместил в этом блоге пошаговую инструкцию для выполнения этой задачи.

Впрочем, уже после того, как  я отписался на эту тему здесь,  в департаменте биостатистики Университета Вашингтона был разработан алгоритм HIBAG который принципиально мало чем отличается от алгоритма HLA*IMP (в обеих алгоритмах используется training model, позволяющая определять фенотип HLA по снипам 23andme).  Входные данные программного решения этого алгоритма (язык R) представляют собой формат Plink. А так как в последней версии Plink была включена нативная поддержка формата 23andme, то преобразовать данные 23andme в бинарный формат Plink не сооставит особого труда. Что касается обработки данных в HIBAG, то примерный порядок выполнения команд выглядит следующим образом:

# Load the published parameter estimates from European ancestry
model.list <- get(load(«European-HLA4.RData»))#########################################################################
# Import your PLINK BED file
#
yourgeno <- hlaBED2Geno(bed.fn=».bed», fam.fn=».fam», bim.fn=».bim»)
summary(yourgeno)

# HLA imputation at HLA-A
hla.id <- «A»
model <- hlaModelFromObj(model.list[[hla.id]])
summary(model)
# HLA allele frequencies
cbind(frequency = model$hla.freq)

# SNPs in the model
head(model$snp.id)
# «rs2523442» «rs9257863» «rs2107191» «rs4713226» «rs1362076» «rs7751705»
head(model$snp.position)
# 29525796 29533563 29542274 29542393 29549148 29549597

# best-guess genotypes and all posterior probabilities
pred.guess <- predict(model, yourgeno, type=»response+prob»)
summary(pred.guess)
pred.guess$value
pred.guess$postprob

 
 

Панель метилирования Яско

В последние 10 лет, крупные генетические исследования выявили сотни генных мутаций, которые возникают чаще у аутичных пациентов, чем в общей популяции. Тем не менее, каждый пациент имеет только одну или несколько из этих мутаций, что затрудняет разработку лекарств против болезни. В настоящее время, изучением генетических факторов аутизма занимается большое количество врачей-генетиков,  одним из них является доктор Эми Яско занимается исследованиями генных мутаций у аутистов. Как показали многочисленные молекулярно-генетические обследования и спектрометрия аминокислот, органических кислот и карнитинов, значительное количество аутистов страдает метаболическими нарушениями.  Есть виды аутизма, вызываемые именно этими генетическими нарушениями обмена вещест.

Доктор Эми Яско разработала тест на панель метиляции Яско — тест этот дорогой, стоит 500 долларов, в этой проверяют что-то около 30 генных полиморфизмов (снипов). Выбор снипов в этой панели мотивирован тем, что эти снипы связаны с  определенными генами на «молекулярно-биохимическом пути метиляции» (methyliation pathway),  т.е генами которые влияют на способность организма выполнять ряд ключевых биохимических функций. Наличие генетических дисбалансовт.е снипов в пути метиляции, будет ограничивать эффективность пути метиляции.

 

Yasko-Methylation-Pathway

 

К счастью клиентов 23andme, чипсет снипов этой компании включает в себя если не все, то большую часть снипов панели Яско.
Один из проектов, возникший всвязи с неудовлетворенной потребностью клиентов в более развернутой и детальной обработке данных 23andme
, Genetic Genie предлагает  условно-бесплатный сервис с помощью которого данные релевантных снипов можно привести к  традиционному виду таблицы с отчетом по панели Яско:

Gene & Variation rsID Alleles Result
COMT V158M rs4680 AA +/+
COMT H62H rs4633 TT +/+
COMT P199P rs769224 GG -/-
VDR Bsm rs1544410 CC -/-
VDR Taq rs731236 __ no call
MAO-A R297R rs6323 TT +/+
ACAT1-02 rs3741049 AG +/-
MTHFR C677T rs1801133 GG -/-
MTHFR 03 P39P rs2066470 AG +/-
MTHFR A1298C rs1801131 GG +/+
MTR A2756G rs1805087 AA -/-
MTRR A66G rs1801394 GG +/+
MTRR H595Y rs10380 CC -/-
MTRR K350A rs162036 AA -/-
MTRR R415T rs2287780 CC -/-
MTRR A664A rs1802059 AG +/-
BHMT-02 rs567754 CC -/-
BHMT-04 rs617219 AA -/-
BHMT-08 rs651852 __ no call
AHCY-01 rs819147 __ no call
AHCY-02 rs819134 __ no call
AHCY-19 rs819171 __ no call
CBS C699T rs234706 GG -/-
CBS A360A rs1801181 __ no call
CBS N212N rs2298758 __ no call
SHMT1 C1420T rs1979277 __ no call

Несмотря на то, что на выходе клиент получает  готовый частный отчет по тесту Яско, медико-биологическая интерпретация результатов не так уж и проста, и требует определенной интеллектуальной сноровки и общегенетической эрудиции в плане понимания того, какую функцию выполняет тот или иной ген. Строго говоря, при грамотной интерпретации этих результатов, можно самостоятельно составить себе диету из витаминов-пищевых добавок, которые позволяет компенсировать обусловленный генетическим дисбалансом дефицит тех или иных энзимов.Примерный образец интерпретации можно посмотреть здесь

 

 

Этногеномика беларусов — часть IV

Анализ структуры аутосомного генофонда популяции беларусов: результаты анализа этнического адмикса.

 

После проведения анализа этно-популяционного адмикса мы получили следущие результаты, обсуждению которых будет посвящена следущая часть нашего исследования. Результаты представляют собой разбивку аллельных частот на 22 кластера, каждый из которых представляет собой гипотетическую предковую популяцию. Поскольку в цели данного небольшого исследования не входит подробный анализ всех популяций, мы ограничимся сравнительном анализом структуры (компонентов) беларусов c географически близкими популяциями, а также с теми популяциями, которые могли входить в исторические контакты с предками современных беларусов:

admix

 

Рисунок 3. Результатыанализа ADMIXTUREK=22

У рассматриваемых здесь европейских популяций наиболее часто представлены следующие компоненты:

North-East-European,Atlantic_Mediterranean_Neolithic,North-European-Mesolithic, West-Asian, Samoedic, Near_East.

Разберем вкратце каждый из них. В ракурсе нашего исследования самым важным компонентом представляется – северо-восточно-европейский компонент North-East-European, он присутствует почти у всех европейцов, и в самой значительной степени — у балтов и славян: литовцы (81,9), латыши (79,5), беларусы (76,4), эстонцы (75,2), поляки (70,2), русские (67- 70,4), украинцы (62,1- 67,1), сорбы (65,9), карелы (60,2), вепсы (62,5), чехи (57,4), северные немцы (54,6), южные- 42,6, у британцев от 46 до 49, норвежцы- 48,1, шведы- (53,7).

Второй по значимости компонент — Atlantic_Mediterranean_Neolithic (юго-западно-европейский или просто западно-европейский неолитический компонент).[1]У восточноевропейцев он выражен в умеренной степени- чехи (27,8), поляки (18,4), украинцы ( от 17 до 21%), беларусы (13%), русские (от 11 у северных до 17,3 у южных), у коми (8,9 %), манси (8,8 %).

Третьй компонент – северо-европейский мезолитический компонент -North-European-Mesolithic[2]: cаамы (76,4 %), финны (от 30,1 до 37,3 %), вепсы (24,1), карелы (23,2), ижорцы (22, 7). Заметен этот компонент и у северных русских (10,5 %), норвежцев (9,8 %), шведов (7,8 %), эстонцев (7,1 %). У беларусов он практически отсутствует (1.1%).

Четвертый компонент – западно-азиатский (кавказский) West Asian[3]. На интересуемой нас территории этот компонент чаще встречается у казанских татар (9,9 %), южных немцев (8,4), украинцев (от 6,6 до 7,7 %), южных русских (6,2%). На западе высок процент у итальянцев (21,5 % у центральных итальянцев), французов (6,7 %), у беларусов (2.2%).

Пятый компонент — уральский Samoedic. Значительно присутствует у селькупов (68,1%), хантов (64,6), ненцы (37,1), манси (30,9 %-), удмурты (29,6), марийцы (27, 8), шорцы (22,0 %), башкиры (21,7%), чуваши и хакассы по 17,6 %, коми- 16,4 %, казанских татар (11,9 %). У западноевропейцев этот компонент практически не встречается, у русских (от 1,0% у центральных до 4,7 % у северных), у карел (1,6%), словаков (1,4%), западных украинцев (1,7 %), беларусы (0.5%).

Шестой компонент – ближневосточный Near_East[4]У южных немцев (3,5), украинцы (от 2,3 у восточных до 3,8 % у западных), чехи (3,0), беларусы (3,4), словаки (3,2), у русских от 1,0 до 1,5%, у литовцев- 1,4%, у поляков- 1,3 %.

[1]Больше всего у сардинцев (68,1 %), басков (59,2 %), иберийцев (48,8), корсиканцев (47,8), португальцев (46,6), северных итальянцев (44,3), французов (43,5 %). Данный компонент достаточно выражен у всех западноевропейцев- более 30 %

[1]Название связано с тем, что этот компонент достигает значительных частот в древней ДНК жителей мезолитической Иберии, неолитических жителей Швеции и современном ДНК жителей Фенноскандии

[1]Наибольший процент на Западном Кавказе- абхазы (64, 9%), имеретинцы (63,7), лазы (56,6), аварцы (56,8), лезгины (55,4).

[1]Евреи Йемена (60,9 %), Сауд. аравия (59,5), бедуины (56,7), евреи Эфиопии (52,5), египтяне (43,8).В Европе oтносительно много у итальянцев (центр- 17,4), португальцев (11,9).

 

Анализ разделяемых аутосомных сегментов между популяциями Северо-Восточной Европы.

С целью верификации результатов анализа главных компонентов генетического разнообразия я подготовил новую выборку популяций, которая включает в себя ряд референсных евразийских популяций и анализируемую группу участников моего проекта MDLP. В совокупности, выборка включала в себя 900 индивидов, каждый из которых был типирован по 350 000 снипам.В ходе нового экспериментального теста в ходе статистической обработки общих по генетическому происхождению сегментов хромосом в составе выборки было выделенно 15 групп кластеров генетически близких популяций Как нам представляется, ключевым моментом для понимания принципов этого анализа, а также результатов, является понятие эффективной популяции или эффективный размер (Ne) популяции, т.е размера той популяции которая участвовала в репродукции или обмене генами в некоем отдаленном временном промежутке. Собственно говоря, эффективная популяция – это даже не число уникальных предков, а математическая абстракция разброса гамет, размер которого оценивается исходя из разброса числа гамет относительного к гамет, передаваемых родителям репродуктивного возраста следующему поколению. Он отличается от репродуктивоного объема Nr в той мере, в какой существует неравный вклад лиц родительского поколения в генофонд следующего поколения. Это создает разброс значений числа гамет к, того родителя относительно числа гамет к, передаваемых родителям следующему поколению (Wright, 1931, Li Ch. Ch., 1955). Новая программа Chromopainter позволяет оценить этот размер, исходя из числа наблюдаемых рекомбинаторных гаплотипов и значений LD. Когда я производил оценку этого размера, то для каждой из 22 неполовых хромосом он получился разный, однако среднеарифметическое значение составило 22 000. Это близко к значениям Neрекомендованным к использованию профессионалами (например, авторами программы IMPUTE V2). Как видно из приведенных ниже результатов, даже 22 000 для совокупности эффективного размера элементарных популяций – это более, чем достаточно.

 

finest

Рисунок 4. Расположение популяций в пространстве 1 и 3 главных генетических компонентов

 

Изложим ниже некоторые закономерности размещения популяци

 

  1. Финны оказались ближе к русским и поволжским финно-угорам (эрзя и мокша)
  2. Все литовцы (участники проекта + референсы из вышеупомянутой статьи Бехара) и часть референсных белорусов образовали отдельный кластер, тесно примыкающий к кластеру белорусов, поляков, украинцев

  3. Следущим кластером является центрально-европейский кластер, представленный главным образом венграми, хорватами, а также частью немцев.

  4. Ниже находится балканский кластер (румыны, болгары и часть венгров).

  5. К этому кластеру примыкают турки и часть армян

  6. В центре плота находятся западноевропейцы из моего проекта (французы, немцы, бельгийцы и жители британских островов).

  7. Выше находятся два оркнейских кластера, в которых находится и часть скандинавских сэмплов.

  8. Еще левее находится кластер образованный референсными северо-итальянцами и тосканцами.

  9. Ниже находятся армяне и слево итало-иберийский кластер (часть итальянцев и испанцы).

  10. Левее этой группы популяций находится кластер ашкеназов.

  11. Наконец, самый крайний слева кластер представлен изолированной популяцией сардинцев.

  12. Ниже итало-иберийского и армянского кластеров расположен целый ряд кавказский кластеров. Это прежде всего адыгейцы и абхазцы, затем северные осетины.

  13. Вышеназванные кластеры частично перекрывают кластер ногайцев (что свидетельствует о наличии генетического обмена между северокавказскими популяциями и ногайцами)

  14. Кластер ногайцев плавно переходит в кластер узбеков, который в свою очередь примыкает к изолированному кластеру чувашей

  15. Наконец самым изолированным кластером является кластер французских басков (в нижнем левом углу плота).[5]

 

[1]Больше всего у сардинцев (68,1 %), басков (59,2 %), иберийцев (48,8), корсиканцев (47,8), португальцев (46,6), северных итальянцев (44,3), французов (43,5 %). Данный компонент достаточно выражен у всех западноевропейцев- более 30 %

[2]Название связано с тем, что этот компонент достигает значительных частот в древней ДНК жителей мезолитической Иберии, неолитических жителей Швеции и современном ДНК жителей Фенноскандии

[3]Наибольший процент на Западном Кавказе- абхазы (64, 9%), имеретинцы (63,7), лазы (56,6), аварцы (56,8), лезгины (55,4).

[4]Евреи Йемена (60,9 %), Сауд. аравия (59,5), бедуины (56,7), евреи Эфиопии (52,5), египтяне (43,8).В Европе oтносительно много у итальянцев (центр- 17,4), португальцев (11,9).

 

[5]Такое поведение на плоте объясняется только изолированным положением популяции и небольшим числом эффективной популяции.То есть все эти баски являются многократными родственниками между собой т.е., положение басков на графике есть следствие классического генного дрейфа, который можно наблюдать на карте.На самом деле положение басков на данном плоте не может ни подтвердить, ни опровергнуть гипотезу о континуитете баскской популяции , т.к PCA-координаты (eigenvalues и eigenvectors) вычислялись в Chromopainter исходя из количества sharedDNAchunks между популяциями-донорами и популяциями-рецепиентами.То есть баски изоляты в том смысле, что уровень обмена ДНК между ними и другими популяцими ничтожен.

Исходя из этого можно сделать вывод о том что баски эта экстремально-эндогенная популяция изолянтов, при этом генетическое разнообразие басков низко, т.к. размер эффективной популяции басков низок.

Дайджест новостей генетики и ДНК-генеалогии за январь-февраль 2014 года (часть 2)

**

Разработчики pyGenClean разместили полезный инструмент для предварительной подготовки выборки популяций для GWAS и этно-популяционного анализа. С помощью можно значительно автоматизировать относительно сложный процесс нахождения генетических outliers (т.е посторонних образцов выделающихся на фоне гомогенной однородной структуры популяции), а также провести многомерное шкалирования имеющихся популяций.

**

Я закончил проект по изучению структуры аутосомного генофонда грузинских этнографических групп. Ниже приведены выполненные в проекте публикую графики c результатами многомерного скалирования (MDS) и  анализа главных компонент (PCA) в изученной выборке. Еще я понял свою главную ошибку во время работы с предыдущими графиками — она состоит в том, что я раньше не сохранял в R framework данные и историю проделанных над ними операций. R очень гибкая среда для статистического анализа, но в силу большого разнообразия существующих пакетов для визуализации данных для выполнения одних и тех же команд часто возникает путаница с выбором подходящей техники визуализации. Поэтому лучше всего не начинать каждый раз с нуля, а сохранять workflow для последующих экспериментов. 1488015_10202873063857417_243934024_n 1526938_10202873450227076_1155088601_n

**

В русскоязычном секторе Интернета увеличивается число простых людей (и не совсем простых людей, вроде Татьяны Толстой), которые не боятся рассказывать открыто о своих генетических рисках, хотя в силу своего непонимания того что именно означает указанная в отчете risk odd (вероятность риска) , многие их выводы выглядят наивными.
Впрочем, ничего нет нового под Луной. Многие из моих сверхоптимистеских собеседников предполагали, что именно благодаря 23andme у рядового обывателя появилась возможность  наблюдения за своими генотипами (или геномами , под которым мы — summa summarum — понимаем здесь всю совокупность прочитанных генотипов), и даже за динамикой экспрессии свого экзома.
Тем не менее, даже я помню, как задолго до начала моего увлечения генетикой, примерно в 2002 году я видел передачу про исландскую компанию Decodeme по Discovery Channel. После длинного интервью с тогдашним ведущим сотрудником этой компании (К.Стефансон), в котором он рассказал о тотальном (почти 80%) генотипировании всей исландской нации, создатели фильма взяли краткие интервью у простых исландцев. Мне запомнился один исландец-докер, который — не отрываясь от процесса разгрузки траулера с рыбой, — с улыбкой на лице сказал: «Я могу выпивать по 10 чашек кофе в течении одного часа. Cогласно исследованиям ученных из DeCODE Genetics, в гене метаболизма кофеина у меня аллельный вариант, повышаюший скорость метаболизма кофеина».
Вывод — 23andme не были первыми, их заслуга в другом — в том что они вывели персональную геномику (в ее упрощенной форме) на новый, международно доступный уровень.

**
Компания Nanoporetech выпустила на рынок портативное устройство MinION, предназначенное для анализа молекул (в том числе и молекул ДНК), его можно применять для анализа структуры протеина и секвенрования ДНК. Устройство можно подключить к обычному компьютеру через USB-порт.
**

Уважаемый Pavel Bernshtam предложил реалистичную перспективу на стартапы. Кроме всего прочего, между строк замечаний Бернштама можно прочитать имплицитное неявное объяснение феномена значительной молодости самых известных стартаперов (им нечего терять и их руки-головы не связаны-загружены семейными обязанностями прокормки супруги и спиногрызов).
Я стою на перепутье выбора между развитием идеи этно-популяционного ДНК-калькулятора в форме стартапа, либо форме краудсорзинга, либо некоммерческая инструментализация разработки в криминалистике (в виде патента на методику нового вида криминалистической ДНК-экспертизы, которая со временем заменит надоевший всем фбр-овский CODIS):

«Хорошо, если просили про стартапы. Для стартапа нужно несколько вещей. Самое простое — идея. Идея сама по себе не стоит ничего. 0. Самая классная идея — НИЧЕГО. Идея начинает хоть что то стоить (тоже немного) если на ее основе написан бизнес план. Обоснованный бизнес план. Бизнес план, который может убедить. Сколько юзеров придет к вам на сайт в первые полгода? миллион? А почему? Докажите. А сколько зарегестрируется? Почему?
Следущее, что нужно — человек, который может принести инвестиции. Для этого нужно — представительность, бизнес план, знакомства и уйма всего иного. Нужно найти выход на инвесторов (без выхода тоже можно, но разговаривать с тобой будут иначе), нужно что бы тебя порекомендовали, нужно уметь рассказывать и убеждать. Далее — деньги. Скорее всего у Вас не получится сделать прототип, достаточный для получения инвестиции вечером на коленке, параллельно с основной работой. Вам надо будет уволиться и писать код.»

**
Как Вы помните, на Gedmatch.com были размещены разработанные мною этно-популяционные калькуляторы MDLP на платформе DIY Dodecad. Они позволяют довольно-точно определять этническое и популяционное происхождение исходя только из сравнительноого анализа частот полиморфизмов ДНК протестированного человека с частотами полиморфизмов ДНК в референсных популяциях. Несмотря на простоту использования (загрузил свое raw data, нажал на кнопку — получил результат), основные пользователи этого инструмента — американцы — имеют траблз с пониманием и интерпретацией результатов. Вот например, из свежего, присланного мне в январе. Ко мне уже обращаются как к доктору, который должен выдать свой авторитетный этнодиагноз:

» I had my test at 23and me and it has me as 100 European.
My mom says its a lie as my dad was an inuit from Alaska .My kit is ******
Could you please debunk inuit story»

Papa was a rolling stone (c)

«My results are for North-Amerind, (North American Indian) .. I suspect 4 generations back

Chr 1 1.7%
Chr 7 3.3%
Chr 18 2.5%

Is this a definite result for American Indian Heritage?»

На такие письма я вообще больше не отвечаю. Весьма странно что у столь многих американцев в последнее время появился фетиш происхождения от американских индейцев. Раньше это было не так заметно.

**

Повторное ресеквенирование «древнего» генома останков жителя мезолитической Иберии из La Brana 1 (того самого, которого исследовали в позапрошлом году на аутосомы и митохондриальный геном) показало, что этот человек имел очень необычную для Европы Y-хромосомную гаплогруппы — С6. Странности заметны на и уровне фенотипа: согласно анализу комплекса снипов, определяющих на уровне генотипа цвет кожи и глаз, он был темнокожим человеком с голубыми глазами (!).  У древнего европейца, жившего в пещере Ла-Бранья-Аринтеро (La Braña-Arintero, León) на севере Испании примерно 7 тысяч лет назад, были голубые глаза и очень смуглая кожа. Так художник представил себе то, как выглядел житель испанской пещеры 7 тысяч лет назад. (Ниже рисунок, опубликованный в Эль Паис.)

Палеогенетики успешно прочитали ДНК из костей древнего европейца, жившего в одной из пещер на севере Испании примерно 7 тысяч лет назад, и выяснили, что у него были голубые глаза и очень смуглая кожа, говорится в статье, опубликованной в журнале Nature. «Главным сюрпризом для нас стало то, что этот человек обладал типично «африканскими» версиями генов, которые управляют пигментацией кожи, что вероятно делало его очень смуглым или даже темнокожим, хотя мы и не можем точно определить ее тон. Еще более удивительным стало то, что этот «испанец» обладал теми вариациями генов, которые делают глаза европейцев голубыми, что делает этот геном уникальных, так как по всем остальным признакам он происходит из Северной Европы», — заявил Карлес Лалуэса-Фокс из Института эволюционной биологии в Барселоне (Испания). Что касается редкой гаплогруппы (C6, или по мнению некоторых исследователей просто C), то оказывается, что еще в 2013 году несколько любителей-непрофессионалов предсказывали вероятность присутствия С у части жителей палеолитической и мезолитиской Европы — по их мнению, мужское население палеолитической Европы могло принадлежать к линиям — C-V20 (в ISOGG С6), F и IJ.

«Ранние представители современного человека в Европе (EEMH), широко известные как кроманьонцы, мигрировали с Ближнего Востока в Европу несколькими волнами. Задумывашись над тем, какие гаплогруппы Y-ДНК могут быть связаны с ними, и в каком порядке они мигрировали в Европу, я придумал следующую хронологии для верхнего палеолита.

1) Гаплогруппа С6 (или С *, которая развилась в C6 в Европе)

2) Гаплогруппа F

3) Гаплогруппа IJ (которая развилась в Европе в гаплогруппу I) «

Заслуживает внимание и мастерское использование в данном исследовании методов секвенирования нового поколения — в частности, после того как генетики собрали геном древнего европейца из прочитанных мелких сегментов ДНК («ридов») по методу отображения ридов на референсный геном человека,  осталось приличное количество неиспользованных ридов. Генетики использовали «сухой остаток» для проведения метагеномического анализа. Как известно, метагеномика работает с набором всех ДНК находящихся в среде; следовательно генетики сделали удачное предположение о том, что «риды» без привязки к человеческому геному принадлежали геномам бактерии. BLAST-анализ ридов в Генбанке позволил установить те виды бактерий, секвенсы геномов которых были наиболее близки к изучаемым ридам.


В конце января были опубликованы две замечательные статьи на русском языке, посвященные бурно развивающейся области исследований — молекулярной патологии: «Молекулярная патология и роль врача-патологоанатома»  и «Наследственно обусловленный рак молочной железы и яичников«.


The Coop Lab продолжает размещать материалы о статистических рассхождениях в характере наследования генетического материала у ближайших родственников. Традиционно считается, что сибсы (сиблинги) одного пола похожи друг на друга в той или иной степени. Различие в фенотипических чертах объясняются разными факторами окружающей среды воздействующих в разной степени на их развитие. Тем не менее, как было показано в статье The Coop Lab,сибсы различаются также на уровне своего генома, за счет случайности сегрегации и рекомбинации.


Китайские генетики разработали  новый метод генной хирургии (точное геномое редактирование) и успешно применили его на макаках.


Ученные из университета Северной Аризоны «возродили» вирус древней чумы, пандемия которой пришлась на время правения византийского императора Юстиниана (Юстинианова чума). В лаборатории был прочтена последовательность ДНК бактерии-возбудителя чумы, которая содержалась в останках жертв этой пандемии. Очевидно, здесь также применялись методы метагеномики.


В сетевой версии журнала «Наука и жизнь» размещена статья о характере генетической интрогрессии (межвидовым обменом чужеродной генетической изменчивостью) произошедшей между неандертальцами и предками анатомически современного человека много десятков тысяч лет назад, и приведшей к частичной гибридизации двух видов, чьи эволюционные пути разошлись около полумиллиона лет тому назад:
«Оказалось, что практически все неандертальские гены локализованы в Х хромосоме, а значит, передались нам по женской линии. Ученые пришли к выводу, что мальчики, рождавшиеся в результате смешения кровей, были в большинстве своем бесплодны. «Когда неандертальцы и люди скрещивались, это было на краю биологической совместимости, ведь два генома не встречались друг с другом примерно полмиллиона лет», — комментирует результаты исследования один из его авторов Дэвид Рейч, генетик из Медицинской школы Гарварда (США).»

Я еще в 2010 году говорил, что если смешивание с неандертальцами происходило, то скорее всего гены были привнесены от связей между мужчинами homo sapiens sapiens и женщинами-неандертальцами. Не откажу себе в удовольствии процитировать свое сообщение на форуме Молгена.

«Re: Люди носят гены неандертальцев
Ответ #23 : 10 Май 2010, 19:40:25  Самое неубедительное в обеих работах это
1)отбор снипов для анализа (перекрестное сравнение снипов орангутанга, человека и шимпанзе — выбрали те, которые у человека являются, как считается, потомковыми).
2) по отобранным снипами произвели выравнивание (alignment) секвенсов шимпанзе, человека и неандертальца фазирование предкового генотипа общего предка человека, неандертальца и современного человека (т.е говоря проще, реконструировали (предсказали) гипотетический генотип по методу Байесовской апостериорной вероятности)
3) затем разбили фрагменты генома неандертала по снипами по признаку совпадения или несовпадения с предковыми значения гипотетического секвенса общего предка шимпанзе и гомо, на три группы -гомозиготные с предковым значением снипа, гомозиготные с потомковым значением и просто гетерозиготы. Про исключение более половины мутаций (пусть и синонимических), я вообще молчу. Но кто может гарантировать, что предковый генотип реконструирован верно, и, что самое главное — где доказательство того, что у неандертала должно быть именно предковое значение снипа, а не мутировавшее параллельно с человеком.
Наконец, на приведенном выше графике, разброс участков генома совпадающих у человека и неандертальца по X хромосоме, находится в меньшем диапозоне SD (стандартного отклонения), эти участки небольшие, но по структуре более дивергентные.
Из чего следует 2 вывода:
a) основное генное вливание шло через X хромосому и b) поскольку около 2/3 генетической информации X хромосомы аккумулируется в женских линиях, то направление вливания шло через самок неандертальцев и мужчин-сапиенсов, что несколько противроечит картине изображенной в первой статье.»

Любопытно, что при ресеквенировании геномов неандертальцев и секвенировании геномов новых неандертальцев (из пещеры Окладникова) применили новый метод секвенирования. В частности, они секвенировали митохондриальную ДНК из кости неандертальца и отделили ее от ДНК современного человека, что позволило доказать родство между жившими в Сибири и в Европе неандертальцами.Метод определения посторонних наслоений ДНК основан на анализе ее естественных мутаций. Так, у 30–40% образцов, возраст которых насчитывает несколько тысяч лет, цитозин превращается в тимин, а гуанин — в аденин. Ученые разработали систему, моделирующую процессы естественного изменения ДНК и сравнивающую полученный результат с данными образца.

Аналогичная методика была применена и в отношении менее древних образцов ДНК. Насчет мезолитических образцов из работы Лазаридиса, я не читал ту часть сапплемента где описывается техническая сторона опыта. Но в другой работе упомянутого в статье Скоглунда (Skoglund et al .2012) — в неолитическах образцах результаты поссмертной гидролитической деаминации (cytosine —> thymine or guanine —> adenine) были удалены. Но у неандера разумеется из было горадо больше и пришлось придумывать методику реконструкции первоначальных нуклеотидов.Кроме того, в статье Lazardis et.al.2013 (точнее в сапплементе) содержится указание на использование урацил-ДНК-гликосилазы и эндонуклеозы при подготовке библиотек для сиквенирования.Использование этого метода значительно (!) уменьшает включение деаминированных остатков C/G→T/A (здесь подробности).


Уважаемый «любитель» Владимир Таганкин на основе большого эмпирического материала (десятки тысяч гаплотипов) провел серьезное исследование дисперсии значений локусов Y-STR. Это исследование  по своему качеству превосходит многие статьи профессиональных популяционных генетиков.


В статье доктора Линча известный «феномен раздутости нефункциональной части человеческого генома» объясняется сочетанием ряда генетических факторов. Мутации, увеличивающие размер генома (дупликации), с гораздо меньшей вероятностью вредят организму, чем мутации, при которых часть генома теряется (делеции). Поэтому с увеличением частоты мутаций геном начинает непроизвольно расти. То есть причинно-следственная цепочка тут следующая:

малый размер популяции > увеличение генетического дрейфа > нарушение аккуратности репликации генома (увеличение частоты мутаций) > увеличение размера генома.

Как мне кажется, это объяснение можно применить к анализу всех мутаций, в том числе и STR (коротких тандемных потворов).


В январе и начале февраля было опубликовано несколько статей, в которых затрагивается тематика ДНК-криминалистика. Так в ходе проведенного Федеральным Бюро Расследований США аудита национальной базы данных ДНК, было обнаружено 166 ДНК-профиля, которые содержали ошибки. Часть этих ошибок появилась в результате ошибок клерков, другая часть связана с ошибками при интерпретации данных допущенных сотрудниками лабораторий. Проведенная тогда же проверка профилей ДНК в базе данных города Нью-Йорке дала аналогичные результаты. Неприятный факт обнаружения ошибок в STR-профилях ДНК поднимает старые вопрос о необходимости замены существующей системы CODIS. В более ранней работе, в которой рассматривалась роль и место устаревающей, но по-прежнему существующей системы CODIS в системе быстро развивающегося комплекса знаний о геноме человека, авторы сделали интересный вывод: несмотря на то, что маркеры CODIS часто лежат в пределах геномных и генных доменов, связанных с риском развития определенных заболеваний или отвечающих за определенные функции генома, не было найдено никаких  убедительных доказательств того, что «короткие тандемные повторы», используемые в качестве маркеров CODIS, могут помочь установить физические черты человека.  Наконец, в совсем новой работе по ДНК-криминалистике («Recent Advances in Forensic DNA analysis«), наряду с обсуждением сугубо технических моментов сбора и подготовки биологического материала к анализу, затрагивается и вопрос о возможных альтернативах STR (коротких тандемных повторов), т.е того типа маркеров которые лежат в основе системы CODIS. Одной из логичных альтернатив являются однонуклеотидные полиморфизмы (снипы). Одним из преимуществ снипов над STR является тот факт, что в сильнодеградированные фрагменты ДНК могут быть проанализированы только с помощью снипов. Будучи биаллельным маркером, снип может быть включен в ДНК-профиль, однако информативность одичного снипа гораздо ниже информативности STR-локусов, в силу чего  процесс установления личности при работе со смесью разнородных ДНК усложняется. Хотя единчный снип менее информативен ( в силу биаллельности), чем STR, но этот недостаток можно легко избежать за счет увеличения  количества SNP(снип)-маркеров, используемых при анализе. Разный уровень гетерозиготности  является одной из наиболее ценных особенностей снипов. Другой положительной чертой снипов является то, что при определении снипов нет нужды на разделение сегментов по их размеру, что делает мультиплексирование и автоматизации более доступны, чем  в анализе коротких тандемных повторов. Кроме того,  низкая скорость мутации снипов значительно улучшает их стабильность в качестве генетических маркеров.

 

О чем мне рассказал мой геном — результаты 23andme глазами профессионального генетика

Крайне поучительные выводы можно сделать при прочтении замечательной статьи американского генетика Gregory A. Petsko, в которой автор расскрывает интересную точку зрения на сущность анализа генетических вариантов в 23andme. Статья написана на очень легком языке, и автор сдабривает эту легкость изрядной долей здрового юмора.  Поскольку тема тестирования в 23andme интересна значительному проценту наших читателей, то ниже мы приводим перевод статьи на русский.

» Выходит,  что я не потомок Чингисхана . Я уверен, что это обстоятельство удивляет  вас не меньше, чем  меня. Судя по тому, что мы слышим от людей, которые используют геномику  для отслеживания путей человеческой миграции, огромный процент представителей человеческой расы на самом деле произошли  от Чингисхана. Но только не я.

Это одна из тех вещей, которые я узнал после того как представил образец моей ДНК для геномного анализа однонуклеотидных полиморфизма (SNP ) в одной из компаний, созданных для выполнения тестов для  ‘обычных  людей’ за плату. Мне было любопытно посмотреть , какого рода информацию они предоставляют , и честно говоря, я хотел узнать кое-что о своем собственном геноме. Поэтому следуя инструкциям компании, я плюнул несколько раз в  пластиковый контейнер, пока не набрался необходимый объем слюны , отправил его по почте , и стал ждать результатов . Обнаружат ли у меня аллель, которая обречет меня на  редкую генетическое заболеваний , когда я войду в преклонный возраст?  А что, если мой риск развития сердечных болезней , диабета,  — или любого из тысяч других  недугов терзающих плоть — гораздо выше среднестатистического ? Окажусь ли я потомком Чингисхана ?

Компания 23andme, в которую я направил образец слюны,  выполняет сиквенирование или гибридизацию ДНК не сама , а в отдельной специализированной лаборатории, c которой у 23andme заключен договор . После того, как лаборатория получила мои образцы , мою ДНК экстрагировали из клеток задней стенки щеки в слюне и амплифицировали  с помощью  ПЦР достаточное для стадии генотипирования количество ДНК.  Далее, ДНК разрезали рестрикцией на меньшие, более управляемые фрагменты. Эти фрагменты ДНК затем нанесли на ДНК-чип , который в данном конкретном случае представляет собой небольшую стеклянную пластину с миллионами микроскопических шариков-головок на  поверхности. К каждой головке прикрепляются  ДНК-зонды , комплементарные тем  сайтам человеческого генома , в которых расположены наиболее важные снипы. Для каждого SNP, имеется два ДНК-зонда  соответствующих «нормальной» и «мутировавшей» версии (аллелю) каждого SNP.  Таким образом, гибридизация сайта ДНК с конкретным ДНК -зондом , обнаруживается при помощи флуоресценции, которая,  как и в случае любого другого эксперимента c ДНК-чипом, служит для идентификации аллели .

ДНК-чип, который использует 23andme, включает в себя  550000 снипов,  разбросаных по всему геному. Хотя эти 550 тысяч снипов являются лишь частью из всех находящихся в геноме человека снипов (по разным оценкам, их количество достигает 10 миллионов) , набор этих 550 000 снипов тщательно продуман — сюда входят специально подобраные  тэг-снипы (снипы-метки).  Поскольку  многие снипы характеризуются высоким неравновесным сцеплением  между собой, генотип  многих снипов ​ может часто определяется, исходя из вывленного при тестирования генотипа того SNP , который является «тэгом-меткой» своей группы или LDблока снипов.  Благодаря процедуре использования снипов-меток, можно максимизировать  информацию от каждого фактически проанализированного SNP, сохраняя при этом низкую стоимость самого анализа.

Кроме того,  многие ДНК компании имеют специально подобранные десятки тысяч дополнительных снипов,  ​имеющих высокие диагностические перспективы и подробно изученные в  научной литературе.  Соответствующие этим снипам зонды добавляются в модифицированный ДНК-чип Illumina. Эти снипы включают факторы риска для общих и редких заболеваний человека, а также генетически наследуемые признаки (дальтонизм и так далее) .

Доступ к окончательным данным осуществляется через веб-сайт компании, который включает в себя возможность загрузки всего набор информации по проанализированным SNP-ам . После того, как я получил уведомление о готовности моих результатов,  то, будучи ученым, выполнил самостоятельный  биоинформатический анализ своих данных . Нужно однако признать, что сайт  23andme на самом деле cодержит качественный и интуитивно понятный интерфейс, обеспечивающий клиенту конкретную информацию о конкретных аллелей связанных с наследственными факторами конкретных различных заболеваний, физических черт, и так далее.

Вот некоторые из вещей, которые я  узнал  о себе:

Согласно геномным данным , мой цвет глаз , вероятно,  коричневый ( хорошее предположение ) . Я должен быть лактозотолерантным ( так оно и есть ). Данные моего цитохрома P450 показывают, что я был бы весьма чувствительным к антикоагулянту варфарину , если я когда-либо должен был принимать его (надеюсь, что я никогда это не сделаю — это отвратительный препарат), снип в гене рецептора андрогенов свидетельствует о значительном снижении риска мужского типа облысения ( у меня есть новости для ученных , я слегка полысел на макушке ). По SNP-у в гене рецептора допамина,  в одном немецком исследовании  было установлено, что он связан со снижением эффективности в процессе обучения избежанию ошибок . Согласно одному SNP-у в гене , связанном с метаболизмом инсулина , у меня есть хорошие шансы дожить до 100  лет (то есть, если все ошибки, которые я не научилися избегать, не ухудшат эти шансы ) . Есть также целый список снипов , которые в некоторых исследованиях были связаны с улучшением спортивных результатов (спринтерские способности, скорость реакции и так далее ) . У меня нет ни одного из этих снипов , что вряд ли вызовет удивление у  любого из моих учителей физкультуры .

Вместе с тем, у меня отмечен повышенный , в сравнении  со среднестатистическим , риск  развития ревматоидного артрита и псориаза ( что интересно , потому что мой отец страдал от этого заболевании ). У меня несколько сниженный риск развития целиакии , болезни Крона, сахарного диабетом 1 типа и рака предстательной железы . В любом случае , отклонение от нормы малозначительно — менее чем в два раза , — и не достаточно, чтобы заставить меня рассматривать планы по изменению образа жизни.

Но когда я самостоятельно проанализировал свои данные, один полиморфизм вызвал беспокойство. Так, у меня был обнаружен гуанин (G)  в cнипе rs1799945 , расположенном в гене, кодирующем белок под названием HFE. HFE является протеином мутирующем при наследственном гемохроматозе . Наследственный гемохроматоз,наиболее распространенная форма болезни связанной с перегрузкой организма железом, является аутосомно -рецессивным генетическим заболеванием, которое вынуждает организм поглощать и хранить слишком много железа . Избыток железа сохраняется во всех органах и тканях организме , в том числе поджелудочной железы , печени и кожи. Без лечения , накопления железа могут повредить  органы и ткани. Есть два основных генетических варианта приводящих к этому заболеванию .

Генетический вариант 1 ( C282Y/rs1800562 ) находится в гене HFE. HFE производит мембранный белок , который структурно изморфен I типу белков МНС класса, и ассоциируется с β2 -микроглобулином. Считается, HFE  отвечает за абсорбцию железа в  клетках кишечника, печени и иммунной системы,  регулируя взаимодействие рецептора трансферрина с трансферрином. Замена C282Y нарушает взаимодействие между HFE и его легкой цепью β2 — микроглобулина и предотвращает экспрессию на поверхности клетки. Анализы кристаллической структуры протеина HFE подтверждают то , что было предсказано исходя из изучения его последовательности. Cys282 ( остаток 260 в зрелой форме белка ) участвует в дисульфиднои мосте подобно аналогично протеинам, которые содержатся в  α3 домены I класса MHC . Потеря дисульфида дестабилизирует  уникальную нативную пространственную структуру белка. Второй наиболее распространенный вариант гена  HFE  — это замена гистидина-63 на аспарагиновую кислоту . В кристаллической структуре HFE , His63 ( гистидин-41 в последовательности зрелой формы ) включен в  солянной мост , который в результате мутации разрушается превращаясь в отрицательно заряженный остаток , и тем самым дестабилизируя белок. Таким образом, как и многие другие наследственные заболевания , гемохроматоз является  заболеванием вызванным конформацией (нарушением третичной структуры) белка.

В США  вариант 1 является наболее распространенным. «Нормальная аллель» Cys282 содержит гуанин в обеих нитях,  и встречается примерно у 876 из 1000 человек европейского происхождения . Наиболее распространенные формы наследственных гемохроматозов обнаружены у индивидов гомозиготных по аденина в обеих положениях, это происходит примерно у 4 из 1000 человек европейского происхождения (0,4%) . Тем не менее, пенетрантность является неполной : лишь только от трети  до половины гомозигот показывают повышенный уровень железа и, возможно, менее чем у  10% мужчин (и у от 1 до 2% женщин ) появятся полные клинические симптомы болезни , которые включают в себя боли в суставах , усталость, боль в животе, нарушение функции печени, и проблемы с сердцем . Как показал Эрнест Беутлер, хотя  мутация гемохроматоза и является относительно распространенной , сама болезнь гемохроматоза встречается редко. То есть мутация в гене HFE является необходимым , но не достаточным условием . Задача исследователей гемохроматоза в геномную эпоху, также как и в случае многих заболеваний, состоит в  изучении  других генетических, эпигенетических  и экологических факторов, определяющих, почему только у части гомозигот по C282Y (или H63D ) мутациям развивается  тяжелое заболевание нарушения обмена железа , в то время как большинство его носителей в значительной степени  не имеют даже малейших признаков этого заболевания .

У гетерозиготы в C282Y имеется аденин только в одной цепи и встречается примерно у 120 из 1000 человек европейского происхождения: у гетерозигот практически никогда не возникают клинические симптомы . Гетерозиготы по H63D встречаются гораздо реже , но также маловероятно, что у них появятся клинические симптомы . Как и каждый десятый житель США , я носитель гемохроматоза . Я гетерозигот по H63D .

Теперь, когда я знаю причину, что это дает мне? Не так уж и много, как мне кажется, но я всегда буду помнить о своей гетерозиготности, и если я когда-нибудь у меня появится один из признаков перегрузки железом , я , вероятно, попрошу своего врача , чтобы тот проверил мой уровень железа . Наверное, людям которые заботятся о своем здоровье, такие вещи знать необходимо  .

Но если вы зайдете на сайт компании , в которой вы сделали свой ​​анализ , то увидите, что информация, о которой я писал чуть выше, находится  не на самом видном месте. Все, что отображается на самом видном месте, связано исключительно с генеалогией. Я беседовал с генеральным директором компании, и она подтвердила, к моему удивлению ,  что люди, которые используют услуги 23andme гораздо больше заинтересованы в отслеживании своих корней с генетической точки зрения , чем в отчетах, связанных с генетическими факторами здоровья или физического состояния . На сайте можно найти несколько инструментов для подключения себя к другим людями, которые имеют с вами родство с генетической точки зрения . Другими словами, в настоящее время, основное применение полногеномного анализа SNP-ов сводится к созданию своего рода социальной сети генетических генеалогов .

Моя материнская гаплогруппа T2b2 . Гаплогруппа T возникла около 33000 лет назад на Ближнем Востоке , когда современные люди вышли из Восточной Африки . Ее нынешнее географическое распределение сильно зависит от нескольких миграций из Ближнего Востока в Европу , Индию и Восточной Африке примерно 15000 лет назад. T2 в настоящее время широко распространена в Северной Африке и Европе. Семья моей матери совсем недавно приехала из Италии , так что я предполагаю, что эта информация имеет практический смысл. Вы можете обнаружить на сайте сходство с гаплотипами известных людей: например, если ваша материнская гаплогруппа H4a , то  вы попадаете в одну компанию с  Уорреном Баффетам , одним из самых богатых людей в мире. Вы будете в восторге — и, возможно, не удивитесь — узнав, что единственный известный человек в списке на сайте c той же гаплогруппой, что и я, — это  Джесси  Джеймс, легендарный бандит с Дикого Запада.

Мой отцовской гаплотип I2. Гаплогруппа I2 является наиболее распространенной в Восточной Европе и на средиземноморском острове Сардиния, где она встречается у 40% мужского населения. Как и ее братская гаплогруппа , I1, I2  мигрировала в составе экспансивных миграций  на север в конце ледникового периода около 12 000 лет назад. Но в отличие от I1, которая расширялась от Пиренейского полуострова в северо-западной Европе , градиент  I2 направлен с Балкан в сторону юго-запада России в восточной части континента. Эти выводы также логичны, поскольку семья моего отца была родом из казаков. Если бы моя отцовская гаплогруппа была чрезвычайно распространеной С3 , я был бы потомком  Чингисханом . Увы, не повезло . Если бы это была гаплогруппа Т , я бы разделял  отцовскую линию с великим американским президентом и отцом-основателем, Томаса Джефферсона . Увы, cнова промах. На самом деле, веб-сайт компании не содержит ни одного известного человека с отцовской гаплогруппой I2 ( если не считать меня , конечно же) .

Так что теперь , благодаря моему собственному анализу cнипов личного генома, я знаю , что  вряд ли будет исключительно успешным в спорте; и что я не голубоглазый лысеющий блондин. Ни одно из этих заключений не представляло для меня какую либо то ни было неожиданность. Впрочем, я также узнал, что не происхожу от  Чингисхана. Вот что получилось у меня , и  я полагаю, что это лучше чем не знать ничего.